The Java EE 6 Tutorial, Volumell

Basic Concepts

»
0 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-7627-10
December 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091209@23031

Partl

Contents

PrEface ... 19
INEPOAUCTION ... 27
OVEIVIRW ..o 29
Java EE 6 HIGhIIGIESvuieiieiiciciricicireteccetecreteee ettt sese st sae et sesessesesenacnne 30
Java EE Application MOlcveuiuiiiriiriciiiricineireicictseieeeetseie ettt sesesaesset e 30
Distributed Multitiered APPLICAtIONSc.cveuevreucueiricirieieiricieireetreei ettt seeseseesesseeaes 31
Security
Java EE COMPONENLScocviiiiiiiiiiiiiciiicis st ssssssssssans 33
JAVAEE CLIENLS .ottt ettt eae st ese s esese et ensesesensesenseseassesensesensesensnenen 33
WED COMPONEILS ...oreviiriiincieieiei ettt ettt ettt eeaebees 35
Business COMPONENLS ... 36
Enterprise INformation SYStem TIETcceeeureureuercereereeeenieniseieireieieinesessesseesesessessesessesessssens 37
JaVa EE CONTAINETS ...coveuirieieiieiiieiesieieesteeee et te st steseste et ese e sesassesassssesessesensesesesessnsesessssesensesensans
Container Services
CONANET TYPES ettt
WED SEIVICES SUPPOIT w..euveirceieicteiccireteectreteee ettt ses ettt sese sttt nee e
KIML et ettt sttt b ettt 40
SOAP Transport PrOtOCOLccuiuiueiiiiriciiiriccieictiecc e ssenans 41
WSDL Standard FOTMALc.euveeiirieereiiieeeeiereieeeseee e essesessesesessessssessessesesenne 41
Java EE Application Assembly and Deploymentcoceeveereeeeeinernecenerneeenenneeeecenesseensessesenaes 41
Packaging Applications
DeVelOPIMENT ROLESc.ucvuiuiriiiecieieieicireteee ettt bbbt seb ettt sttt
Java EE Product PROVIAETcuovovieieveeeeeeeeeeeeeeeeteeeee ettt enens s esensesensenensnnenen 44
TOOL PIOVIAET ..ottt saen 44
Application Component PrOVIErcccvvcuniureerneuneeerciniineenesnesesessesesesseseesesessesessessesenne 44

Contents

ApPPLication ASSEIMDIETc.ciueiciiirieiiiriecrtie et 45
Application Deployer and AdmINIStIatorc.eveeeureeercurieeeecenieneseseineeencesesessesseesesesessesessees 45
JAVAEE 6 APIS ..ot 46
Enterprise JavaBeans TeChnologyc.cccrciiciiiniicicceceeeessesese s 46
Java Servlet Technology
JavaServer Faces TeChNOLOZYcocvveuiiiverciniieiieiiereieneeseieneaeie e ssse s sessesensees 47
JavaServer Pages TEChNOLOZYcovurveururiueiciniierieiiireieeistiereieie e sscesese s ssae s ssasesenaees 47
JavaServer Pages Standard Tag LIDIAryccoeevereeeeeniuniceneineeeeeneeencenesensessessesesessesensens 47
JAVA PEISISTENICE API ...ttt ettt et e e et et eebsentesaseasebeeasensenean 48
Java Transaction AP ...ttt ettt et s et e reere b nes

Java API for RESTful Web Services (JAX-RS)
Java Message Service AP ...
Java EE Connector ATCHItECTUTEo.oovivivveeieieeeeceeeceeeeetee ettt ea e nenen 49
JAVAMAIL AP ..ottt a st e st ene st ensseenenssteneenenn 49
Java Authorization Service Provider Contract for Containers (Java ACC)ccoovvvevevvevrnneee 49
Java Authentication Service Provider Interface for Containers (JASPIC)cccccoeveveeuerenenne 49
Java APIfor XML REZISTIIES ..vuvurvreevueurierecriieieneeeeenseneserse e nessesessesesessesesesenns
Simplified Systems Integration

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)cccevevevevereneeee 51
Java Database Connectivity APTccovvveniurmereiniereinieeeieeneieneieeenseseesesenessesessessesesscsnees 51
Java Naming and Directory INterfaceococuvcueuriniuniiniiniencicieiecenisceseisessescssessscsesaeens 51
JavaBeans Activation FrameWOTIKocoeivviieviveieeeeeeeeeteeeeeteee et sen e nenes
Java API for XML Processingcceccveereueence
Java Architecture for XML Binding (JAXB)
SOAP with Attachments APIfOI JAVAocvouivereieeeeeeeeeeeeeeeteee ettt nenen 52

2 Usingthe TUtorial EXamPIesccoooorrieininiiieccees ettt sennsnnas 55
REQUITEA SOTIWALE ...ttt ettt ettt
Java Platform, Standard Edition
Java EE 6 Software Development Kit (SDK)ccoeeueurieurinieinieieineeirinceeseeieeseeiseesesseseieenenes 56
APACNE AN ettt 56

4 The Java EE 6 Tutorial, Volume | « December 2009

Contents

Partll

Java EE 6 Tutorial COMPONENLcvvureeeiurieeriirieereireieeeeetiseeesseasesessessesessessssssesssssesessessesessens 57

NetBeans IDE ... e 58
Starting and Stopping the ENterprise SEIVETcocuvirincinirnecineirieercieeesenseeee e eseeeeene 58
Starting the Administration CONSOLEcocuviueieureuricirerrieiereeerereeeieeeee e eseesenne

V To Start the Administration Console in NetBeans IDE

Starting and Stopping the Java DB Database Server ...
Building the EXAmPLEScocuieeieiieeicieirieietreieeereteeeenetsesenessese st sese s ssesessessessssessesesaennes 60
Tutorial Example DIrectory STIUCTULE ...c..c.cvcueueceeureeererreeeieirerseeenessesensessesessessessesessessesensessesesees 61
Getting the Latest Updates to the Tutorialcccvcueeencineericininecneincecneiseeseiseeesenseseeeseseeseene 61
V To Update the Tutorial through the Update Centerc.cccceueiverernienercerereneneeneninnennes 61
Debugging Java EE APPLICAtIONSvcueuieerreirieeiereieicieiseeeeetsesenesesessessessesessessesessessesessessessesense 62
USING the SEIVET LOG ..cuvuivieciiirieciciriieicireieeieittseee et stassse s ese s asese s sse s esesasanesesses 62
USING @ DEDUZGZET ..ottt 62
TREWEDTIEK ... 65
Getting Started with Web Applications ... 67
Web APPLICAtIONScouviiiiciii s 67
Web Application Life CYCle ..o sesessanes 69
TWED MOAULES ...t s 71
Packaging Web MOAULESc.occueuieiciiiriciiirieecieeieeeieeenei e nans 72
Deploying @ WARFILE ...ttt sae s ssesaeaesesaes 73
Testing Deployed Web MOdULEScccurieuierieeiciriiicntiricieseieneiseiessceseesese s ssessesensens 75
Listing Deployed Web MOAULESccouuiuimicrieiiiiiiiseesese s nsesesssesssens 75
Updating Web MOUIES ..o ssessesessessss s sssssesensessesensens
Undeploying Web Modules
Configuring Web APPLICALIONSc.cucueureeeeiiriieieireiricireiseicte sttt seesenne
Mapping URLS to Web COMPONENLSc..cueeeumimieerciieeciiieeeieeieneseieeseseseeseseseesessesssenne 77
Declaring Welcome Filescocuiuriereiiiniciiinieeeeieeeeiseeneiese e ssessesessessesensens 79
Setting Initialization Parametersccocveeeeneeereeneieecinienieneiseseseseeensessessssesessesessessesessens 79
Mapping Errors to EITOr SCIeENS ..ot 81

Declaring Resource References

Further Information about Web APPLiCAtionsc.cvucueureeeurinieeiricieineeiseeiereieeeeietseeie e 84

Contents

4

JavaServer Faces TEChANOIOQY ...t s s nas 85
What Is a JavaServer Faces APPLICAtiON?coueueurecurineucrneiieiricieeeecineeeesesesseeseesesesssseseseeassesnenes 86
JavaServer Faces Technology Benefits ... ssesessaees 87
Creating a Simple JavaServer Faces APpliCationcuceeceveuneeeercrnerneeineineeneenneeneeesenseeensensessesenne 88
Developing Backing BEansccccvueuiuriueecinienieiiiieneesieeeeeeieeseseesesessessesessesssessesssesensens
Creating the Web Pagecccoocveevcrneeencnenneans
Mapping the Faces Servlet Instance
The Lifecycle of the he 1T1oWorld APPlICAtIONceeeeeeeiereeeiiereieieineieeeeiree e seseesennees 90
V¥ Running the Application in NetBeans IDEcccccovuveminiemnerninecnnenienneineeneneenensessesenne 91
Further Information about JavaServer Faces TeChnologycccoucvencuneerencrnernccenerneenenernennenenne 92

Introduction to Facelets

Advantages Of FACEIELSc.ccccuiiriuieiiriiiic e

WHhat's FACEIES T ..ot 94
TWED PAZES ..ottt b e 94
Tag LIDIary SUPPOLIL ..ccuvrieieiiieecieiriiciieieeceie e naes 94

Unified Expression Language Support
Developing a Simple Facelets Application

Creating a Facelets Applicationcccecveueeee

Configuring the APPLCAtION ...c..cucueuieeiieriieicireieereereie ettt saeen

Building, Packaging, Deploying and Running the Applicationcccccoveviivciiiininininnes 101
TEMPLAING ..evrtieiiirieeiciree ettt 103
ComPOSite COMPONENLScuceeeuerereriieeeeeiererereesieeeeeeresese ettt s s st sesessesestasaeseseseseses 105
RESOUICES ...ttt s 108
Unified EXPression LANQUAGEcccooeuriiieiieeieiiieiisiessessessess st sssss s sssssssssssessssssessssesessssns 109
OVEIVIEW O EL .ottt ettt ettt sttt tes 109

Immediate and Deferred Evaluation SYNtaxc..ccceeeeveereuemrereemerenseeeneesensesserensersessesanes 110

Value and Method EXPIESSIONSccueueuereuniureeriunieenerseseecseesesesesnesessessesesesessesessessesenns 112

Defining a Tag AttribULe TYPEc.ccuceueueeiuiereiriireieieieieeeiseisei e ssessssesessese e sasssenenes 118

Literal Expressions

Operators

ReESEIVEA WOTES ...t e

Examples Of EL EXPIESSIONS ...c.vucvuiueueuueuieerieiiiniaeitinisescisesessessesessessessesessessesesessessssessesesnenns 121

The Java EE 6 Tutorial, Volume | « December 2009

Contents

7 UsingJavaServer Faces TechnologyinWeb Pagesccccoooviiieeeenisnecceeeeeens 123
Setting UP @aPage ..o s 123
Adding Components to a Page Using HTML Tagscccccveuvcueuruernemnimnieserieseeeesscesenssssssnnens 124

Common Component Tag AttribULes ..o 127
Adding HTML Head and Body Tags
Adding a FOrm COMPONENLcoeureeeiirieeicireiieeneseeenenseee e sseseesessessesesessesessessessesenne

Using Text COMPONEILSc.ouiueuiiieiieirieieiieieiese ettt ssssessssssessssesessnans

Using Command Components for Performing Actions and Navigationcceceveeeee. 135
Adding Graphics and Images With the h:graphicImage Tagccoceenncnenenenenne 137
Laying Out Components With the Panel Component
Displaying Components for Selecting One Value

Rendering Components for Selecting Multiple Values
Using The SelectItemand SelectItems COMPONENLScocewereeeeerereeemeremremerersesensenne 143
Using Data-Bound Table COMPONENTScueueueuiureeercrieeierieneeieineeenersesessenessesesesseseene 144
Displaying Error Messages With the h:message and h:messages Tagscoccocoeuverrceenene 148
Creating Bookmarkable URLs with h:button and h: 1ink Tagscccceeeeveuniivciireiniunecs 149
Resource Relocation using h: output Tags

USING COTe TAZS ...t

8 Using Converters, Listenersand Validatorsccoooeririiiireccnnnceeee e
Using the Standard CONVertersocveuveeererreerecrrernennne

Converting a Component’s VAUccc.oecereemineemcrniecnere e sessesenns

Using DateTimeCONVEIrTEr .

USing NUMDEIrCONVETTEE ...viiiiitiiicc e

Registering Listeners on COMPONENTScocriuiiiiiiiiiiiiiii s
Registering a Value-Change Listener on a COmMpONentcoceeeeeereeeecrnereeerneuneserserseseene 161
Registering an Action Listener on a Component

Using the Standard Validatorsccveceecirrcinieeeeeeeneeseenessesessesseseseessessesessessesensens
Validating a Component’s VAlUecoecururecineinieincinieneeineineseneisesseessessesessessessesessesseseens

Using the LongRANGEVATLAATONc.oviiiiiiiciiiieciieeceecee e senees

Referencing a Backing Bean Method ...t ssesesensens
Referencing a Method That Performs Navigationccceceecereeunerneeeecrneeneeunesneensenneseene
Referencing a Method That Handles an Action Event
Referencing a Method That Performs Validationccccueeuncurecunenececrncnencrnenneensenneeenne
Referencing a Method That Handles a Value-Change Eventccccoocvcncivcivciccicnincnennes 166

Contents

9

10

Developing With JavaServer Faces Technologyc.ccccooviiiiinninniccneneeeeee
BaCKING BEAIS ...ecvuiriieiciiiciciret ettt ettt ettt sttt st

Creating a Backing Bean ...t sae s
Writing Bean PrOPertiesccviiiiciciiiiiiicctcci s

Writing Properties Bound to Component Values

Writing Properties Bound to Component Instances
Writing Properties Bound to Converters, Listeners, or Validators ..o 178
Writing Backing Bean Methodsc.ocecreeiiinieicininicinecneieeciseeseie e sseesesensesessesenaees 179
Writing a Method to Handle Navigationccccveeeuneureeeineineenecineineeeneineeseesesseessesseseesenne 179
Writing a Method to Handle an Action EVentccccouveiuncncincieieininenscceneeeneeeeens 181
Writing a Method to Perform Validation
Writing a Method to Handle a Value-Change Event

Bean Validationcocieveeieieeiieee ettt ettt es e se ettt es e esesens et enssseneneseneenenn

Java Servlet Technology
WRAL IS @ SEIVIELT ..ottt bbb 185
SEIVIEt LIfe CYCLE ettt s sttt

Handling Servlet Life-Cycle EVENTSc.ccvveuiurieereiniiricieireeieiseseeessesseesessese s ssesessenns
Handling Servlet EXTOTS ..ot ssssssses
Sharing INfOrMAatIONc.ocuvececiriieieireirceireie ettt st seae st ses st eae st sesessennes
Using Scope Objects
Controlling Concurrent Access to Shared Resources
INItAlIZING @ SEIVIET ...ovuiitiecicireic ettt ettt seae st eaesaenes
Writing Service Methods ..ot
Getting Information from ReQUESESccueuieereriirienireceeeeeeesee e
Constructing RESPONSEScciiuiiiiiiiiiiii e
Filtering Requests and Responsesccccecuveucenee
Programming FIlters ..ot e seesessenns
Programming Customized Requests and Responses
Specifying FAlter MapPingscccvceevereeierieriuerenenerseniessssssessessesessessessessssssesssssessessessessessns
Invoking Other Web RESOUICESc..cueuricuiirieieiriieicineieiciretseeeeetsesensessesseeesessesessessesessessessesenne
Including Other Resources in the RESPOISEc.cucueuicunienimcenieriecieineieeeiseeseeiseiseseesseseene
Transferring Control to Another Web Component
Accessing the Web CONteXt ...ttt nsessesessesessesesssssesessessssesessees
Maintaining CHENT STALEc.ccuuveiuiiiriircicie e

The Java EE 6 Tutorial, Volume | « December 2009

Contents

Partlil

11

12

13

ACCESSING @ SESSION .iuiiiiiiiic s 198
Associating Objects With @ SESSIONc.vuveuiirieineirieicrereeeee e e seaeene 198
SesSioN MaNaGEMENLcucvurvivieeieiiteieteie ettt s 199

Session Tracking

FINAlIZING @ SEIVIETerieeiiiccietrieccte ettt ae sttt sacnnes
Tracking Service REQUESESovcuueueeermerieeeeriiieciseeensenseee s nse s ssesesesenns
Notifying Methods to Shut DOWI ... sssssssees
Creating Polite Long-Running Methods

Further Information about Java Servlet Technologycccoveeeeureercnirrcrnineenerneeenenneeneeens 202

WED SEIVICES ... e 203

Introduction toWeb Services ... 205

What Are Web Services? ..o s sssees 205

TYPes Of Web SEIVICEScuuiuuiiiiiiiiiiicic i 205

Deciding Which Type of Web Service t0 USEcvuueueureureecuniureeerienieeneeneeeseesessesensessesessesseseesens 208
When Should TUSE JAX-TWST ..ottt aess s s st esenennenen 208
When Should TUSE JAX-RS? ..ottt es e se e s s st s esensasenen 208

Building Web Services With JAX-WScooiiiieeeeeccceeteser et seseees

SEHNG ThE POTT ..ottt ettt es e

Creating a Simple Web Service and Client with JAX-WS ...

Requirements of @ JAX-WS ENAPOINT w..vurvreueuriirieeiiirieeieiseieieineiseie et sesseseens
Coding the Service Endpoint Implementation Classccocuvveercuninecunerneeenerneenennenene 212
Building, Packaging, and Deploying the Service ... 212
Testing the Service without a Client

A SIMPple JAX-WS CHENL ..ot saees

Types SUPPOTtEd DY JAX-WS .ottt

Web Services Interoperability and JAX-WS ..o sesseseens 217

Further Information about JAX-WWSe ettt ettt eaan 217

Building RESTful Web Services with JAX-RS and Jerseycococvuvenirnennernenenenerneeenenn. 219

What are RESTUl WeD SEIVICES?cucuiuiueuiiriirieiierieitiseie ettt sssseseens 219
Where Does Jersey Fit INTccccuvuriciriinieeineineirieineiseieieieeeee et sesseseens 220

Contents

Creating a REST{ul ROOt ReSOUICE CLaSSc.vucvueveuiecirirriecieireeeictneieeeeinetseeeeensesesseaseseeeeesesseaennes 220
Developing RESTful Web Services with JAX-RS and Jerseyccoeueevererncuvcuencnneunennes 221
Overview of a Jersey-Annotated APPLICAtIONc..cvuevueveeereereuimnerererenierneeseineisenenersensenenes 222
The @Path Annotation and URI Path Templatesccoccueureeureneenecirenceinecieneeseeeenenes 223
Responding to HTTP RESOUICESovucuruemereuieeiaeiiirimeieisesesseisesessessessesesessesesessesessessesessenns 226
Using @Consumes and @Produces to Customize Requests and Responsesc........ 229
Extracting Request Parameters ... 231
Overview of JAX-RS and Jersey: Further Informationc..cceceeeeereeeeccrneeveernenneencrneeennens 234

Example Applications for JAX-RS and Jersey
Creating a RESTful Web Serviceccccneunee
Example: Creating a Simple Hello World Application Using JAX-RS and Jersey
Example: Adding on to the Simple Hello World RESTful Web Serviceccccoevvucrrernenee.
JAX-RS in the First Cup EXAMPIecccovurimeiriiriirieiriiricieisieeiseieeeiseiseeeisese e sseseesenne
Real World Examples

Further Information

PartlV ENterpriS@BEANSc.oouiiiiiieieecccese ettt ettt b et nesene 249
T4 ENTEIPFISEBEANSoeeeeeee ettt se s s s s 251
What Is an Enterprise Bean?ccvcevcurnicinicrinicinceesecieirecteeeiessescseesesesessese s ssesesesssanes 251

Benefits of ENterprise BEANSc.ccvveveuiureeeriineieieiieeieneeseeeiseseneisesessesessesesessesessessesssnenns

When to Use Enterprise Beans

Types of Enterprise Beanscccvcveeercereueneee
What Is @ SesSI0n BEAN? ..ot
TYPES Of SESSION BEANS ...ecvuvrreiuiiiieciieriiciieicieitie ettt e
When to Use Session Beans ... ssssnes
What Is a Message-Driven Bean? ..ot sessesessessesessesessesessees 255
What Makes Message-Driven Beans Different from Session Beans?
When to Use Message-Driven Beans
Accessing Enterprise BEans ...
Using Enterprise Beans in CLENTSccocveeeveuiureerniinieeieineeneiscsseesessesessessesesessessesesessesenns
Deciding on Remote or Local Access
Local Clients
REMOLE CHENLS ..ovvvevieiieiirciciii st
WED SErVICe CLIENLS ...euveeerireeircireeeicieireieteireieeet ettt

10 The Java EE 6 Tutorial, Volume | « December 2009

Contents

15

16

Method Parameters and ACCESS ...t sssessasaas 263
The Contents of an ENterprise BEANcccveuveeueurieeineiniieicireisieeeseieeeseie et sesesessesesaees 264
Packaging Enterprise Beans In EJB JAR ModUulesccouveuiuriemnemnicmncrneeeeenreenenneeenne 264
Packaging Enterprise Beans in WAR MOAUIEScouevueuiurecuneunecrnenieneneieeeneisenenenneeenne 265
Naming Conventions for Enterprise Beansc.couevereeeeneineecinieneeeieneieicinessesesessesesessesensens 266
The Life Cycles of ENterprise BEans ..o nesesessessessesessessesensens 267
The Life Cycle of a Stateful Session Beanecvcveeeecinericeneinicineineeieiseeseneisese s 267
The Lifecycle of a Stateless Sessi0n Beanc.cvveuiureeemcrnieecriineeneneeneeeseneseeseessesenne 268
The Lifecycle of a Singleton Session Beancvcveeicuninicinienecinenecieneeeeiseisese s 268

The Lifecycle of a Message-Driven Bean

Further Information about Enterprise Beans

Getting Started with Enterprise Beansccooeeeieieeiiecececcee e snes 271

Creating the Enterprise Bean
Coding the Enterprise Bean

Creating the converter Web CHent ... 272
Compiling, Packaging, and Running the converter Examplecoccccvcveeuvcinenercrncnennne 273
Modifying the Java EE Application

Modifying a Class Fileccccveureenenernecnernecncnneennes

Running the Enterprise Bean Examples

The cart EXAMPIe ..o saes
The Business Interface
SesS10N BEAN ClaSS ...ouvuviciiciiiiiicct e
The RemOve Methodcoviuiericiiiriciiiniccnesetiseee et casesenns
HELIPET CLASSEScevereeeriiiiciiieceieeeci e s
Building, Packaging, Deploying, and Running the cart Exampleccccoocovevcunenccrrcrnennne 282
Undeploying the cart Example

A Singleton Session Bean EXample: COUNTETcruicuiurieeiiinieereineeeeecieeseieeesesensessessesesessesenaees 285
Creating a Singleton Session Beamc..oceuiinicencininceeereeeceee e e 285
The Architecture of the counter EXamplec.occvcveeucineeicinirecninccineeeiseeseseeeenenne 290
Building, Deploying, and Running the counter Example ..o 293

A Web Service Example: helloservice
The Web Service Endpoint Implementation Classc.couecureceeunecereneeerneereenecerinerenneenns 295
Stateless Session Bean Implementation Classccceecuneereeecrreeeenerneenecrnerneenennesensenseseene 295

Contents

Building, Packaging, Deploying, and Testing the helloservice Exampleccccccoevuvence. 296
USING the TIMET SEIVICE ...cuvvuveiuiiieerecieieiecieireieetreiereeeeeee e ese s ese s esense s aensesases 298
Creating Calendar-Based Timer EXPreSsionscccccenereeeeeniereemnieseenessesensensesnesens 298

Programmatic Timers

Automatic TIMerscccooevivivivciiiiniiiiiicaes
Canceling and Saving TIMETSceciureereiriererriereeesee et ssessesesessese e ssessssenne 304
Getting Timer INfOrmationccoeeeuireerenieeeeeee e eesensenee 304
Transactions and TIMETS ..o 305
The timersession EXAMPIE ..ottt 305
Building, Packaging, Deploying, and Running the timersession Examplec.cccceeuc... 308
Handling EXCEPHIONS ...c.vueueueiecuierieeieiriieeeireieeeeeetseeeesessese et esessessesessessesessessessssessessesessessesessesnes 309
PartV Contexts and Dependency Injection for theJava EE Platformccccocoooviiricrernrninnne. 311

17 Introduction to Contexts and Dependency Injection for the Java EE Platform 313
Overview of Contexts and Dependency Injection for the Java EE Platformccccocovveeereureenace 314
ADOULBEANS ..o 315
About Managed BEANSc.wucueureueiciiiniciniineieieieie et sese st 315
Beans as Injectable ODJECLSc.oveiuiueieirienicietreeeineieeereteeeeeet s sesesses s s ssessesessessesessennes 316
Using Qualifiers 317
Injecting Beans 318
USING SCOPES .oovoieiicrictcictct ettt s 318
Giving Beans EL NAMESccccoiiuiiiiiiiiiiiiic s 320
Adding Setter and Getter Methods ... sessese s 320
Using a Managed Bean in a Facelets PAgecccveuevueuiunieeiiineieicineieicneneieceseieseisessesesessesesaees 321
Injecting Objects by Using Producer Methodscocuevcueureceneineieeceneinicineineenereseeensenneeennes 322
Configuring a CDI APPHCAtiONcccviuiieiiiiiiiciieiineci e 323
Further INfOrmationc..c.eccreeicneiricncecneteecet et seseset st sese st seae et sesesscnnes 323

18 Running the Basic Contexts and Dependency Injection Examplescccccvvinneee. 325
The simplegreeting EXAMPLe ...t sees 325

The simplegreeting Source Files ... 326
The Facelets Template and Page ... 326

ConfIGUIation FIlesc.oveuiueueiiiiieicintiriecireeeetie et 328

12 The Java EE 6 Tutorial, Volume | « December 2009

Contents

PartVI

19

20

Building, Packaging, Deploying, and Running the simplegreeting Example 328
The guessnumber EXAMPLE ...c.c.ovcueiiiiiieiricci ettt eaeiees 330
The guessNUMDEr SOUICE FILESc.ooviviiereeireeeeeeeeeeeeeeeee et ev et nenen 331
The FaCElets PAEcoovuiiiiiiiciciiciiicicie et 335
Building, Packaging, Deploying, and Running the guessnumber Exampleccccecuneee. 337
PEISISERNCE ... s 341
Introduction to the Java Persistence APl ... 343
ENEIIES woviiiicii s 343
Requirements fOr Entity CIaSSESccceriureeriuneuerernieemerienesenesnesesesneeensesessesessessesessesseseene 343
Persistent Fields and Properties in Entity Classescccovveeurerreemrcrneeeeernenneennenneenennenenne 344
Primary Keys in ENtItiesooveioiiieiiie e 347
Multiplicity in Entity Relationshipscoceveureereeiniinieicinesciciseeseeeiseseseseisese e 349
Direction in Entity Relationships
Embeddable Classes in ENTIIEScceeuiureerimnierciniienereeneenesseeenesseeense s esessessesessenseseene
Entity INheritance ..o e sssesenns
Managing ENTItIescccciiiiiiiiiiiiiiiic s
The Persistenice COMEXLcueururermierreermeiieerereieriesseesese s s ssesessessesessesssessesessesenns
The EntityManager INTEITACEcooiiiiieieeeeereteeeeeeeee ettt ettt esens
Persistence Units
QUETYING ENHITIES ..coceoiiieiiiiiii s
Running the Persistence EXamplescccoiiieieeeeiiiee et
The 0rder APPLICATIONcvucvieeicirieeicireieectieie ettt saen
Entity Relationships in the order Application
Primary Keys in the order APPlICAtionccoceeeueereeuceneeeeineireeineeseeeisesesenseeeesesessesenns
Entity Mapped to More Than One Database Tablec..coceuveureemnenicrncrnenecnereereneeene 371
Cascade Operations in the order APpliCAtioNcoeeuvcureeecencericrneenicieisee e 372
BLOB and CLOB Database Types in the order Applicationc.ceceevcereeercrneeeerreunenenne 372

Temporal Types in the order Application

Managing the order Application’s Entities
Building and Running the order Applicationcccecveeecunierecmnenecrcreereeee e 376
The roster APPLICATIONcueeeceieeicireirictieee ettt saeen 377

Contents

14

21

22

Relationships in the roster APPLCAtioNccceereunierrerniireenereeeeiseeeee e ssesensenne 377
Entity Inheritance in the roster APpliCationccereeuneereeineineeicnesee e 378
Criteria Queries in the roster AppliCationccccvevcurnecrnicienecere e 380
Automatic Table Generation in the roster Applicationc..coeceveeurenceinencennceneneeenenes 382
Building and Running the roster AppliCationccccvenereeeenemrenecrneeneereeseesesseseeenne 382
The Java Persistence QUEry Languagec.ooceuniiurinieinicuninceineneie ettt 385
Query Language TerminolOZyccccveueeeuiuricineiriieieereieienesseeeeseesesessessesessessessesessessesessessessssennes 385
Creating Queries Using the Java Persistence Query Languageccccecuveeeeveereveercerernecerceneennes 386
Named Parameters in QUETIESo.eveevereierereerereeereeeeereeeseseeeesesesesseseessesessesesesesesesesssenn 386
Positional Parameters in QUETIESccveueueevieirieeieiieeeieeeeieteeee et sese st nessesessssensssenens 387
Simplified Query Language SYNTAXcoccveueueeermermemmeemeiremessensesensessesssssesssssessessensessessessessssces 387
SELECT STATEIMIEIIES ...ovecvuereeerectrieieceeee ettt bbbt eb et saeen 387
Update and Delete Statements .388
EXQAMPIE QUETIESeovuerreieeeeiecieeeiectetseietetsete sttt saeen 388
SIMPLE QUETIES eceevreviaieiicteiei ettt bbbttt neacs 388
Queries That Navigate to Related ENtItiesoeuvireeeecinericiniineeineneccneseeeiessesesesseseene 390
Queries with Other Conditional EXPreSsionsco.covceerecurinceeneneeeenecrnieeeenecsessesesneneans 391
Bulk Updates and Deletes ..393
Full Query Language SYNTAXc.cecureueeeureereererreeeeeesesesessessesessessesessessessssessessesessessesessessessssesnes 394
BNE SYMDOLS .ecvutrivieiieiecitieiecieireiettieee et ettt 394
BNF Grammar of the Java Persistence Query Languagec..ccceuveuveemrerneeemrerremseensennenenne 394
FROM CLAUSE ...evvrvereceneiieeeacireieesctseseeaesessese et sebe sttt sese s sese s es e ses e besees 399
Path Expressions .403
WHERE CLATSEvoveeercrreeinetreeeeecireteeeceetsesetset s st sese bbbt sese et b et sae et sesesaetesees 404
SELECT CIAUSE «.ecvrveverrieecrnieeensceeee st ese s ese s sse s ese s sse s sse e sssessesces 414
ORDER BY CLATSE ...vuvueeuereeiacteieiaeieteeieieesesesseasese s esessesessessese s sesesae s sese s ssesessessssesesncen 416
The GROUP BY CIAUSEceuvurrirecnrieieernierieenseaetenseseesesessessesessesssessesssssesessessesessesnssessessssssessees 416
Creating Queries Usingthe Criteria APlc..ccoooiiicc 419
Overview of the Criteria and Metamodel APIScocvevcureeincinieneceneineeeineeeecesenseeeseesesenennes 419
Modeling Entity Classes with the Metamodel APT ..o 421
Using Metamodel Classes . 422
Basic Type-Safe Queries Using the Criteria API and Metamodel APTcccccocviiininiennnnen. 423

Creating a Criteria QUETYccccciiiiiiiiiiiiiic s 423

The Java EE 6 Tutorial, Volume | « December 2009

Contents

Part VIl

23

QUETY ROOLS .ot 424
Querying Relationships USINg JOINScvueueuiuneureeinieriierneiniseierseseiessessesessessesesessesessesseseens 425
Path Navigation in Criteria QUETIESscoccueurieurcrniirecrrireecrreee e seeeene 425
Restricting Criteria QUEry RESULLSc.ccvvueeereuriuercuniinnerereciereeeneeieese e esessesesenseneseene 426
Managing Criteria QUery RESUILSccccviureeuiirieiciniericinereecisceceieecsess e sseseene 429
Executing QUETIEScccuviiiiiiiiiiiciii s 430
SECUIITY ..ottt ettt s s e s s s s et e s s e e s s sesese s et s s s sesnsnsnsenesas 433

Introduction to Security in the Java EE Platform
Overview of Java EE Security
A Simple Security EXAMPLEccvcuiueiiiriiricireirieineineis ettt e sseseene
Security FUNCHIONS ...

Characteristics of Application SECUIILYccccuveuevcrriureecrnirecierreeeeeee e

Security Implementation MeChaniSmsc..ccvcureueecireureeenerreeeeernerereeeeseeessesseseesessessesessessesenses
Java SE Security Implementation Mechanismseccverecuneureeenerneeeecrnesneeinesnesessenseseene
Java EE Security Implementation Mechanisms ...

Securing CONTAINETSccviiiiiiiii s

Using Deployment Descriptors for Declarative Security

Using ANNOAtioNnsccccvvviciviieciniiiiccc s
Using Programmatic SECUTILYcccoviiiiiiiiniciiiiiiiiiccc s
Securing the ENterprise SEIVETccuiciricirerreieieineierenetseeeesessesessessessseessessesessessesessessessesesne
Working with Realms, Users, Groups, and ROLESc.ccveeueuniericiniireceneineeeerneseesnesseseesenseaeene
What Are Realms, Users, Groups, and ROLES?ccveuvivriveinirrerineineinieineiseesneiseseeseiseseene 448
Managing Users and Groups on the Enterprise Servercoocneceneneeencneneeerenneeenne 451
Setting Up SecUrity ROLESc.cevvucuiuieeieiieeieiiereeeiseieneiseee e ssese e esesessesenne 453
Mapping Roles to Users and GIOUPSc.eucueereueucereuemserneunesenesnesessessesessessesessessessesesesseseens 455
Establishing a Secure Connection Using SSL ..o 456
Installing and Configuring SSL Support
Specifying a Secure Connection in Your Application Deployment Descriptor 457
Verifying SSL SUPPOITc.uviuiiiiiiiiitrcicieie e sse s saees 458
Working with Digital Certificatescoveuererereieneineererenenenereesessnessessesensessersessessesees 459
Further Information about SECUTILYc.cueuiuereriiriieieiriieneiieeeeeecneeie e sese s naens 462

Contents

16

24

25

Getting Started Securing Enterprise Applicationsccoooovieennniiiccee e 465
Responsibility for Administering SECUTItY ... saeseeaees 465
Securing Enterprise BEans ..o 466
Securing an Enterprise Bean Using Declarative Security and Annotationscceceeee... 469
Securing an Enterprise Bean Programmaticallyccccooveenirecencnicicnineneneecnenennens 477
Propagating a Security Identity (Run-As)
Deploying Secure Enterprise Beans

Securing APPlICAtion CLENLSc.oeveureueecurirricietreeeietseieretsesseeeeesseseesessesessessessesessessesessessessescenes
UsSING LOGIN MOAULESeeeuerieieieiiecitiriiceieieieiseie ettt s
Using Programmatic LOZINcouieiiiiiiieicice s

Securing Enterprise Information Systems (EIS) Applicationsccccveuveerrerreeeencurereecerenreennes 485
Container-Managed SigN-OMnceccireeuiuneeieininieniisee et sessesessessessesenns 485
Component-Managed SIgN-Omncccciiniiniinieinieiiecee s saesaes 485
Configuring Resource Adapter SECUTILYccuevrrereereureererererereneerensiseeseesessesensessesssssesanes 486
Mapping an Application Principal to EIS Principalscccocveveernenecrnernecencrneeeenneenenenne 488

Getting Started Securing Web Applications ... 489

Overview of Web Application SECUTILYc.cccueureeeiciriieicireieicierneeeereeeeeseteesenessesensesseseseennes 490

Using Deployment Descriptors to Secure Web Applicationsc.cccveeeeeeencereeeescereveecereeneeennes 492
Introduction to Web Application Deployment Descriptorscocvcevcureeeercuneereerreeneneene 492
Specifying Security CONSIIAINESc..cvuveeveiereueieierereneeeieiseieee e nsesessesessesse e ssessessenenes

Specifying an Authentication Mechanism

Working with Security Rolesccocvueuriuneneee
Using Programmatic Security with Web Applications
Authenticating Users Programmatically ... 511
Checking Caller Identity Programmaticallycc.ccovvuiriiirininiincicncccinnes 513
Example Code for Programmatic SECUTILYcceveuureureuniirermermereeseneneeseneesersessensensesssessesns 513
Declaring and Linking Role Referencescoceveueuneemncrnieeemneneenerseeneneeeeeessesenne 515
Using Message Security with Web Applicationsceeueueeerernierecrneenieerneeeneneeseeeneeseeensens 517
Examples: Securing Web APPLICAtIONScovueveeuerreeereeriieieiiieieneiseeeneeseeenseseseesensessesessessesensens 517
Setting Up Your System for Running the Security Examples .518
Example: Basic Authentication with @ Servletoccvverncencinncerceecrceceeeeaes 518
Example: Basic Authentication with JAX-WScccoiiiiinnceneereeeieeseeseseie e 524
Example: Form-Based Authentication with a Servletcccvcveunenecncncnncnenecnnernenne 528

The Java EE 6 Tutorial, Volume | « December 2009

Contents

Part VI

26

27

28

Java EE Supporting Technologiesccooviiiiieenncce e seas 535
Introduction to Java EE Supporting Technologiesccoooieerrniiineeeeeeeeeens 537
Transactions
RESOUICES ...ttt et e ss
The Java EE Connector Architecture and Resource Adapterscoocveereevcecreeereneenennes 538
Java MESSAZE SEIVICEovuiuiuiuiuiiiiiiicicicie ettt 539
Java DataBase Connectivity (JDBC) SOftWATEc.cvvueveureerecriireereineeeeerneieeeneisesenesseseene 539
TrANSACHIONS ...t 541
WHhat Is @ TTANSACHONT ...cuviiiicirieieiriicteieiet sttt ettt bttt bttt eaebes 541
Container-Managed TTansactionscccveueeeereureeeeemrerererrerreeenesseseeessessesessessesessessesessessessesense
TTansaction AtIIIDULESccceueecuririieiriciricicrccteeec ettt eneaes
Rolling Back a Container-Managed Transactioncucecevcereeeenerneeeersesneeunessesessesseseene

Synchronizing a Session Bean’s Instance Variables

Methods Not Allowed in Container-Managed Transactionsceeceneeeerernerreerrerneenene 547
Bean-Managed TTanSactionsccceureereuriuerecriueeeneeseeenseseeessensesssensessssessessesessesssssesessessesessens 547
JTA TTANSACLIONS cvvivieeriericiieetieee e et ettt ettt eaeeete et eteebeeaseeseesseeseessesesasenseessessenseensenseessensees 548
Returning without COMMItHINGoveverieerciireierecee e e aesenne 549
Methods Not Allowed in Bean-Managed Transactionscccceeeeeeereeneercrsceenennneneenennes 549
Transaction Timeouts
Updating Multiple Databasesccccveueuriurieuniirieeiieieieieienses e ssesssssssessessesessens 550
Transactions in Web COMPONENLSc.vvuveueurreeeiureeereeriienseeeaeisestesesessessesessesesessesssssesessessesessens 551
ResoUrce CONNECLIONS ...

Resources and JNDI Naming
DataSource Objects and Connection Pools
Resource INJECHION ... s
Field-Based INJECTIONc.uvueuerieieceiiiicieiseieeict ettt et
Method-Based Injection
Class-Based INJECHON ...t sesaaes
Resource Adapters
Resource Adapter CONTIACESc.owcueueucrricueinecerireietneaeseeseiet s ssesessesese s ssesessesesesseacsnessans 559
Metadata ANNOTAtIONSc.ucuuiiuieiiieiiiiciscir et 563

Contents

18

Replacing Deployment Descriptors With Metadata Annotationscccovceeeeencereeecereenecenes 564
Example 1: @CONNECTOr ANNOTALION ...ceuvrieireieiriaeieireieietseiseae ettt seseene 564
Example 2: @ConnectionDefinition ANNOtatioNncccvreinenicnieeseeeeesenennes 566

Example 3: @Activation Annotation

Common Client Interfaceccocovvvvvenenee

Further Information about Resources

The Java EE 6 Tutorial, Volume | « December 2009

Preface

This tutorial is a guide to developing enterprise applications for the Java™ Platform, Enterprise
Edition 6 (Java EE 6).

This preface contains information about and conventions for the entire Sun GlassFish™
Enterprise Server (Enterprise Server) documentation set.

Enterprise Server v3 is developed through the GlassFish project open-source community at
https://glassfish.dev.java.net/. The GlassFish project provides a structured process for
developing the Enterprise Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the Enterprise Server source code and to contribute to the
development of the Enterprise Server. The GlassFish project is designed to encourage
communication between Sun engineers and the community.

The following topics are addressed here:

“Before You Read This Book” on page 19
“Enterprise Server Documentation Set” on page 20
“Related Documentation” on page 21

“Symbol Conventions” on page 22

“Typographic Conventions” on page 23

“Default Paths and File Names” on page 23
“Documentation, Support, and Training” on page 24
“Searching Sun Product Documentation” on page 24
“Third-Party Web Site References” on page 25

“Sun Welcomes Your Comments” on page 25

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java Tutorial,
Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006). You should also be familiar with
the Java DataBase Connectivity (JDBC™) and relational database features described in JDBC
API Tutorial and Reference, Third Edition, Maydene Fisher et al. (Addison-Wesley, 2003).

https://glassfish.dev.java.net/

Preface

Enterprise Server Documentation Set

20

The Enterprise Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Enterprise Server documentation is
http://docs.sun.com/coll/1343.9. For an introduction to Enterprise Server, refer to the
books in the order in which they are listed in the following table.

TABLEP-1 Books in the Enterprise Server Documentation Set

Book Title

Description

Release Notes

Provides late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK™), and
database drivers.

Quick Start Guide

Explains how to get started with the Enterprise Server product.

Installation Guide

Explains how to install the software and its components.

Upgrade Guide

Explains how to upgrade to the latest version of Enterprise Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Administration Guide

Explains how to configure, monitor, and manage Enterprise Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Application Deployment Guide

Explains how to assemble and deploy applications to the Enterprise Server
and provides information about deployment descriptors.

Your First Cup: An Introduction
to the Java EE Platform

Provides a short tutorial for beginning Java EE programmers that explains
the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on
the Enterprise JavaBeans™ specification, a JAX-RS web service, and a
JavaServer™ Faces component for the web front end.

Application Development Guide

Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Enterprise
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Enterprise Server to develop
add-on components for Enterprise Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for Enterprise Server.

The Java EE 6 Tutorial, Volume | « December 2009

http://docs.sun.com/coll/1343.9
http://docs.sun.com/doc/820-7688
http://docs.sun.com/doc/820-7689
http://docs.sun.com/doc/820-7690
http://docs.sun.com/doc/820-7698
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7701/asadmin-1m?a=view
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7727
http://docs.sun.com/doc/820-7727

Preface

TABLE P-1

Books in the Enterprise Server Documentation Set

(Continued)

BookTitle

Description

Embedded Server Guide

Explains how to run applications in embedded Enterprise Server and to
develop applications in which Enterprise Server is embedded.

Scripting Framework Guide

Explains how to develop scripting applications in languages such as Ruby on
Rails and Groovy on Grails for deployment to Enterprise Server.

Troubleshooting Guide

Describes common problems that you might encounter when using
Enterprise Server and how to solve them.

Error Message Reference

Describes error messages that you might encounter when using Enterprise
Server.

Reference Manual

Provides reference information in man page format for Enterprise Server
administration commands, utility commands, and related concepts.

Domain File Format Reference

Describes the format of the Enterprise Server configuration file, domain.xml.

Java EE 6 Tutorial, Volume I

Explains how to use Java EE 6 platform technologies and APIs to develop
Java EE applications.

Message Queue Release Notes

Describes new features, compatibility issues, and existing bugs for Sun
GlassFish Message Queue.

Message Queue Administration
Guide

Explains how to set up and manage a Sun GlassFish Message Queue
messaging system.

Message Queue Developer's
Guide for JMX Clients

Describes the application programming interface in Sun GlassFish Message
Queue for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions (JMX).

System Virtualization Support
in Sun Java System Products

Summarizes Sun support for Sun Java System products when used in
conjunction with system virtualization products and features.

Related Documentation

The Java EE 6 Tutorial, Volume II (https://www.sun.com/offers/details/
java_ee6_tutorial.xml) contains all the topics in Java EE 6 Tutorial, Volume I and adds
advanced topics, additional technologies, and case studies. The document is available to
registered users of Enterprise Server.

Javadoc™ tool reference documentation for packages that are provided with Enterprise Server is

available as follows:

= The API specification for version 6 of Java EE is located at http: //java.sun.com/javaee/

6/docs/api/.

= API documentation for packages that are specific to the Enterprise Server product is located
at: http://javadoc.glassfish.org/v3/apidoc/.

21

http://docs.sun.com/doc/821-1208
http://docs.sun.com/doc/820-7697
http://docs.sun.com/doc/820-7699
http://docs.sun.com/doc/820-7700
http://docs.sun.com/doc/820-7701
http://docs.sun.com/doc/820-7694
http://docs.sun.com/doc/820-7627
http://docs.sun.com/doc/821-0025
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/820-4651
http://docs.sun.com/doc/820-4651
https://www.sun.com/offers/details/java_ee6_tutorial.xml
https://www.sun.com/offers/details/java_ee6_tutorial.xml
http://docs.sun.com/doc/820-7627
http://java.sun.com/javaee/6/docs/api/
http://java.sun.com/javaee/6/docs/api/
http://javadoc.glassfish.org/v3/apidoc/

Preface

Additionally, the following resources might be useful:

m TheJava EE Specifications (http://java.sun.com/javaee/technologies/index. jsp)
® TheJava EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeans™ Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB for use with the Enterprise Server, see
http://developers.sun.com/javadb/.

The sample applications demonstrate a broad range of Java EE technologies. The samples are
bundled with the Java EE Software Development Kit (SDK).

Symbol Conventions

22

The following table explains symbols that might be used in this book.

TABLEP-2 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/technologies/index.jsp
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

Preface

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized
items appear bold online)

A cache s a copy that is stored locally.

Do not save the file.

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

TABLE P-4 Default Paths and File Names

Placeholder

Description

DefaultValue

as-install

as-install-parent

Represents the base installation directory for
the Enterprise Server or the Software
Development Kit (SDK) of which the
Enterprise Server is a part.

Represents the parent of the base installation
directory for Enterprise Server.

Installations on the Solaris™ operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3/glassfish

Windows, all installations:

SystemDrive:\glassfishv3\glassfish

Installations on the Solaris™ operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3

Windows, all installations:

SystemDrive:\glassfishv3

23

Preface

TABLE P-4 Default Paths and File Names (Continued)
Placeholder Description DefaultValue
tut-install Represents the base installation directory for as-install/docs/javaee-tutorial

the Java EE Tutorial after you install the
Enterprise Server or the SDK and run the

Update Tool.
domain-root-dir ~ Represents the directory in which a domainis as-install/domains/
created by default.
domain-dir Represents the directory in which a domain's domain-root-dir/domain-name

configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

= Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
® Training (http://www.sun.com/training/)

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com™ web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com
For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. com in place of docs . sun. com in the search field.

24 The Java EE 6 Tutorial, Volume | « December 2009

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs. sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-7627.

25

http://docs.sun.com

26

PART I

Introduction

Part One introduces the platform, the tutorial, and the examples.

27

28

CHAPTER 1

Overview

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology. In the
world of information technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources.

With the Java™ Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to provide
developers with a powerful set of APIs while reducing development time, reducing application
complexity, and improving application performance.

The Java EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Java EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would
otherwise be furnished in a deployment descriptor. With annotations, the specification
information is put directly in your code next to the program element that it affects.

In the Java EE platform, dependency injection can be applied to all resources that a component
needs, effectively hiding the creation and lookup of resources from application code.
Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources using annotations.

This tutorial uses examples to describe the features and functionalities available in the Java EE
platform for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable and
accessible knowledge base for creating your own solutions.

If you are new to Java EE enterprise application development, this chapter is a good place to
start. Here you will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach Java EE
application programming, assembly, and deployment.

29

Java EE 6 Highlights

The following topics are addressed here:

“Java EE 6 Highlights” on page 30

“Java EE Application Model” on page 30

“Distributed Multitiered Applications” on page 31

“Java EE Containers” on page 37

“Web Services Support” on page 40

“Java EE Application Assembly and Deployment” on page 41
“Packaging Applications” on page 42

“Development Roles” on page 43

“Java EE 6 APIs” on page 46

“Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)” on page 51
“Sun GlassFish Enterprise Server v3” on page 53

Java EE 6 Highlights

The Java EE 6 platform includes the following new features:

= Profiles, configurations of the Java EE platform targeted at specific classes of applications.
Specifically, the Java EE 6 platform introduces a Web Profile targeted at web applications, as
well as a Full Profile that contains all Java EE technologies.

= New technologies, including the following:
= Java API for RESTful Web Services (JAX-RS)

= Contexts and Dependency Injection for the Java EE Platform (JSR-299), informally
known as Web Beans

® Java Authentication Service Provider Interface for Containers (JASPIC)

= New features for Enterprise JavaBeans™ (EJB™) components (see “Enterprise JavaBeans
Technology” on page 46 for details)

= New features for servlets (see “Java Servlet Technology” on page 46 for details)

= New features for JavaServer™ Faces components (see “JavaServer Faces Technology” on
page 47 for details)

Java EE Application Model

The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

30 The Java EE 6 Tutorial, Volume | « December 2009

Distributed Multitiered Applications

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into two parts: the business and presentation logic to be implemented by the developer,
and the standard system services provided by the Java EE platform. The developer can rely on
the platform to provide solutions for the hard systems-level problems of developing a multitier
service.

Distributed Multitiered Applications

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
various application components that make up a Java EE application are installed on different
machines depending on the tier in the multitiered Java EE environment to which the
application component belongs.

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1-1 are presented in “Java EE
Components” on page 33.

= Client-tier components run on the client machine.

= Web-tier components run on the Java EE server.

= Business-tier components run on the Java EE server.

= Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in Figure 1-1, Java
EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. Three-tiered applications that run in this way
extend the standard two-tiered client and server model by placing a multithreaded application
server between the client application and back-end storage.

Chapter 1 « Overview 31

Distributed Multitiered Applications

f Java EE Application 1 Java EE Application 2)
[
lient
- ClientTier [~ :\:n;?:“ine
Application Dynamic
I P ot HTML Pages)
v '
JSP Pages Web Tier
/| Java EE
) Server
. f _ v
Enterprise Beans Enterprise Beans Business Tier
r - - EISv Ti ‘ Database
ier |—
Database Database Server

FIGURE1-1 Multitiered Applications

Security

While other enterprise application models require platform-specific security measures in each
application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of different security
environments without changing the source code.

32 The Java EE 6 Tutorial, Volume | « December 2009

Distributed Multitiered Applications

Java EE Components

Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages™ (JSP™) technology components are
web components that run on the server.

= Enterprise JavaBeans (EJB) components (enterprise beans) are business components that
run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The difference between Java EE components and
“standard” Java classes is that Java EE components are assembled into a Java EE application, are
verified to be well formed and in compliance with the Java EE specification, and are deployed to
production, where they are run and managed by the Java EE server.

Java EE Clients

A Java EE client can be a web client or an application client.

Web Clients

A web client consists of two parts: (1) dynamic web pages containing various types of markup
language (HTML, XML, and so on), which are generated by web components running in the
web tier, and (2) a web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are oft-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Applets

A web page received from the web tier can include an embedded applet. An applet is a small
client application written in the Java programming language that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Chapter 1 « Overview 33

Distributed Multitiered Applications

34

Web components are the preferred API for creating a web client program because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. It typically has a
graphical user interface (GUI) created from the Swing or the Abstract Window Toolkit (AWT)
API, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE servers, enabling the Java EE platform to
interoperate with legacy systems, clients, and non-Java languages.

The JavaBeans™ Component Architecture

The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between an application client or
applet and components running on the Java EE server, or between server components and a
database. JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through web pages or servlets running in the web
tier.

The Java EE 6 Tutorial, Volume | « December 2009

Distributed Multitiered Applications

> Application Client and > Web Browser, Web Pages, t

Optional JavaBeans Applets, and Optional <

Components JavaBeans Components %
f T Client Tier

Web Tier

N

X
(
\ Java EE

Business Tier Server

\ S

FIGURE1-2 Server Communication

Web Components

Java EE web components are either servlets or web pages created using JavaServer Faces
technology and/or JSP technology (JSP pages). Servlets are Java programming language classes
that dynamically process requests and construct responses. /SP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static content. JavaServer
Faces technology builds on servlets and JSP technology and provides a user interface
component framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

Chapter 1 « Overview 35

Distributed Multitiered Applications

v v -
> Application Client and > Web Browser, Web Pages, =
Optional JavaBeans Applets, and Optional
Components JavaBeans Components
T Client Tier

, v ‘
éjavaBean? JSP Pages
omponents Web Tier
(Optional) Servlets '
) i
v Business Tier JSZ?VEF

FIGURE1-3 Web Tier and Java EE Applications

Business Components

Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in either the business tier
or the web tier. Figure 1-4 shows how an enterprise bean receives data from client programs,
processes it (if necessary), and sends it to the enterprise information system tier for storage. An
enterprise bean also retrieves data from storage, processes it (if necessary), and sends it back to
the client program.

36 The Java EE 6 Tutorial, Volume | « December 2009

Java EE Containers

O @

> App_lication Client and > Web Browser, Web Pages,
Optional JavaBeans Applets, and Optional
Components JavaBeans Components

Client Tier

/

» ~ ‘

JSP Pages .
/ l Il iéfss Servlets | WebTier

JavaBeans
Components
(Optional)

* .

\.

Java Persistence Entities J EE
Session Beans . - ava
Message-Driven Business Tier Server
Beans
\ _‘_ J
J
{ '
v v Database .
and Legacy EIS Tier
Systems

FIGURE 1-4 Business and EIS Tiers

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying

Chapter 1 « Overview 37

Java EE Containers

38

services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before a web, enterprise bean, or application client
component can be executed, it must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including services such as security, transaction
management, Java Naming and Directory Interface™ (JNDI) lookups, and remote connectivity.
Here are some of the highlights:

= The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

= The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

= JNDIlookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

= The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services such as enterprise bean and servlet life
cycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 6 APIs” on page 46).

Container Types

The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1-5.

The Java EE 6 Tutorial, Volume | « December 2009

Java EE Containers

Application
Client

Application Client
Container

Client
Machine
Web Browser
A
y N
JSP Web
[% Sere) Page |Container
/ Java EE
) Server
Enterprise Enterprise EJB
Bean Bean Container

7

Database

FIGURE 1-5 Java EE Server and Containers

= Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

= Web container: Manages the execution of web pages, servlets, and some EJB components
for Java EE applications. Web components and their container run on the Java EE server.

= Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Chapter 1 « Overview

39

Web Services Support

Web Services Support

40

Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; or for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags because the transported data can itself
be plain text, XML data, or any kind of binary data such as audio, video, maps, program files,
computer-aided design (CAD) documents and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange dataina
meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data. When XML data
is exchanged between parties, the parties are free to create their own tags to describe the data, set
up schemas to specify which tags can be used in a particular kind of XML document, and use
XML stylesheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own stylesheets to handle the data in a way
that best suits their needs. Here are examples:

= One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to create a
marketing presentation.

= Another company might read the XML pricing information into an application for
processing.

The Java EE 6 Tutorial, Volume | « December 2009

Java EE Application Assembly and Deployment

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

= Defines an XML-based envelope to describe what is in the message and how to process the
message

= Includes XML-based encoding rules to express instances of application-defined data types
within the message

= Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be published on the
Web. The Sun GlassFish™ Enterprise Server provides a tool for generating the WSDL
specification of a web service that uses remote procedure calls to communicate with clients.

Java EE Application Assembly and Deployment

A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains:

= A functional component or components (such as an enterprise bean, web page, servlet, or
applet)
= Anoptional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such as a
list of local users that can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

Chapter 1 « Overview 41

Packaging Applications

Packaging Applications

42

A Java EE application is delivered in either a Java Archive (JAR) file,a Web Archive (WAR) file,
or an Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (. jar) file with a .war
or .ear extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding

is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
JAR, WAR, or EAR files.

An EAR file (see Figure 1-6) contains Java EE modules and, optionally, deployment descriptors.
A deployment descriptor is an XML document with an . xml extension that describes the
deployment settings of an application, a module, or a component. Because deployment
descriptor information is declarative, it can be changed without the need to modify the source
code. At runtime, the Java EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

Assembly
Root

Web l EJB l
[META-INF][Module] Module

Application Resource
Client Module Adapter Module

application.xml
sun-application.xml

FIGURE1-6 EAR File Structure

There are two types of deployment descriptors: Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to
configure Java EE implementation-specific parameters. For example, the Sun GlassFish
Enterprise Server runtime deployment descriptor contains information such as the context root
of a web application, and Enterprise Server implementation-specific parameters, such as

The Java EE 6 Tutorial, Volume | « December 2009

Development Roles

caching directives. The Enterprise Server runtime deployment descriptors are named
sun-moduleType.xml and are located in the same META- INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and,
optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. A Java EE module can be deployed as a stand-alone module.

The four types of Java EE modules are as follows:

= EJB modules, which contain class files for enterprise beans and an EJB deployment
descriptor. EJB modules are packaged as JAR files with a . jar extension.

= Web modules, which contain servlet class files, web files, supporting class files, GIF and
HTML files, and a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (Web ARchive) extension.

= Application client modules, which contain class files and an application client deployment
descriptor. Application client modules are packaged as JAR files with a . jar extension.

= Resource adapter modules, which contain all Java interfaces, classes, native libraries, and
other documentation, along with the resource adapter deployment descriptor. Together,
these implement the Connector architecture (see “Java EE Connector Architecture” on
page 49) for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

Development Roles

Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform different parts of
the process.

The first two roles involve purchasing and installing the Java EE product and tools. After
software is purchased and installed, Java EE components can be developed by application
component providers, assembled by application assemblers, and deployed by application
deployers. In a large organization, each of these roles might be executed by different individuals
or teams. This division of labor works because each of the earlier roles outputs a portable file
that is the input for a subsequent role. For example, in the application component development
phase, an enterprise bean software developer delivers EJB JAR files. In the application assembly
role, another developer may combine these EJB JAR files into a Java EE application and save it
in an EAR file. In the application deployment role, a system administrator at the customer site
uses the EAR file to install the Java EE application into a Java EE server.

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform the tasks in
every phase.

Chapter 1 « Overview 43

Development Roles

44

Java EE Product Provider

The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs, and other features defined in the Java EE specification. Product
providers are typically application server vendors who implement the Java EE platform
according to the Java EE 6 Platform specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:

= Writes and compiles the source code
= Specifies the deployment descriptor (optional)
= Packages the . class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

= Writes and compiles servlet source code

® Writes JavaServer Faces, JSP, and HTML files

= Specifies the deployment descriptor (optional)

= Packagesthe .class, . jsp,and.html files and deployment descriptor into the WAR file

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file containing the
application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client (optional)

The Java EE 6 Tutorial, Volume | « December 2009

Development Roles

= Packagesthe . class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules from
component providers and may assemble them into a Java EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or can use tools that correctly
add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file
= Specifies the deployment descriptor for the Java EE application (optional)

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures and
deploys the Java EE application, administers the computing and networking infrastructure
where Java EE applications run, and oversees the runtime environment. Duties include such
things as setting transaction controls and security attributes and specifying connections to
databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure a Java
EE application:

= Configures the Java EE application for the operational environment

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

= Deploys (installs) the Java EE application EAR file into the Java EE server

Chapter 1 « Overview 45

JavaEE 6 APIs

Java EE 6 APIs

46

The following sections give a brief summary of the technologies required by the Java EE
platform, and the APIs used in Java EE applications.

Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having fields
and methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven beans.

A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

A message-driven bean combines features of a session bean and a message listener, allowing a
business component to receive messages asynchronously. Commonly, these are Java Message
Service (JMS) messages.

In the Java EE 6 platform, new enterprise bean features include the following:

= The ability to package local enterprise beans in a WAR file
= Singleton session beans, which provide easy access to shared state

= A lightweight subset of Enterprise JavaBeans functionality that can be provided within Java
EE Profiles such as the Java EE Web Profile.

Java Servlet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications that are accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java servlet technology features include the following:

Asynchronous support

Ease of configuration
Pluggability

Enhancements to existing APIs
Annotation support

The Java EE 6 Tutorial, Volume | « December 2009

JavaEE 6 APIs

JavaServer Faces Technology

JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different markup
languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
in a view.

= Astandard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

Input validation

Event handling

Data conversion between model objects and components
Managed model object creation

Page navigation configuration

All this functionality is available using standard Java APIs and XML-based configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

= The ability to use annotations instead of a configuration file to specify managed beans

= Facelets, a display technology that replaces JavaServer Pages (JSP) technology using
XHTML files

= Ajax support
= Composite components

= Implicit navigation

JavaServer Pages™ Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a text-based
document. A JSP page is a text-based document that contains two types of text: static data
(which can be expressed in any text-based format such as HTML, WML, and XML) and JSP
elements, which determine how the page constructs dynamic content.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,

Chapter 1 « Overview 47

JavaEE 6 APIs

48

you employ a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

Java Persistence API

The Java Persistence AP is a Java standards-based solution for persistence. Persistence uses an
object-relational mapping approach to bridge the gap between an object oriented model and a
relational database. The Java Persistence API can also be used in Java SE applications, outside of
the Java EE environment. Java Persistence consists of three areas:

® The Java Persistence API
= The query language
= Object/relational mapping metadata

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

Java API for RESTful Web Services (JAX-RS)

The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of Web
services built according to the Representational State Transfer (REST) architectural style. A
JAX-RS application is a web application that consists of classes that are packaged as a servletina
WAR file along with required libraries.

The JAX-RS APl is new to the Java EE 6 platform.

Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

The Java EE 6 Tutorial, Volume | « December 2009

JavaEE 6 APIs

Java EE Connector Architecture

The Java EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, typically there is a different
resource adapter for each type of database or enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE-based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the Java EE Connector architecture into the Java EE platform can be exposed as XML-based web
services by using JAX-WS and Java EE component models. Thus JAX-WS and the Java EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

JavaMail™ API

Java EE applications use the JavaMail API to send email notifications. The JavaMail API has two
parts: an application-level interface used by the application components to send mail, and a
service provider interface. The Java EE platform includes the JavaMail API with a service
provider that allows application components to send Internet mail.

Java Authorization Service Provider Contract for
Containers (Java AC(Q)

The Java ACC specification defines a contract between a Java EE application server and an
authorization policy provider. All Java EE containers support this contract.

The Java ACC specification defines java.security.Permission classes that satisfy the Java EE
authorization model. The specification defines the binding of container access decisions to
operations on instances of these permission classes. It defines the semantics of policy providers
that employ the new permission classes to address the authorization requirements of the Java
EE platform, including the definition and use of roles.

Java Authentication Service Provider Interface for
Containers (JASPIC)

The Java Authentication Service Provider Interface for Containers (JASPIC) specification
defines a service provider interface (SPI) by which authentication providers that implement
message authentication mechanisms may be integrated in client or server message processing

Chapter 1 « Overview 49

JavaEE 6 APIs

50

containers or runtimes. Authentication providers integrated through this interface operate on
network messages provided to them by their calling container. They transform outgoing
messages so that the source of the message may be authenticated by the receiving container, and
the recipient of the message may be authenticated by the message sender. They authenticate
incoming messages and return to their calling container the identity established as a result of
the message authentication.

Java API for XML Registries

The Java API for XML Registries (JAXR) lets you access business and general-purpose registries
over the web. JAXR supports the ebXML Registry and Repository standards and the emerging
UDDI specifications. By using JAXR, developers can learn a single API and gain access to both
of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that others
have submitted. Standards groups have developed schemas for particular kinds of XML
documents; two businesses might, for example, agree to use the schema for their industry’s
standard purchase order form. Because the schema is stored in a standard business registry,
both parties can use JAXR to access it.

Simplified Systems Integration

The Java EE platform is a platform-independent, full systems integration solution that creates
an open marketplace in which every vendor can sell to every customer. Such a marketplace
encourages vendors to compete, not by trying to lock customers into their technologies but
instead by trying to outdo each other in providing products and services that benefit customers,
such as better performance, better tools, or better customer support.

The Java EE 6 APIs enable systems and applications integration through the following:

= Unified application model across tiers with enterprise beans

= Simplified request-and-response mechanism with web pages and servlets

= Reliable security model with JAAS

= XML-based data interchange integration with JAXP, SAAJ, and JAX-WS

= Simplified interoperability with the Java EE Connector architecture

= Easy database connectivity with the Java DataBase Connectivity (JDBC™) API

= Enterprise application integration with message-driven beans and JMS, JTA, and JNDI

The Java EE 6 Tutorial, Volume | « December 2009

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)

Java EE 6 APIs Included in the Java Platform, Standard Edition
6.0 (Java SE 6)

Several APIs that are required by the Java EE 6 platform are included in the Java SE 6 platform
and are thus available to Java EE applications.

Java Database Connectivity API

The Java Database Connectivity (JDBC) APIlets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application components
to access a database, and a service provider interface to attach a JDBC driver to the Java EE
platform.

Java Naming and Directory Interface™

The Java Naming and Directory Interface (JNDI) provides naming and directory functionality,
enabling applications to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. It provides applications with
methods for performing standard directory operations, such as associating attributes with
objects and searching for objects using their attributes. Using JNDI, a Java EE application can
store and retrieve any type of named Java object, allowing Java EE applications to coexist with
many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a JNDI naming
context.

A Java EE component can locate its environment naming context using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context, java: comp/env. The Java EE platform allows a component to

Chapter 1 « Overview 51

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)

52

name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource
objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java: comp/env/ejb, and JDBC DataSource references in the
subcontext java: comp/env/jdbc.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides standard
services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the
operations available on it, and create the appropriate JavaBeans component to perform those
operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and
Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independent of a particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the W3C schema. You can find
information on the W3C schema at this URL: http://www.w3.0rg/XML/Schema.

Java Architecture for XML Binding (JAXB)

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
APL

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is alow-level API on which JAX-WS and
JAXR depend. SAA]J enables the production and consumption of messages that conform to the
SOAP 1.1 and 1.2 specifications and SOAP with Attachments note. Most developers do not use
the SAAJ API, instead using the higher-level JAX-WS APIL

The Java EE 6 Tutorial, Volume | « December 2009

http://www.w3.org/XML/Schema

Sun GlassFish Enterprise Server v3

Java API for XML Web Services (JAX-WS)

The JAX-WS specification provides support for web services that use the JAXB API for binding
XML data to Java objects. The JAX-WS specification defines client APIs for accessing web
services as well as techniques for implementing web service endpoints. The Implementing
Enterprise Web Services specification describes the deployment of JAX-WS-based services and
clients. The EJB and Java Servlet specifications also describe aspects of such deployment. It must
be possible to deploy JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

Sun GlassFish Enterprise Server v3

Sun GlassFish Enterprise Server v3 is a compliant implementation of the Java EE 6 platform. In
addition to supporting all the APIs described in the previous sections, the Enterprise Server
includes a number of Java EE tools that are not part of the Java EE 6 platform but are provided
as a convenience to the developer.

This section briefly summarizes the tools that make up the Enterprise Server. Instructions for
starting and stopping the Enterprise Server, starting the Admin Console, and starting and
stopping the Java DB database server are in Chapter 2, “Using the Tutorial Examples.”

Tools

The Enterprise Server contains the tools listed in Table 1-1. Basic usage information for many
of the tools appears throughout the tutorial. For detailed information, see the online help in the
GUTI tools.

Chapter 1 « Overview 53

Sun GlassFish Enterprise Server v3

54

TABLE1-1 Enterprise Server Tools

Tool

Description

Admin Console

asadmin

appclient

capture-schema

package-appclient

Java DB database

xjc

schemagen

wsimport

wsgen

A web-based GUI Enterprise Server administration utility. Used to stop the
Enterprise Server and manage users, resources, and applications.

A command-line Enterprise Serveradministration utility. Used to start and stop
the Enterprise Server and manage users, resources, and applications.

A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

A command-line tool to extract schema information from a database, producing
a schema file that the Enterprise Server can use for container-managed
persistence.

A command-line tool to package the application client container libraries and
JAR files.

A copy of the Java DB database server.

A command-line tool to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language.

A command-line tool to create a schema file for each namespace referenced in
your Java classes.

A command-line tool to generate JAX-WS portable artifacts for a given WSDL
file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents along with the endpoint implementation and
then deployed.

A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

The Java EE 6 Tutorial, Volume | « December 2009

L K R 4 CHAPTER 2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the examples. It
covers the following topics:

“Required Software” on page 55

“Starting and Stopping the Enterprise Server” on page 58
“Starting the Administration Console” on page 59

“Starting and Stopping the Java DB Database Server” on page 60
“Building the Examples” on page 60

“Tutorial Example Directory Structure” on page 61

“Getting the Latest Updates to the Tutorial” on page 61
“Debugging Java EE Applications” on page 62

Required Software

The following software is required to run the examples.

“Java Platform, Standard Edition” on page 55

“Java EE 6 Software Development Kit (SDK)” on page 56
“Apache Ant” on page 56

“Java EE 6 Tutorial Component” on page 57

“NetBeans IDE” on page 58

Java™ Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
6.0 Software Development Kit (JDK 6). You can download the JDK 6 software from
http://java.sun.com/javase/downloads/index. jsp.

Download the current JDK update that does not include any other software (such as NetBeans
or Java EE).

55

http://java.sun.com/javase/downloads/index.jsp

Required Software

Java EE 6 Software Development Kit (SDK)

Sun GlassFish™ Enterprise Server v3 is targeted as the build and runtime environment for the
tutorial examples. To build, deploy, and run the examples, you need a copy of the Enterprise
Server and, optionally, NetBeans IDE. To obtain the Enterprise Server, you must install the Java
EE 6 Software Development Kit (SDK), which you can download from http://java.sun.com/
javaee/downloads/. Make sure you download the Java EE 6 SDK, not the Java EE 6 Web Profile
SDK.

SDK Installation Tips
During the installation of the SDK:

= Configure the Enterprise Server administration username and password as anonymous.
This is the default setting.
m Accept the default port values for the Admin Port (4848) and the HT'TP Port (8080).

= Allow the installer to download and configure the Update Tool. If you access the Internet
through a firewall, provide the proxy host and port.

This tutorial refers to the directory where you install the Enterprise Server as as-install-parent.
For example, the default installation directory on Microsoft Windows is C:\glassfishv3, so
as-install-parent is C:\glassfishv3. The Enterprise Server itself is installed in as-install, the
glassfish directory under as-install-parent. So on Microsoft Windows, as-install is
C:\glassfishv3\glassfish.

After you install the Enterprise Server, add the following directories to your PATH to avoid
having to specify the full path when you use commands:

as-install-parent/bin
as-install/bin

Apache Ant

Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/), and is used to build, package, and deploy the tutorial examples. To
run the tutorial examples, you need Ant 1.7.1. If you do not already have Ant 1.7.1, you can
install it from the Update Tool that is part of the Enterprise Server.

¥ ToObtain Apache Ant
1 Startthe Update Tool.

= From the command line, type the command updatetool.

56 The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/downloads/
http://java.sun.com/javaee/downloads/
http://ant.apache.org/

Required Software

Next Steps

= OnaWindows system, select the following:
Start — All Programs — Java EE 6 SDK — Start Update Tool

Expand the GlassFish v3 node.

Select the Available Add-ons node.

From the list, select the Apache Ant Build Tool checkbox.
Click Install.

Accept the license agreement.

After installation, Apache Ant appears in the list of installed components. The tool is installed

in the as-install-parent/ant directory.

To use the ant command, add as-install/ant/bin to your PATH environment variable.

Java EE 6 Tutorial Component

The tutorial example source is contained in the tutorial component. To obtain the tutorial

component, use the Update Tool.

To Obtain the Tutorial Component
Start the Update Tool.
= From the command line, type the command updatetool.

= OnaWindows system, select the following:
Start — All Programs — Java EE 6 SDK — Start Update Tool

Expand the GlassFish v3 node.
Select the Available Add-ons node.
From the list, select the Java EE 6 Tutorial checkbox.

Click Install.

Chapter2 « Using the Tutorial Examples

57

Starting and Stopping the Enterprise Server

6

Accept the license agreement.

After installation, the Java EE 6 Tutorial appears in the list of installed components. The tool is
installed in the as-install/docs/javaee-tutorial directory. This directory contains two
subdirectories, docs and examples. The examples directory contains subdirectories for each of
the technologies discussed in the tutorial.

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from http://www.netbeans.org/downloads/index.html.

To Add Enterprise Server as a Server in NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must register your Enterprise Server
installation as a NetBeans Server Instance. Follow these instructions to register the Enterprise
Server in NetBeans IDE.

Select Tools — Servers to open the Servers dialog.

Click Add Server.

Under Server, select GlassFish v3 and click Next.

Under Server Location, enter the location of your Enterprise Server installation and click Next.

Select Register Local Default Domain.

Click Finish.

Starting and Stopping the Enterprise Server

58

To start the Enterprise Server, open a terminal window or command prompt and execute the
following:

asadmin start-domain --verbose

The Java EE 6 Tutorial, Volume | « December 2009

http://www.netbeans.org/downloads/index.html

Starting the Administration Console

A domain is a set of one or more Enterprise Server instances managed by one administration
server. Associated with a domain are the following:

= The Enterprise Server’s port number. The default is 8080.
= Theadministration server’s port number. The default is 4848.
= Anadministration user name and password.

You specify these values when you install the Enterprise Server. The examples in this tutorial
assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which is
domainl. The - -verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt (it will also go into the server log, which is located in
domain-dir/logs/server.log).

Or, on Windows, choose the following:

Start — All Programs — Java EE 6 SDK — Start Application Server

After the server has completed its startup sequence, you will see the following output:
Domain domainl started.

To stop the Enterprise Server, open a terminal window or command prompt and execute:
asadmin stop-domain domainl

Or, on Windows, choose the following:

Start — All Programs — Java EE 6 SDK — Stop Application Server

When the server has stopped you will see the following output:

Domain domainl stopped.

Starting the Administration Console

To administer the Enterprise Server and manage users, resources, and Java EE applications, use
the Administration Console tool. The Enterprise Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848/.

Or, on Windows, choose the following:

Start — All Programs — Java EE 6 SDK — Administration Console

Chapter2 « Using the Tutorial Examples 59

Starting and Stopping the Java DB Database Server

To Start the Administration Console in NetBeans IDE
Click the Services tab.
Expand the Servers node.

Right-click the Enterprise Server instance and select View Admin Console

Note - You must configure a web browser with NetBeans IDE in order for the Administration
Console to be started from within NetBeans IDE.

Starting and Stopping the Java DB Database Server

The Enterprise Server includes the Java DB database.

To start the Java DB database server, open a terminal window or command prompt and
execute:

asadmin start-database
To stop the Java DB server, open a terminal window or command prompt and execute:
asadmin stop-database

For information about the Java DB database included with the Enterprise Server, see
http://developers.sun.com/javadb/.
To start the database server using NetBeans IDE, follow these steps:

1. Click the Services tab.
2. Expand the Databases node.
3. Right-click Java DB and choose Start Server.

To stop the database using NetBeans IDE, choose Stop Server.

Building the Examples

60

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

The Java EE 6 Tutorial, Volume | « December 2009

http://developers.sun.com/javadb/

Getting the Latest Updates to the Tutorial

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

= build.xml: Ant build file

®m src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web applications
= web: web pages, style sheets, tag files, and images

= web/WEB-INF: configuration files for web applications

= nbproject: NetBeans project files

Examples that have multiple application modules packaged into an enterprise application
archive (or EAR) have submodule directories that use the following naming conventions:

= example-name-app-client: Application clients
= example-name-ejb: Enterprise bean JAR files
= example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client- jar directory, which holds the retrieved application
client JAR.

Getting the Latest Updates to the Tutorial

Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

v To Update the Tutorial through the Update Center

1 Openthe Services tab in NetBeans IDE and expand Servers.

2 Right-click the GlassFish v3 instance and select View Update Center to display the Update Tool.
3 Select Available Updates in the tree to display a list of updated packages.

4 Lookfor updates to the Java EE 6 Tutorial (javaee-tutorial) package.

5 Ifthereisan updated version of the Tutorial , select Java EE 6 Tutorial (javaee-tutorial) and click
Install.

Chapter2 - Using the Tutorial Examples 61

Debugging Java EE Applications

Debugging Java EE Applications

62

This section describes how to determine what is causing an error in your application
deployment or execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/logs/server.log. The
log contains output from the Enterprise Server and your applications. You can log messages
from any Java class in your application with System.out.println and the Java Logging APIs
(documented at http://java.sun.com/javase/6/docs/technotes/guides/logging/
index.html) and from web components with the ServietContext.log method.

If you start the Enterprise Server with the - -verbose flag, all logging and debugging output will
appear on the terminal window or command prompt and the server log. If you start the
Enterprise Server in the background, debugging information is only available in the log. You
can view the server log with a text editor or with the Administration Console log viewer.

To use the log viewer:

1. Select the Enterprise Server node.

2. Click the View Log Files button. The log viewer will open and display the last 40 entries.
If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the top of the log viewer.

Using a Debugger

The Enterprise Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the Enterprise Server to communicate debugging information using a socket.

To debug an application using a debugger:

1. Enable debugging in the Enterprise Server using the Administration Console:
a. Expand the Configuration node.
b. Select the JVM Settings node. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not
in use by the Enterprise Server or another service.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Debugging Java EE Applications

c. Select the Debug Enabled check box.
d. Click the Save button.

2. Stop the Enterprise Server and then restart it.

Chapter2 « Using the Tutorial Examples 63

64

PART 11

The Web Tier

Part Two explores the technologies in the web tier.

65

66

L K R 4 CHAPTER 3

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. There are two types of
web applications:

= Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language (HTML, XHTML, XML, and so on) and
dynamic content in response to requests. Chapter 4, “JavaServer Faces Technology,”
through Chapter 9, “Developing With JavaServer Faces Technology,” cover how to develop
presentation-oriented web applications.

= Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Chapter 12, “Building Web Services with JAX-WS”and Chapter 13, “Building
RESTful Web Services with JAX-RS and Jersey”cover how to develop service-oriented web
applications.

The following topics are addressed here:

“Web Applications” on page 67

“Web Application Life Cycle” on page 69

“Web Modules” on page 71

“Configuring Web Applications” on page 77

“Further Information about Web Applications” on page 84

Web Applications

In the Java™ EE platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, web pages, web service endpoints, or JSP
pages. The interaction between a web client and a web application is illustrated in Figure 3-1.
The client sends an HTTP request to the web server. A web server that implements Java Servlet
and JavaServer Pages™ technology converts the request into an HTTPServletRequest object.
This object is delivered to a web component, which can interact with JavaBeans components or
a database to generate dynamic content. The web component can then generate an

67

Web Applications

68

HTTPServletResponse or it can pass the request to another web component. Eventually a web
component generates a HTTPServletResponse object. The web server converts this object to an
HTTP response and returns it to the client.

Web Server
)
)
o > HttpServlet
HTTP Request
— e e
Web Request
Client —
¢ HttpServlet
HTTP@ Response
Response| \—ee/
e/
JavaBeans
Components

FIGURE3-1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process requests and construct
responses. Java technologies, such as JavaServer™ Faces and Facelets, and frameworks are used
for building interactive web applications. Although servlets and Java Server Faces and Facelets
pages can be used to accomplish similar things, each has its own strengths. Servlets are best
suited for service-oriented applications (web service endpoints are implemented as servlets)
and the control functions of a presentation-oriented application, such as dispatching requests
and handling nontextual data. Java Server Faces and Facelets pages are more appropriate for
generating text-based markup, such as XHTML, and are generally used for
presentation—oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. It also gives web components access to APIs such as naming,
transactions, and email.

The Java EE 6 Tutorial, Volume | « December 2009

Web Application Life Cycle

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information is maintained in a text file in
XML format called a web application deployment descriptor (DD). A DD must conform to the
schema described in the Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web applications.
First it summarizes the web application life cycle. Then it describes how to package and deploy
very simple web applications on the Sun GlassFish Enterprise Server. It moves on to configuring
web applications and discusses how to specify the most commonly used configuration
parameters.

Web Application Life Cycle

A web application consists of web components, static resource files such as images, and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

Develop the web component code.

Develop the web application deployment descriptor.

Compile the web application components and helper classes referenced by the components.
Optionally package the application into a deployable unit.

Deploy the application into a web container.

AN A o

Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form (Figure 3-2) and then displays a greeting after the name is submitted (Figure 3-3).

Chapter3 - Getting Started with Web Applications 69

http://java.sun.com/products/servlet/download.html#specs

Web Application Life Cycle

) Hello - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

-5 -@

% | I htpefiocathost:a080/hellol

Y-

Hello, my name is Duke. What's vours?

| |

Done

FIGURE3-2 Greeting Form

) Hello - Mozilla Firefox

File Edit Wiew

History — Bookmarks Tools Help

««-»-@

G:[||_| http: fflocalhost:8080/hellol frusername=_Charlie

[2[»] [Cl[eo0q-

Y-

Hello, my name is Duke. What's vours?

| |

Hello, Charlie!

Done

FIGURE3-3 Response

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses hello2, a servlet-based web application in which the

components are implemented by two servlet classes

(tut-install/examples/web/hello2/src/servliets/GreetingServlet. javaand

tut-install/examples/web/hello2/src/serviets/ResponseServlet.java). The application is
used to illustrate tasks involved in packaging, deploying, configuring, and running an
application that contains web components. The section Chapter 2, “Using the Tutorial

70 The Java EE 6 Tutorial, Volume | « December 2009

Web Modules

Examples,” explains how to get the code for the example. The source code for the example is in
the tut-install/examples/web/hello2/ directory.

Web Modules

In the Java EE architecture, web components and static web content files such as images are
called web resources. A web module is the smallest deployable and usable unit of web resources.
A Java EE web module corresponds to a web application as defined in the Java Servlet
specification.

In addition to web components and web resources, a web module can contain other files:

= Server-side utility classes (database beans, shopping carts, and so on). Often these classes
conform to the JavaBeans component architecture.

= Client-side classes (applets and utility classes).
A web module has a specific structure. The top-level directory of a web module is the document

root of the application. The document root is where XHTML pages, client-side classes and
archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB- INF, which contains the following files
and directories:

= web.xml: The web application deployment descriptor
= Taglibrary descriptor files

= classes: A directory that contains server-side classes: servlets, utility classes, and JavaBeans
components

= tags: A directory that contains tag files, which are implementations of tag libraries

= 1ib: A directory that contains JAR archives of libraries called by server-side classes

If your web module does not contain any servlets, filter, or listener components then it does not
need a web application deployment descriptor. In other words, if your web module only
contains XHTML pages and static files, you are not required to include a web . xm1 file.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB- INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a web archive (WAR) file. Because the contents and use of WAR files differ from those
of JAR files, WAR file names use a .war extension. The web module just described is portable;
you can deploy it into any web container that conforms to the Java Servlet Specification.

To deploy a WAR on the Enterprise Server, the file must also contain a runtime deployment
descriptor. The runtime deployment descriptor is an XML file that contains information such
as the context root of the web application and the mapping of the portable names of an

Chapter3 - Getting Started with Web Applications 71

Web Modules

application’s resources to the Enterprise Server’s resources. The Enterprise Server web
application runtime DD is named sun-web.xml and is located in the WEB- INF directory along
with the web application DD. The structure of a web module that can be deployed on the
Enterprise Server is shown in Figure 3-4.

Assembly
Root

JSP pages,
static HTML pages,
applet classes, etc.

l lib l lclassesl l tags l
web.xml
sun-web.xml
* 1ld

Library All server-side All .tag files
archive files .class files for for this
this web module web module

FIGURE3-4 Web Module Structure

Packaging Web Modules

A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the sample applications.

72 The Java EE 6 Tutorial, Volume | « December 2009

Web Modules

To build the hello2 application with NetBeans IDE, follow these instructions:

1. Select File—Open Project.
2. Inthe Open Project dialog, navigate to:
tut-install/examples/web/
3. Select the hello2 folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Inthe Projects tab, right-click the hello2 project and select Build.

To build the hello2 application using the Ant utility, follow these steps:

1. Inaterminal window, go to tut-install/examples/web/hello2/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/examples/web/hello2/build/ directory, create the WAR file, and copy it to the
tut-install/examples/web/hello2/dist/ directory.

Deploying a WARFile
You can deploy a WAR file to the Enterprise Server in a few ways:

= Copying the WAR into the domain-dir/autodeploy/ directory.

= Using the Admin Console.

= Byrunningasadmin or ant to deploy the WAR.

® Using NetBeans IDE.

All these methods are described briefly in this chapter; however, throughout the tutorial, you
will use ant and NetBeans IDE for packaging and deploying.

Setting the Context Root

A context root identifies a web application in a Java EE server. You specify the context root when
you deploy a web module. A context root must start with a forward slash (/) and end with a
string.

In a packaged web module for deployment on the Enterprise Server, the context root is stored in
sun-web.xml.

To edit the context root, do the following:

Expand your project tree in the Projects pane of NetBeans IDE.
Expand the Web Pages and WEB-INF nodes of your project.
Double-click sun-web . xml.

In the editor pane, click Edit As XML.

W=

Chapter3 - Getting Started with Web Applications 73

Web Modules

74

5. Edit the context root, which is enclosed by the context- root element.

Deploying a Packaged Web Module

If you have deployed the hello2 application, before proceeding with this section, undeploy the
application by following one of the procedures described in “Undeploying Web Modules” on
page 76.

Deploying with the Admin Console

1. Expand the Applications node.

2. Click the Deploy button.

3. Select the radio button labeled “Package file to be uploaded to the Application Server”
4

. Type the full path to the WAR file (or click on Browse to find it), and then click the OK
button.

Click Next.

Type the application name.
Type the context root.
Select the Enabled box.
Click the Finish button.

© ©® N U

Deploying with asadmin

To deploy a WAR with asadmin, open a terminal window or command prompt and execute

asadmin deploy full-path-to-war-file

Deploying with Ant

To deploy a WAR with the Ant tool, open a terminal window or command prompt in the
directory where you built and packaged the WAR, and execute

ant deploy

Deploying with NetBeans IDE
To deploy a WAR with NetBeans IDE, do the following:

1. Select File—>Open Project.
2. Inthe Open Project dialog, navigate to your project and open it.
3. Inthe Projects tab, right-click the project and select Deploy.

The Java EE 6 Tutorial, Volume | « December 2009

Web Modules

Testing Deployed Web Modules

Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host Localhost on port 8080. The context
root of the web application is hello2.

To test the application, follow these steps:

1. Open aweb browser.
2. Enter the following URL in the web address box:

http://localhost:8080/hello2

3. Enter your name, and click Submit.

The application should display the name you submitted.

Listing Deployed Web Modules

The Enterprise Server provides two ways to view the deployed web modules: the Admin
Console and the asadmin command.

To use the Admin Console:

1. Openthe URL http://localhost:4848/ in a browser.
2. Expand the Applications node.

Use the asadmin command as follows:

asadmin list-components

Updating Web Modules

A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, you must do the
following:

1. Recompile any modified classes.

2. Ifyouhave deployed a packaged web module, update any modified components in the
WAR.

3. Redeploy the module.
4. Reload the URL in the client.

Chapter 3 - Getting Started with Web Applications

75

Web Modules

76

Dynamic Reloading

If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed pages or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is domain-dir/applications/context-root. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This capability is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid and the client must restart the session.

To enable dynamic reloading, use the Admin Console:

1. Select the Applications Server node.

2. Select the Advanced tab.

3. Check the Reload Enabled box to enable dynamic reloading.
4

. Enter a number of seconds in the Reload Poll Interval field to set the interval at which
applications and modules are checked for code changes and dynamically reloaded.

5. Click the Save button.

In addition, to load new servlet files, do the following:
1. Create an empty file named . reload at the root of the module:

domain-dir/applications/context-root/ .reload

2. Explicitly update the . reload file’s time stamp each time you make these changes. On
UNIX, execute

touch .reload

Undeploying Web Modules

You can undeploy web modules in four ways: you can use NetBeans IDE, the Admin Console,
the asadmin command, or the Ant tool.

To use NetBeans IDE:

1. Ensure the Enterprise Server is running.

2. Inthe Services window, expand the Servers node, Enterprise Server instance and the
Applications node.

3. Right-click the application or module and choose Undeploy.

The Java EE 6 Tutorial, Volume | « December 2009

Configuring Web Applications

To use the Admin Console:

Open the URL http://localhost:4848/ in a browser.
Expand the Applications node.

Select the check box next to the module you wish to undeploy.
Click the Undeploy button.

e =

Use the asadmin command as follows:

asadmin undeploy context-root

To use the Ant tool, execute the following command in the directory where you built and
packaged the WAR:

ant undeploy

Configuring Web Applications

Web applications are configured by means of elements contained in the web application
deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure.

In the following sections, examples demonstrate procedures for configuring the Hello, World
application. If Hello, World does not use a specific configuration feature, the section gives
references to other examples that illustrate how to specify the deployment descriptor element.

Mapping URLs to Web Components

When a request is received by the web container it must determine which web component
should handle the request. It does so by mapping the URL path contained in the request to a
web application and a web component. A URL path contains the context root and an alias:

http://host: port/context-root/alias

Setting the Component Alias

The alias identifies the web component that should handle a request. The alias path must start
with a forward slash (/) and end with a string or a wildcard expression with an extension (for
example, *. jsp).

Chapter3 - Getting Started with Web Applications 77

Configuring Web Applications

78

The hello2 application has two servlets that need to be mapped in the web . xm1 file. You can
edit a web application’s web. xml file in NetBeans IDE by doing the following:

1. Select File—Open Project.

2. Inthe Open Project dialog, navigate to:

tut-install/examples/web/

Select the hello2 folder.

Select the Open as Main Project check box.

Click Open Project.

Expand the project tree in the Projects pane.

Expand the Web pages node and then the WEB-INF node in the project tree.
Double-click the web . xm1 file inside the WEB-INF node.

® N Uk W

The following steps describe how to make the necessary edits to the web . xm file, including how
to set the display name and how to map the servlet components. Because the edits are already in
the file, you can just use the steps to view the settings.

To set the display name:

1. Click General at the top of the editor to open the general view.
2. Enter hello2 in the Display Name field.

To perform the servlet mappings:

Click Servlets at the top of the editor to open the servlets view.

Click Add Servlet.

In the Add Servlet dialog, enter GreetingServlet in the Servlet Name field.
Enter servlets.GreetingServlet in the Servlet Class field.

Enter /greeting in the URL Pattern field.

Click OK.

Repeat the preceding steps, except enter ResponseServlet as the servlet name,
servlets.ResponseServlet as the servlet class, and /response as the URL pattern.

NS T » =

If you are not using NetBeans IDE, you can add these settings using a text editor.
To package the example with NetBeans IDE, do the following:

1. Select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/examples/web/
3. Select the hello2 folder.
4. Select the Open as Main Project check box.

The Java EE 6 Tutorial, Volume | « December 2009

Configuring Web Applications

5. Click Open Project.
6. Inthe Projects tab, right-click the hello2 project and select Build.

To package the example with the Ant utility, do the following:

1. Inaterminal window, go to tut-install/examples/web/hello2/.

2. Type ant. This target will build the WAR file and copy it to the
tut-install/examples/web/hello2/dist/ directory.

To deploy the example using NetBeans IDE, right-click on the project in the Projects pane and
select Deploy.

To deploy the example using Ant, type ant deploy. The deploy target in this case gives you an
incorrect URL to run the application. To run the application, please use the URL shown at the
end of this section.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting in a browser.

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component.

For example, suppose you define a welcome file welcome. html. When a client requests a URL
such as host: port/webapp/directory, where directory is not mapped to a servlet or XHTML
page, the file host: port/webapp/directory/welcome . html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource in the WAR that matches.

If no welcome file is specified, the Enterprise Server will use a file named index.xhtml as the
default welcome file. If there is no welcome file and no file named index.xhtmt, the Enterprise
Server returns a directory listing.

Setting Initialization Parameters

The web components in a web module share an object that represents their application context.
You can pass initialization parameters to the context or to a web component.

Chapter3 - Getting Started with Web Applications 79

Configuring Web Applications

80

To add a context parameter using NetBeans IDE, do the following:
Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web. xml.

Click General at the top of the editor pane.

Select the Context Parameters node.

Click Add.

In the Add Context Parameter dialog, do the following:

® N WD =

a. Enter the name that specifies the context object in the Param Name field.
b. Enter the parameter to pass to the context object in the Param Value field.
c. Click OK.

Alternatively, you can edit the XML of the web . xml file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

= A param-name element that specifies the context object
= A param-value element that specifies the parameter to pass to the context object

= A context-paramelement that encloses the previous two elements

To add a web component initialization parameter using NetBeans IDE, do the following:
Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

Double-click web. xml.

Click Servlets at the top of the editor pane.

AR

After entering the servlet’s name, class, and URL pattern, click the Add button under the
Initialization Parameters table.

N

In the Add Initialization Parameter dialog:

a. Enter the name of the parameter in the Param Name field.
b. Enter the parameter’s value in the Param Value Field.
c. Click OK.

Alternatively, you can edit the XML of the web . xm1 file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

= A param-name element that specifies the name of the initialization parameter
= A param-value element that specifies the value of the initialization parameter
= Aninit-paramelement that encloses the previous two elements

The Java EE 6 Tutorial, Volume | « December 2009

Configuring Web Applications

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component and any type of error screen.

To set up error mappings using NetBeans IDE, do the following:
Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xm1.

Click Pages at the top of the editor pane.

Expand the Error Pages node.

Click Add.

In the Add Error Page dialog:

® N Nk »h=

Click Browse to locate the page that you want to act as the error page.

b. Enter the HTTP status code that will cause the error page to be opened in the Error Code
field.

c. Enter the exception that will cause the error page to load in the Exception Type field.
d. Click OK.

Alternatively, you can click XML at the top of the editor pane and enter the error page mapping
by hand using the following elements:

= Anexception-type element specifying either the exception or the HTTP status code that
will cause the error page to be opened.

= A location element that specifies the name of a web resource to be invoked when the status
code or exception is returned. The name should have a leading forward slash (/).

= Anerror-page element that encloses the previous two elements.

You can have multiple error-page elements in your deployment descriptor. Each one of the
elements identifies a different error that causes an error page to open. This error page can be the
same for any number of error-page elements.

Chapter3 - Getting Started with Web Applications 81

Configuring Web Applications

Declaring Resource References

If your web component uses objects such as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions from using it in web applications. First, you can only inject resources into
container-managed objects. This is because a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into objects such as simple JavaBeans components. However, JavaServer Faces
managed beans are managed by the container; therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 3-1.

This section describes how to use a couple of the annotations supported by a servlet container to
inject resources. Chapter 20, “Running the Persistence Examples,” describes how web
applications use annotations supported by the Java Persistence API. Chapter 25, “Getting
Started Securing Web Applications,” describes how to use annotations to specify information
about securing web applications.

TABLE3-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet Filters javax.servlet.ServletFilter

Event Listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributelListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingListener

Taglib Listeners Same as above

Taglib Tag Handlers javax.servlet.jsp.tagext.JspTag

Managed Beans Plain Old Java Objects

82 The Java EE 6 Tutorial, Volume | « December 2009

Configuring Web Applications

Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, method or field. The container is responsible
for injecting references to resources declared by the @Resource annotation and mapping it to
the proper JNDI resources. In the following example, the @esource annotation is used to inject
a data source into a component that needs to make a connection to the data source, as is done
when using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

@Resources ({
@Resource (name="myDB" type=java.sql.DataSource),
@Resource (name="myMQ" type=javax.jms.ConnectionFactory)
)

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 20, “Running the
Persistence Examples,” describes these annotations and the use of the Java Persistence API in
web applications.

Declaring a Reference to aWeb Service

The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file:

import javax.xml.ws.WebServiceRef;

Chapter3 - Getting Started with Web Applications 83

Further Information about Web Applications

public class ResponseServlet extends HTTPServlet {
@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Further Information about Web Applications

84

For more information on web applications, see:

= The JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

® The JavaServer Faces web site:
http://java.sun.com/javaee/javaserverfaces/

= The Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

® The Java Servlet web site:

http://java.sun.com/products/servlet

The Java EE 6 Tutorial, Volume | « December 2009

http://jcp.org/en/jsr/detail?id=314
http://java.sun.com/javaee/javaserverfaces/
http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/products/servlet

CHAPTER 4

JavaServer™ Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

= An API for representing components and managing their state; handling events, server-side
validation, and data conversion; defining page navigation; supporting internationalization
and accessibility; and providing extensibility for all these features

= Taglibraries for adding components to web pages and for connecting components to
server-side objects

JavaServer Faces technology provides a well-defined programming model and various tag
libraries. These features significantly ease the burden of building and maintaining web
applications with server-side Uls. With minimal effort, you can complete the following tasks:

Create a web page

Drop components onto a web page by adding component tags
Bind components on a page to server-side data

Wire component-generated events to server-side application code
Save and restore application state beyond the life of server requests
Reuse and extend components through customization

This chapter provides an overview of JavaServer Faces technology. After explaining what a
JavaServer Faces application is and going over some of the primary benefits of using JavaServer
Faces technology, it describes the process of creating a simple JavaServer Faces application. This
chapter also introduces the JavaServer Faces lifecycle by describing the example JavaServer
Faces application progressing through the lifecycle stages.

The following topics are addressed here:

= “What Is a JavaServer Faces Application?” on page 86
= “JavaServer Faces Technology Benefits” on page 87
= “Creating a Simple JavaServer Faces Application” on page 88

85

http://java.sun.com/javaee/javaserverfaces/2.0/docs/api/index.html

What Is a JavaServer Faces Application?

= “Further Information about JavaServer Faces Technology” on page 92

What s a JavaServer Faces Application?

86

The functionality provided by a JavaServer Faces application is similar to that of any other Java
web application. A typical JavaServer Faces application includes the following parts:

= A set of web pages in which components are laid out.
= Asetof tags to add components to the web page.

= A set of backing beans which are JavaBeans™ components that define properties and
functions for components on a page.

= A web deployment descriptor (web. xml file).

= Optionally, one or more application configuration resource files such as a
faces-config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects such as custom components.

= Optionally, a set of custom objects created by the application developer. These objects can
include custom components, validators, converters, or listeners.

= A setof custom tags for representing custom objects on the page.
Figure 4-1 describes the interaction between client and server in a typical JavaServer Faces

application. In response to a client request, a web page is rendered by the web container that
implements JavaServer Faces technology.

- - - Web Container

g(F2

Access page
HTTP Request

myfacelet.xhtml

Browser

Renders HTML
HTTP Response

\ 7

FIGURE 4-1 Responding to a Client Request for a JavaServer Faces Page

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags. Component
tags are used to add components to the view (represented by myUI in the diagram), which is the
server-side representation of the page. In addition to components, the web page can also
reference objects such as the following:

= Any event listeners, validators, and converters that are registered on the components

= The JavaBeans components that capture the data and process the application-specific
functionality of the components

The Java EE 6 Tutorial, Volume | « December 2009

JavaServer Faces Technology Benefits

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output such as HTML or
XHTML that can be read by the browser.

JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation for web applications.

A JavaServer Faces application can map HTTP requests to component-specific event handling
and manage components as stateful objects on the server. JavaServer Faces technology allows
you to build web applications that implement the finer-grained separation of behavior and
presentation that is traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process, and it provides a
simple programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology tags in a web page to link to server-side objects
without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar component and
web-tier concepts without limiting you to a particular scripting technology or markup
language. JavaServer Faces technology APIs are layered directly on top of the Servlet API, as
shown in the following diagram.

JavaServer Pages
Standard Tag Library

JavaServer Pages

JavaServlet

FIGURE4-2 Java Web Application Technologies

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Chapter4 - JavaServer™ Faces Technology 87

Creating a Simple JavaServer Faces Application

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred presentation
technology for building JavaServer Faces based web applications and offers several advantages.

Facelets technology offers the advantages of code reuse and extensibility for components
through Templating and Composite Components features.

When you use the JavaServer Faces Annotations feature, you can automatically register the
backing bean as a resource available for JavaServer Faces applications. In addition, implicit
navigation rules allow the developers to quickly configure page navigation. These features
reduce the manual configuration process for applications.

For more information on Facelets technology features, see Chapter 5, “Introduction to
Facelets”

Most importantly, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

Creating a Simple JavaServer Faces Application

88

JavaServer Faces technology provides an easy and user-friendly process for creating web
applications.

Developing a simple JavaServer Faces application typically requires the following tasks:

Developing backing beans

Adding managed bean declarations
Creating web pages using component tags
Mapping the FacesServlet instance

In this section, the above tasks are described through the process of creating a simple JavaServer
Faces Facelets application.

The example is a Hello application which includes a backing bean and a web page. When
accessed by a client, the web page prints out a Hello World message. The example application is
located in tut-install/examples/web/hello directory.

The tasks involved in developing this application can be examined by looking at the application
in detail.

Developing Backing Beans

As mentioned earlier in this chapter, a backing bean (a type of managed bean) is a JavaBean that
is managed by JavaServer Faces. Components in a page are associated with backing beans which
provide application logic. The example backing bean, helloWorld. java, contains the following
code:

The Java EE 6 Tutorial, Volume | « December 2009

Creating a Simple JavaServer Faces Application

package Hello;
import javax.faces.bean.ManagedBean;

@ManagedBean
public class Hello{
final String world = "Hello World!"

public String getWorld()
{ return world; }

}

The example backing bean sets the value of the world variable with the string Hello World!.
The @ManagedBean annotation registers the backing bean as a resource with the JavaServer
Faces implementation. For more information on managed beans and annotations, see
Developing With JavaServer Faces Technology.

Creating the Web Page

In a typical Facelets application, web pages are created in XHTML. The example web page,
beanhello.xhtml, is a simple XHTML page. It contains the following content:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>JavaServer Faces Hello World Application</title>
</head>
<body>
#{hello.world}
</body>
</html>

A Facelets XHTML web page can also contain several other elements which are covered later in
this tutorial.

The web page connects to the backing bean through the Unified Expression Language (EL)
value expression #{hello.world}, which retrieves the value of the world property from the
backing bean Hello. Note the use of hello to reference the backing bean Hello. If no name is
specified in the @ManagedBean annotation, the backing bean is always accessed with the first
letter of the class name in lowercase.

For more information on using EL expressions, see Chapter 6, “Unified Expression Language.”
For more information about Facelets technology, see Introduction to Facelets. For more
information about JavaServer Faces programming model and building web pages using
JavaServer Faces technology, see Chapter 7, “Using JavaServer Faces Technology in Web Pages”

Chapter4 - JavaServer™ Faces Technology 89

Creating a Simple JavaServer Faces Application

90

Mapping the Faces Servlet Instance

The final task requires mapping the Faces Servlet which is done through the web deployment
descriptor (web.xml). A typical mapping of Faces Servlet is as follows:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The above file segment represents part of a typical JavaServer Faces web deployment descriptor.
The web deployment descriptor can also contain other content relevant to a JavaServer Faces
application configuration but that information is not covered here.

Mapping the Faces Servlet is automatically done for you when using a Java EE 6server such as
Sun GlassFish™ Enterprise Server v3.

The Lifecycle of the helloworld Application

Every web application has a lifecycle. Common tasks such as handling incoming requests,
decoding parameters, modifying and saving state, and rendering web pages to the browser are
all performed during a web application lifecycle. Some web application frameworks hide the
details of the lifecycle from you while others require you to manage them manually.

By default, JavaServer Faces handles most of the lifecycle actions for you automatically. But it
does expose the different parts of the request lifecycle, so that you can modify or perform
different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer Faces
application, but the information can be useful for creating more complex applications.

The lifecycle of a JavaServer Faces application starts and ends with the following activity: The
client makes a request for the web page, and the server responds with the page. The lifecycle
consists of two main phases: execute and render.

During the execute phase, several actions can take place: The application view is built or
restored, the request parameter values are applied, conversions and validations are performed
for component values, backing beans are updated with component values, and application logic
is invoked. For a first (initial) request, only the view is built. For subsequent (postback)
requests, some or all of the other actions can take place.

The Java EE 6 Tutorial, Volume | « December 2009

Creating a Simple JavaServer Faces Application

In the render phase, the requested view is rendered as response to the client. Rendering,
typically is the process of generating output such as HTML or XHTML that can be read by the
client (usually a browser).

The following short description of the example JavaServer Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The helloWorld example application goes through the following stages when it is deployed on
the Enterprise Server:

1. When the helloWorld application is built and deployed on the Enterprise Server, the
application is at an uninitiated state.

2. When a client makes a first (initial) request for the beanhello.xhtml web page, the
helloWorld Facelets application is compiled.

3. The compiled Facelets application is executed and a new component tree (UIViewRoot) is
constructed for the helloWorld application and is placed in the Faces Context.

4. The component tree is populated with the component and the backing bean property
associated with it (represented by the EL expression hello.world).

A new view is built based on the component tree.
The view is rendered to the requesting client as a response.

The component tree is destroyed automatically.

® N a9

On subsequent (postback) requests, the component tree is rebuilt and the saved state is
applied.

For more detailed information on the JavaServer Faces lifecycle, see the JavaServer Faces
Specification, Version 2.0 document.

Running the Application in NetBeans IDE

To build, package, deploy, and run the JavaServer Faces helloWorld example using NetBeans
IDE, follow these steps:

In NetBeans IDE, select File—Open Project.

In the Open Project dialog box, navigate to the example directory:

tut-install/examples/web
Select the helloworld folder.
Select the Open as Main Project check box.

Click Open Project.

Chapter4 - JavaServer™ Faces Technology 91

Further Information about JavaServer Faces Technology

6 Inthe Projects tab, right-click the helloWorld project and select Run.

This step compiles, assembles, and deploys the application, then brings up a web browser
window displaying the following URL:

http://localhost:8080/helloWorld

Example4-1 Example Output of the helloWorld Application

Hello World!

Further Information about JavaServer Faces Technology

For more information on JavaServer Faces technology, see:

= The JavaServer Faces Technology web site:
http://java.sun.com/javaee/javaserverfaces/index.jsp

= The JavaServer Faces 2.0 Technology download web site:
http://java.sun.com/javaee/javaserverfaces/download.html

= Mojarra (JavaServer Faces 2.0) Release Notes:
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

® The JavaServer Faces 2.0 API and PDL documentation:

http://java.sun.com/javaee/javaserverfaces/reference/api/index.html

92 The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/javaserverfaces/index.jsp
http://java.sun.com/javaee/javaserverfaces/download.html
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html
http://java.sun.com/javaee/javaserverfaces/reference/api/index.html

L K R 4 CHAPTER 5

Introduction to Facelets

The term Facelets is used to refer to the JavaServer™ Faces View Definition Framework, which
is a page declaration language that was developed for use with JavaServer Faces technology. As
of JavaServer Faces 2.0, Facelets is a part of JavaServer Faces specification and also the preferred
presentation technology for building JavaServer Faces based applications.

JavaServer Pages™ (JSP™) technology, previously used as the presentation technology for
JavaServer Faces, does not support all of the new features available in JavaServer Faces 2.0. JSP is
considered as a deprecated presentation technology for JavaServer Faces 2.0.

The following topics are addressed here:

“Advantages of Facelets” on page 93

“What's Facelets ?” on page 94

“Developing a Simple Facelets Application” on page 95
“Templating” on page 103

“Composite Components” on page 105

“Resources” on page 108

Advantages of Facelets

Reuse of code and ease of development are important considerations for developers to adopt
JavaServer Faces as the platform for large scale projects. By supporting these features, Facelets
reduces the time and effort on development and deployment.

Facelets advantages include the following:

= Support for code reuse through templating and composite components

= Functional extensibility of components and other server-side objects through customization
= Faster compilation time

= Compile time EL validation

93

What's Facelets ?

= High performance rendering

What's Facelets ?

94

Facelets is a powerful but lightweight page declaration language that is used to build JavaServer
Faces views using HTML style templates and to build component trees.

Facelets features include the following:

= Use of XHTML for creating web pages
= Support for Facelets Tag libraries in addition to JavaServer Faces and JSTL tag libraries
= Support for unified expression language

= Templating for components and pages

Web Pages

Facelets views are usually created as XHTML pages. JavaServer Faces implementations support
XHTML pages created in conformance with the XHTML Transitional DTD, as listed at
http://www.w3.0rg/TR/xhtml1l/#a dtd XHTML-1.0-Transitional.

By convention, web pages built with XHTML have an . xhtml extension.

Tag Library Support

JavaServer Faces technology supports different tag libraries to add components to a web page.
To support the JavaServer Faces tag library mechanism, Facelets uses XML namespace
declarations.

The following table Table 5-1 lists the tag libraries supported by Facelets.

TABLE5-1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents

JavaServer http://java.sun.com/jsf/facelets ui: ui:component Tags for templatin
p/1)) g p g

Faces o +

Facelets Tag ul:inser

Library

The Java EE 6 Tutorial, Volume | « December 2009

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

Developing a Simple Facelets Application

TABLE5-1 Tag Libraries Supported by Facelets (Continued)

Tag Library URI Prefix Example Contents

JavaServer http://java.sun.com/jsf/html h: h:head JavaServer Faces
Faces HTML h:bod component tags for all
Tag Library sbody UIComponents.

h:outputText

h:inputText

JavaServer http://java.sun.com/jsf/core f: f:actionListener | Tags for JavaServer Faces
Faces Core £ attribut custom actions that are
Tag Library rattribute independent of any
particular RenderKit.

JSTL Core http://java.sun.com/jsp/jstl/core c: c:forEach JSTL 1.1 Core Tags
Tag Libra

& R c:catch
JSTL http://java.sun.com/jsp/jstl/functions| fn: fn:toUpperCase |]JSTL 1.1 Functions Tags
Functions
Tag Library fn:tolLowerCase

In addition, Facelets also supports tags for composite components for which you can declare
custom prefixes. For more information on composite components, see “Composite
Components” on page 105.

Unified Expression Language Support

Based on the JavaServer Faces support for unified expression language (EL) syntax defined by
JSP 2.1, Facelets uses EL expressions to reference properties and methods of backing beans. EL
expressions can be used to bind component objects or values to managed-bean methods or
managed-bean properties. For more information on using EL expressions, see “Using the EL to
Reference Backing Beans” on page 169.

Developing a Simple Facelets Application

This section describes the general steps involved in developing a JavaServer Faces application.

Developing a simple JavaServer Faces application, using Facelets technology usually requires
these tasks:

Developing the backing beans

Creating the pages using the component tags
Defining page navigation

Mapping the FacesServlet instance

Chapter5 -« Introduction to Facelets 95

Developing a Simple Facelets Application

= Adding managed bean declarations

In the next section some of the above tasks are described in more detail.

Creating a Facelets Application

The example used in this tutorial is the guessnumber application. The application presents you
with a page that asks you to guess a number between 0 and 10, validates your input against a
random number, and responds with another page that informs you, if you guessed the number
correctly or incorrectly.

Developing a Backing Bean

In a typical JavaServer Faces application each page in the application connects to a backing bean
(a type of managed bean). The backing bean defines the methods and properties that are
associated with the components.

The following managed bean class, UserNumberBean. java, generates a random number
between 0 and 10:

package guessNumber;

import java.util.Random;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@anagedBean

@SessionScoped

public class UserNumberBean {
Integer randomInt = null;
Integer userNumber = null;
String response = null;
private long maximum=10;
private long minimum=0;

public UserNumberBean() {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(10));
System.out.println("Duke’s number: " + randomInt);
}
public void setUserNumber(Integer user number) {
userNumber = user_number;

public Integer getUserNumber() {
return userNumber;

96 The Java EE 6 Tutorial, Volume | « December 2009

Developing a Simple Facelets Application

}
public String getResponse() {
if ((userNumber !'= null) && (userNumber.compareTo(randomInt) == 0))
{
return "Yay! You got it!"
}
else
{
return "Sorry, " + userNumber + " is incorrect.";
}

public long getMaximum() {
return (this.maximum);

public void setMaximum(long maximum) {
this.maximum = maximum;

public long getMinimum() {
return (this.minimum);

public void setMinimum(long minimum) {
this.minimum = minimum;

}

Note the use of the @ManagedBean annotation which registers the backing bean as a resource
with JavaServer Faces implementation. The @SessionScoped annotation registers the bean
scope as session.

Creating Facelets Views

Creating a page or view is the responsibility of a page author. This task involves adding
components on the pages, wiring the components to backing bean values and properties, and
registering converters, validators, or listeners onto the components.

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this
web page provides more information.

The first section of the web page declares the content type for the page, which is XHTML:

Chapter5 -« Introduction to Facelets 97

Developing a Simple Facelets Application

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

The next section declares the XML namespace for the tag libraries that are used in the web page:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

The next section uses various tags to insert components into the web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title>Facelets Guess Number Application</title>
</h:head>

<h:body>
<h:form>
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

<h2>

Hi,

<p>My name is Duke. I am thinking of a number between
#{userNumberBean.minimum} and #{userNumberBean.maximum}.

 Can you guess it ?</p>

<h:inputText
id="userNo"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

<h:commandButton id="submit" value="Submit" action="response.xhtml"/>
<h:message showSummary="true" showDetail="false"
style="color: red;
font-family: 'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

98 The Java EE 6 Tutorial, Volume | « December 2009

Developing a Simple Facelets Application

</h2>
</h:form>
</h:body>
</html>

Note the use of the Facelets HTML tags to add components, and the Facelets core tag to validate
the user input. An inputText component accepts user input and sets the value of the backing
bean property userNumber through the EL expression #{userNumberBean.userNumber}. The
input value is validated for value range by the JavaServer Faces standard validator
f:validatelLongRange.

The image file wave.med . gif, is added to the page as a resource. For more details about the
resources facility, see “Resources” on page 108.

The submit command button starts validation of the input data. Using implicit navigation,
it redirects the client to another page response. xhtml, which shows the response to your input.

You can now create the second page, response.xhtml, with the following content:

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>
<h:outputText id="result" value="#{userNumberBean.response}"/>

</h2>
<h:commandButton id="back" value="Back" action="greeting.xhtml"/>
</h:form>

</h:body>
</html>

Configuring the Application

Configuring a JavaServer Faces application involves various configuration tasks which include
adding managed-bean declarations, navigation rules and resources bundle declarations in the

Chapter5 -« Introduction to Facelets 99

Developing a Simple Facelets Application

100

application configuration resource files such as faces-config.xml, and mapping the Faces
Servlet in the web deployment descriptor file such as aweb . xml file. Application configuration is
an advanced topic covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

If you are using an IDE such as NetBeans IDE, a web deployment descriptor is automatically
created for you. In such IDE created web.xml files, change the default greeting page which is
index.xhtml, to greeting.xhtml. Here is an example web . xm1 file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of parameter PROJECT_STAGE. ProjectStage is a context parameter identifying the
status of a JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user.
If not defined by the user, the default project stage is considered as Production. Project Stage is
covered in more detail in Java EE 6 Tutorial, Volume II: Advanced Topics.

The Java EE 6 Tutorial, Volume | « December 2009

Developing a Simple Facelets Application

Building, Packaging, Deploying and Running the
Application

The example Facelets application described in this chapter can be built, packaged, and deployed
using the Java EE 6 SDK with NetBeans IDE. For details on how to obtain this software and
configure your environment to run the examples, see Chapter 2, “Using the Tutorial Examples”
The source code for this example is also available in the tut-install/examples/web/guessnumber
directory.

To Create the Example Facelets Application with NetBeans IDE

To create the example Facelets project, use the following procedure.

In NetBeans IDE, from the File menu, choose New Project.

The New Project wizard opens.

In the wizard, select Java Web as the category and Web Application as the project type and click
Next.

The New Web Application wizard opens.
In the Project Name field, type guessNumber, and click Next.

In the Server and Settings page, select Server as GlassFish v3 from the Server menu, select Java
EE version as Java EE 6 Web from the Java EE version menu, and then click Next.

In the Frameworks page, select the JavaServer Faces checkbox and click Finish.

A new Project is created and is available in the Projects window. A default file, index.xhtmt, is
created and opened in the Editor.

To Create the Application
Right-click the Project node, and select New—Java package.

In the Package Name field, type guessNumber and click Finish.

A new package is created and placed under Source Packages node of the Project.
Right-click the Source Packages node and select New—Java Class.

Type the name of the class file as Use rNumbe rBean, select the name of package as guessNumber
and click Finish.

A new Java class file is created and opened in the IDE.

Chapter5 -« Introduction to Facelets 101

Developing a Simple Facelets Application

102

10

11

12

Replace the content of the Java class file with the example code from the UserNumberBean. java
file listed in “Developing a Backing Bean” on page 96, and save the file.

Create two new XHTML pages and name them greeting.xhtml and response.xhtml
respectively:

a. Right-click the project node and choose New—Other.

The New File wizard opens.
b. Choose Category as Web and then File Type as XHTML and click Next.

c. Entergreeting.xhtmlinthe XHTML File name field and click Finish.
A new XHTML web page is created and placed under Web Pages node.

d. Repeatthe above steps but enter the name of file as response. xhtml to create a second web
page.

Edit the XHTML files and add Facelets content to them:

a. Replace the contentof greeting.xhtml with the example greeting.xhtml code listed in
“Creating Facelets Views” on page 97 and save the file.

b. Similarly replace the content of response. xhtml with the example response. xhtml code
and save the file.

Add Duke's image as part of the application by copying the wave .med . gif image file from the
tutorial example and saving it as a resource.

a. Createafolder named resources under Web Pages.

b. Createasubfolder, images under resources folder.

¢. Savethewave.med.gifimagein resources/images folder.

Edit the web . xm1 file to modify the welcome page to greeting. html.

Right-click the Project Node and select Build from the menu, to compile and build the
application.

Right-click the Project Node and select Deploy, to deploy the application to Sun GlassFish™
Enterprise Server v3.

Access the application by typing the following URL in the browser:
http://localhost:8080/guessNumber

The Java EE 6 Tutorial, Volume | « December 2009

Templating

Templating

JavaServer Faces 2.0 provides the tools to implement user interfaces that are easy to extend and
reuse. Templating is a useful feature available with Facelets that allows you to create a page that
will act as the base or template for the other pages in a application. By using templates, you can
reuse code and avoid recreating similarly constructed pages. Templating also helps in
maintaining a standard look and feel in an application with a large number of pages.

The following table lists Facelets tags that are used for templating and their respective
functionality:

TABLE5-2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component
tree.

ui:composition Defines a page composition that optionally uses a template.
Content outside of this tag is ignored.

ui:debug Defines a debug component that is created and added to the
component tree.

ui:define Defines content that is inserted into a page by a template

ui:decorate Similar to composition tag but does not disregard content outside
this tag.

ui:fragment Similar to component tag but does not disregard content outside
this tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags such as c: forEach or
h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the PDL athttp://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

The Facelets tag library includes the main templating tag <ui:insert>. Atemplate pageis
created with this tag, it allows defining a default structure for a page. A template page can be
reused as a template for other pages, usually referred to as a client pages.

Here is an example of a template saved as template.xhtml:

Chapter5 -« Introduction to Facelets 103

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Templating

104

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link href="./resources/css/default.css" rel="stylesheet" type="text/css" />
<link href="./resources/css/cssLayout.css" rel="stylesheet" type="text/css" />
<title>Facelets Template</title>

</h:head>

<h:body>
<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>
</div>
<div>
<div id="left">
<ui:insert name="left">Left Section</ui:insert>
</div>
<div id="content" class="left content">
<ui:insert name="content">Main Content</ui:insert>
</div>
</div>
</h:body>

</html>

The example page defines a HTML page that is divided into 3 sections, a top section, a left
section and a main section. The sections have stylesheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using <ui: composition> tag. In the following example,
a client page named templateclient.xhtml, invokes the template page from the preceding
example named template.xhtml. A client page allows content to be inserted with the help of
the <ui:define> tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>

<ui:composition template="./template.xhtml">
<ui:define name="top">

The Java EE 6 Tutorial, Volume | « December 2009

Composite Components

Welcome to Template Client Page
</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>

</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource['images:wave.med.gif’]1}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>

</ui:composition>

</h:body>
</html>

You can use the NetBeans IDE to create Facelets template and client pages. For more
information on creating these pages, see http://netbeans.org/kb/docs/web/
jsf20-intro.html.

Composite Components

The JavaServer Faces offers the concept of composite components with Facelets. A composite
component can be considered a a special type of template that acts as a component.

Any component essentially is a piece of reusable code that is capable of a certain functionality.
For example, an inputText component is capable of accepting user input. A component also
has validators, converters, and listeners attached to it to perform certain defined actions.

A composite component is a component that consists of a collection of markups and other
existing components. It is a reusable, user-created component that is capable of a customized,
defined functionality and can have validators, converters and listeners attached to it like a any
other JavaServer Faces component.

With Facelets, any XHTML page that is inserted with markups and other components, can be
converted into a composite component. Using the resources facility, the composite
component can be stored in a library that is available to the application from the defined
resources location.

The following table lists the most commonly used composite tags and their functions:

Chapter5 -« Introduction to Facelets 105

http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/web/jsf20-intro.html

Composite Components

TABLE5-3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component whose
feature set is the union of the features declared in the usage
contract.

composite:implementation Defines the implementation of the composite component. Ifa
<composite:interface>element appears, there mustbe a
corresponding <composite:implementation>.

composite:attribute Declares an attribute that may be given to an instance of the
composite component, in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be re-parented into the
composite component at the point indicated by this tag's
placement within the composite:implementation section.

composite:valueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of ValueHolder suitable for
use as the target of attached objects in the using page.

composite:editableValueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of EditableValueHolder
suitable for use as the target of attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of ActionSource2 suitable for
use as the target of attached objects in the using page.

For more information and a complete list of Facelets composite tags, see the PDL
athttp://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>This content will not be displayed
</title>

106 The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Composite Components

</h:head>
<h:body>

<composite:interface>
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>
<h:outputLabel value="Email id: ">
</h:outputLabel>
<h:inputText value="#{cc.attrs.value}">
</h:inputText>
</composite:implementation>

</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The
word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.ATTRIBUTE_NAME} expression is used to access the attributes defined for the
composite component's interface which in this case happens to be value.

The preceding example content is stored as a file named email. xhtml, in a folder named
resources/emcomp under the application web root directory. This directory is considered a
library by the JavaServer Faces, and a UIcomponent can be accessed from such library. For more
information on resources, see “Resources” on page 108.

The web page that uses this composite component is generally called a using page. The using
page includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />

</h:form>

</body>
</html>

Chapter5 -« Introduction to Facelets 107

Resources

Resources

108

The local composite component library is defined in the xml namespace with the declaration
xmlns:em="http://java.sun.com/jsf/composite/emcomp/". the component it selfis
accessed through the use of the tag em: email. The preceding example content can be stored as a
web page named emuserpage . xhtml under web root directory. When compiled and deployed
on a server it can be accessed with the following URL:

http://localhost:8080/<application name>/faces/emuserpage.xhtml

Resources refers to any software artifacts that the application requires for proper rendering.
They include images, script files and any user-created component libraries. As of JavaServer
Faces 2.0, resources must be collected in a standard location, which can be one of the following:

= Aresource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/<resource-identifiers.

= A resource packaged in the web application's classpath must be in a subdirectory of the
META-INF/resources directory within a web application:
META-INF/resources/<resource-identifier>.

The JavaServer Faces runtime will look for the resources in the above listed locations, in that
order.

Resource identifiers are unique strings that conform to the following format:

[localePrefix/]1[libraryName/][libraryVersion/]resource name[/resourceVersion]

Elements of the resource identifier in brackets ([]) are optional. This indicates that only a
resource name is a required element, which is usually a file name.

Resources can be considered as a library location. Any artifacts, like a composite component or
template that is stored under resources directory, becomes accessible to the other components
of the application which can use them to create a resource instance.

The Java EE 6 Tutorial, Volume | « December 2009

L K R 4 CHAPTER 6

Unified Expression Language

This chapter introduces the Unified Expression Language (also referred to as EL) which
provides an important mechanism for enabling the presentation layer (web pages) to
communicate with the application logic (backing beans). EL is used by JavaServer Pages™
(JSP™) as well as JavaServer™ Faces technologies.

Introduced as a primary feature of JSP 2.1, the EL represents a union of the expression language
offered by JSP 2.0 and the expression language created for JavaServer Faces technology.

Overview of EL

The unified expression language allows page authors to use simple expressions to dynamically
access data from JavaBeans™ components. For example, the test attribute of the following
conditional tag is supplied with an EL expression that compares the number of items in the
session-scoped bean named cart with 0.

<c:if test="${sessionScope.cart.numberOfItems > 0}">
</c:if>
JavaServer Faces technology uses EL for the following functions:

= Deferred and immediate evaluation of expressions
= The ability to set as well as get data
= The ability to invoke methods

See “Using the EL to Reference Backing Beans” on page 169 for more information on how to use
the EL in JavaServer Faces applications.

109

Overview of EL

110

To summarize, the unified expression language provides a way to use simple expressions to
perform the following tasks:

= Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

L] Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods

= Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag attribute will
accept:

= mmediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated immediately by the underlying technology such as
JavaServer Faces. A deferred evaluation expression can be evaluated later by the underlying
technology using the expression language.

m Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

= Rvalue expression or lvalue expression. An rvalue expression can only read a value, whereas
an Ivalue expression can both read and write that value to an external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers that can
handle expressions not already supported by the EL can be implemented.

This section gives an overview of the unified expression language features by explaining the
following topics:

“Immediate and Deferred Evaluation Syntax” on page 110
“Value and Method Expressions” on page 112

“Defining a Tag Attribute Type” on page 118

“Literal Expressions” on page 119

“Operators” on page 120

“Reserved Words” on page 121

“Examples of EL Expressions” on page 121

In addition to the above, JSP technology-related topics such as implicit objects and functions
are also relevant to EL users but they are not covered in this tutorial.

Immediate and Deferred Evaluation Syntax

The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result is returned immediately when the page is
first rendered. Deferred evaluation means that the technology using the expression language can
employ its own machinery to evaluate the expression sometime later during the page’s lifecycle,
whenever it is appropriate to do so.

The Java EE 6 Tutorial, Volume | « December 2009

Overview of EL

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology mostly uses deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other
tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must
defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can only be
used within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression, ${sessionScope.cart.total},
converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The example
expression shown above can only get the total price from the cart bean; it cannot set the total
price.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page lifecycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
lifecycle depending on how the expression is being used in the page.

The following example shows a JavaServer Faces inputText tag, which represents a text field
component into which a user enters a value. The inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean.

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render response phase of the lifecycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at
different phases of the lifecycle, during which the value is retrieved from the request, validated,
and propagated to the customer bean.

Chapter6 - Unified Expression Language m

Overview of EL

112

As shown in this example, deferred evaluation expressions can be value expressions that can be
used to both read and write data. They can also be method expressions. Value expressions (both
immediate and deferred) and method expressions are explained in the next section.

Value and Method Expressions

The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can either yield a value or set a value. Method expressions reference methods that
can be invoked and can return a value.

Value Expressions

Value expressions can be further categorized into rvalue and Ivalue expressions. Rvalue
expressions are those that can read data, but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and lvalue expressions. Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, adds the value to the
response, and gets rendered on the page. The same can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback request, this expression can be used to set the value of the name property with
user input. In this case, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions

Both rvalue and lvalue expressions can refer to the following objects and their properties or
attributes:

= JavaBeans components

= Collections

= Java™ SE enumerated types
= Implicit objects

The Java EE 6 Tutorial, Volume | « December 2009

Overview of EL

To refer to these objects, you write an expression using a variable which is the name of the
object. The following expression references a backing bean (a JavaBeans component) called
customer.

${customer}

The web container evaluates the variable that appears in an expression by looking up its value
according to the behavior of PageContext. findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, null is returned.

You can alter the way variables are resolved with a custom EL resolver. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer}
returns a value in the EL resolver instead. Creation of custom EL resolvers is an advanced topic
covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

To reference an enum constant with an expression, use a String literal. For example, consider
this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant, Suit.hearts with an expression, you use the String literal,
"hearts". Depending on the context, the String literal is converted to the enum constant
automatically. For example, in the following expression in which mySuit is an instance of Suit,
"hearts" is first converted to Suit.hearts before it is compared to the instance.

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an Enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation, which is similar to the notation used by
ECMAScript language. For more information on ECMAScript, see http://
www.ecmascript.org.

If you want to reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the square
brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .
notations, as shown here:

${customer.address["street"]}

Properties of an enum can also be referenced in this way. However, as with JavaBeans
component properties, the properties of an Enum class must follow JavaBeans component

Chapter6 - Unified Expression Language 113

http://www.ecmascript.org
http://www.ecmascript.org

Overview of EL

114

conventions. This means that a property must at least have an accessor method called
get<Property>where <Property> is the name of the property which can be referenced by an
expression.

For example, consider an Enum class that encapsulates the names of the planets of our galaxy and
includes a method to get the mass of a planet. You can use the following expression to reference
the method getMass of the Planet Enum class:

${myPlanet.mass}

If you are accessing an item in an array or list, you must use either a literal value that can be
converted to int or the [] notation with an int and without quotes. The following examples
could all resolve to the same item in a list or array, assuming that socks can be converted to int:

m ¢${customer.orders[1]}
m ¢{customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

${"literal"}
${customer.age + 20}
${true}

${57}

The unified expression language defines the following literals:
= Boolean: trueand false

= Integer:asin Java

= Floating point: as in Java

= String: with single and double quotes; " is escaped as \",’ is escaped as \’, and \ is escaped as
\\

= Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade }

After declaring an enum constant called mySuit, you can write the following expression to test if
mySuit is spade:

${mySuit == "spade"}

The Java EE 6 Tutorial, Volume | « December 2009

Overview of EL

When the EL resolving mechanism resolves this expression, it will invoke the value0f method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

Where Value Expressions Can Be Used
Value expressions using the ${} delimiters can be used in the following places:

= [Instatic text
= Inany standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent.

Lvalue expressions can only be used in tag attributes that can accept Ivalue expressions.

There are three ways to set a tag attribute value using either an rvalue or Ivalue expression:
= With a single expression construct:
<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated and the result is converted to the attribute’s expected type.
= With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expritext${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression are called composite expressions. They are evaluated from left to

right. Each expression embedded in the composite expression is converted to a String and

then concatenated with any intervening text. The resulting String is then converted to the
attribute’s expected type.

= With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String value is
converted to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 119 for more information. When a tag attribute has an

Chapter6 - Unified Expression Language 115

Overview of EL

116

enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
converted to Suit and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.1 Expression Language Specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions

Another feature of the unified expression language is its support of deferred method
expressions. A method expression is used to invoke an arbitrary public method of a bean, which
can return a result.

In JavaServer Faces technology, a component tag represents a component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and validating component data, as shown in this example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The inputText tag displays as a text field. The validator attribute of this inputText tag
references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions
must always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is converted
to String and is used to find the name of the method that matches it. Once the method is found,
it is invoked or information about the method is returned.

The Java EE 6 Tutorial, Volume | « December 2009

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Overview of EL

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component and method
refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

= With text only:

<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, it
returns the String literal, which is then converted to the expected return type, as defined in
the tag’s TLD.

Parameterized Method Calls

The updated EL version 2.1.2 included in Java EE 6 offers support for parameters to method
calls. Method calls can now use parameters (or arguments) without having to use static EL
functions.

Both the . and [] operators can be used for invoking method calls with parameters as shown in
expression syntax below:

m expr-alexpr-b](parameters)
® expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression
expr-b is evaluated and cast to a string which represents a method in the bean represented by
expr-a. In the second expression syntax, expr-a is evaluated to represent a bean object and
identifier-bisa string that represents a method in the bean object. The parameters in
parentheses are the arguments for the method invocation. Parameters can be 0 or more values
or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from guessNumber application, a random number is provided
as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber(’5")}">
The above example uses a value expression.

Consider the following example of a JavaServer Faces component tag which uses a method
expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

Chapter6 - Unified Expression Language 17

Overview of EL

118

where EL expression trader.buy is calling the trader bean's buy method. You can modify the
tag to pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’JAVA’)}" value="buy"/>

In the above example you are passing the string JAVA' (a stock symbol) as a parameter to the
buy method.

For more information on the updated EL, see https://uel.dev.java.net.

Defining a Tag Attribute Type

As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how that expression is evaluated (whether immediately or
deferred) is determined by the type attribute of the tag’s definition in the Page Description
Language (PDL) that defines the tag.

If you plan to create custom tags, for each tag in the PDL, you need to specify what kind of
expression to accept. Table 6-1 shows the three different kinds of tag attributes that accept EL
expressions, gives examples of expressions they accept, and the type definitions of the attributes
that must be added to the PDL. You cannot use #{} syntax for a dynamic attribute, meaning an
attribute that accepts dynamically-calculated values at runtime. Similarly, you also cannot use
the ${} syntax for a deferred attribute.

TABLE6-1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition

dynamic "literal" <rtexprvalue>true</rtexprvalue>
${literal} <rtexprvalue>true</rtexprvalue>

deferred value "literal” <deferred-value>

<type>java.lang.String</type>
</deferred-value>

#{customer.age} <deferred-value>
<type>int</type>
</deferred-value>

The Java EE 6 Tutorial, Volume | « December 2009

https://uel.dev.java.net

Overview of EL

TABLE6-1 Definitions of Tag Attributes That Accept EL Expressions (Continued)
Attribute Type Example Expression Type Attribute Definition

deferred method "literal” <deferred-method>
<method-signature>
java.lang.String submit()
</method-signature>
<deferred-method>

#{customer.calcTotal} <deferred-method>
<method-signature>
double calcTotal(int, double)
</method-signature>
</deferred-method>

In addition to the tag attribute types shown in Table 6-1, you can also define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition contains
both an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

Literal Expressions

A literal expression is evaluated to the text of the expression, which is of type String. It does not
use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows.
= By creating a composite expression as shown here:

${’${"yexprA}

#{'#{ YexprB}

The resulting values would then be the strings ${exprA} and #{exprB}.

= By using the escape characters \$ and \# to escape what would otherwise be treated as an
eval-expression:

\${exprA}
\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6-2 shows
examples of various literal expressions and their expected types and resulting values.

Chapter6 - Unified Expression Language 119

Overview of EL

120

TABLE6-2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred, and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined to accept a deferred value expression,
then when the literal expression references a value, it is evaluated at a point in the lifecycle that
is determined by other factors. The other factors include where the expression is being used and
to what it is referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. For example, the commandButton tag of the guessNumber application
uses a literal method expression as a logical outcome to tell the JavaServer Faces navigation
system which page to display next.

Operators

In addition to the . and [] operators discussed in “Value and Method Expressions” on

page 112, the unified expression language provides the following operators, which can be used
in rvalue expressions only:

= Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

= Logical: and, & or, | |, not, !

= Relational: ==, eq, ! =, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made against other
values, or against boolean, string, integer, or floating point literals.

= Empty: The empty operator is a prefix operation that can be used to determine whether a
value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

= [].

= () (used to change the precedence of operators)
= - (unary) not ! empty

= * / div % mod

=+ - (binary)

B <><=>= 1t gt le ge

m == l=eq ne

The Java EE 6 Tutorial, Volume | « December 2009

Overview of EL

m §& and

= || or

" ?

Reserved Words

The following words are reserved for the unified expression language and should not be used as
identifiers.

and or not eq
ne 1t gt le
ge true false null
instanceof empty div mod

Examples of EL Expressions

Table 6-3 contains example EL expressions and the result of evaluating them.

TABLE6-3 Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a’ < 'b"} true
${'hip’ gt 'hit'} false
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2
${!empty param.Add} False if the request parameter named Add is null or an empty
string

Chapter6 - Unified Expression Language 121

Overview of EL

122

TABLE6-3 Example Expressions (Continued)
EL Expression Result
${pageContext.request.contextPath} The context path.

${sessionScope.cart.numberOfItems}

${param['mycom.productId’]}
${header["host"]}

${departments[deptName]}

${requestScope[’javax.servlet.forward.

servlet path’]}

#{customer.Name}

#{customer.calcTotal}

The value of the number0fItems property of the
session-scoped attribute named cart.

The value of the request parameter named mycom. productId.
The host.

The value of the entry named deptName in the departments
map.

The value of the request-scoped attribute named
javax.servlet.forward.servlet path.

Gets the value of the property IName from the customer bean
during an initial request. Sets the value of IName during a
postback.

The return value of the method calcTotal of the customer
bean.

The Java EE 6 Tutorial, Volume | « December 2009

L K R 4 CHAPTER 7

Using JavaServer™ Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of creating web
pages of a JavaServer Faces application includes tasks such as adding components to the page
and wiring them to backing beans, validators, converters, and other server-side objects that are
associated with the page.

This chapter explains how to create web pages using different types of component and core tags.
In the next chapter you will learn about adding converters, validators and listeners to
component tags that will provide additional functionality to components.

The following topics are addressed here:

= “Setting Up a Page” on page 123
= “Adding Components to a Page Using HTML Tags” on page 124
= “Using Core Tags” on page 153

Setting Up a Page
A typical JavaServer Faces web page includes the following elements:

= A set of namespace declarations that declare the JavaServer Faces tag libraries
= Optionally, the new HTML head (h:head) and body (h:body) tags
= A form tag (h:form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the page access
to the two standard tag libraries: The JavaServer Faces HTML tag library, and the JavaServer
Faces core tag library. The JavaServer Faces standard HTML tag library defines tags that
represent common HTML user interface components. It is linked to HTML render kit. The
JavaServer Faces core tag library defines tags that perform core actions.

Each JavaServer Faces tag must be described by the PDL (Page Declaration Language). For a
complete list of JavaServer Faces Facelets tags and their attributes, refer to the PDL

123

http://java.sun.com/javaee/javaserverfaces/2.0/docs/renderkitdocs/index.html

Adding Components to a Page Using HTML Tags

documentation athttp://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

To use any of the JavaServer Faces tags, you need to include appropriate directives at the top of
each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library uri
and the tag prefix.

For example, when creating a Facelets XHML page, include namespace directives as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns: f="http://java.sun.com/jsf/core">

The XML namespace uri identifies the tag library location and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead
of the standard h or f. However, when including the tag in the page, you must use the prefix that
you have chosen for the taglibrary. For example, in the following web page, the form tag must
be referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in HTML tag library:

<h:form ...>

The following sections, “Adding Components to a Page Using HTML Tags” on page 124 and
“Using Core Tags” on page 153, describe how to use the component tags from the JavaServer
Faces standard HTML tag library and the core tags from the JavaServer Faces core tag library.

Adding Components to a Page Using HTML Tags

124

The tags defined by the JavaServer Faces standard HTML tag library represent HTML form
components and other basic HTML elements. These components display data or accept data
from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 7-1.

TABLE7-1 The Component Tags

Tag Functions Rendered As Appearance
column Represents a column of datain A column of data in an A column in a table
aData component HTML table

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags (Continued)
Tag Functions Rendered As Appearance
commandButton Submits a form to the An HTML <input A button
application type=type> element,
where the type value can
be submit, reset, or
image
commandLink Links to another page or An HTML <a href> A hyperlink
location on a page element
dataTable Represents a data wrapper An HTML <table> A table that can be
element updated dynamically
form Represents an input form An HTML <form> No appearance
(inner tags of the form receive element
the data that will be submitted
with the form)
graphicImage Displays an image An HTML element Animage
inputHidden Allows a page author to An HTML <input No appearance
include a hidden variableina type=hidden> element
page
inputSecret Allows a user to inputa string An HTML <input A text field, which
without the actual string type=password>element displays a row of
appearing in the field characters instead of
the actual string
entered
inputText Allows a user to inputa string An HTML <input A text field
type=text> element
inputTextarea Allows a user to enter a An HTML <textarea> A multi-row text field
multiline string element
message Displays alocalized message =~ An HTML tagif A textstring
styles are used
messages Displays localized messages A set of HTML A text string
tags if styles are used
outputFormat Displays alocalized message ~ Plain text Plain text
outputLabel Displays a nested component ~ An HTML <label> Plain text
as alabel for a specified input element
field
outputLink Links to another page or An HTML <a> element A hyperlink

location on a page without
generating an action event

Chapter7 - Using JavaServer™ Faces Technology in Web Pages

125

Adding Components to a Page Using HTML Tags

126

TABLE7-1 The Component Tags (Continued)
Tag Functions Rendered As Appearance
outputText Displays a line of text Plain text Plain text
panelGrid Displays a table AnHTML <table> A table
element with <tr>and
<td> elements
panelGroup Groups a set of components A HTML <div>or A rowina table
under one parent element
selectBooleanCheckbox Allows a user to change the An HTML <input A check box
value of a Boolean choice type=checkbox> element.
selectItem Represents one item in alist of An HTML <option> No appearance
itemsina SelectOne element
component
selectItems Representsalistofitemsina Alistof HTML <option> No appearance
SelectOne component elements
selectManyCheckbox Displays a set of checkboxes A setof HTML <input> A set of check boxes
from which the user can select ~elements of type checkbox
multiple values
selectManyListbox Allows a user to select multiple An HTML <select> Alistbox
items from a set of items, all element
displayed at once
selectManyMenu Allows a user to select multiple An HTML <select> A scrollable combo
items from a set of items element box
selectOneListbox Allows a user to select one AnHTML <select> A list box
item from a set of items, all element
displayed at once
selectOneMenu Allows a user to select one AnHTML <select> A scrollable combo
item from a set of items element box
selectOneRadio Allows a user to select one An HTML <input A set of radio buttons

item from a set of items

type=radio> element

The next section explains the important tag attributes that are common to most component
tags. For each of the components discussed in the following sections, “Writing Bean Properties”
on page 170 explains how to write a bean property bound to a particular component or its value.

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

Common Component Tag Attributes

In general, most of the component tags support the following attributes:

= id: Uniquely identifies the component.

= immediate:Ifsetto true,indicates that any events, validation, and conversion associated
with the component should happen in the apply request values phase rather than a later
phase.

= rendered: Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

= style: Specifies a Cascading Style Sheet (CSS) style for the tag.
= styleClass: Specifies a CSS stylesheet class that contains definitions of the styles.
= value: Identifies an external data source and binds the component’s value to it.

= pinding: Identifies a bean property and binds the component instance to it.

All of the tag attributes (except id) can accept expressions, as defined by the EL, described in
Chapter 6, “Unified Expression Language”

The id Attribute

The id attribute is not usually required for a component tag. It is used when another
component or a server-side class must refer to the component. If you don’t include an id
attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute only takes expressions using the
evaluation syntax described in The immediate Attribute, which uses the ${} delimiters. For
more information on expression syntax, see “Value Expressions” on page 112.

The immediate Attribute

Input components and command components (those that implement ActionSource, such as
buttons and hyperlinks) can set the immediate attribute to true to force events, validations, and
conversions to be processed during the apply request values phase of the life cycle (a sub phase
in the request phase of the JavaServer Faces lifecycle).

You need to carefully consider how the combination of an input component’s immediate value
and a command component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If both the button’s and the field’s immediate attributes are set to true, the new
value entered in the field will be available for any processing associated with the event that is
generated, when the button is clicked. The event associated with the button and the event,
validation, and conversion associated with the field are all handled during the apply request
values phase.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 127

Adding Components to a Page Using HTML Tags

128

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. This is because any events, conversion, or validation associated with the field
occurs during its usual phases of the life cycle, which come after the apply request values phase.

For a complete description of JavaServer Faces lifecycle phases, see the JavaServer Faces 2.0
Specification.

The rendered Attribute

A component tag uses a Boolean EL expression, along with the rendered attribute, to
determine whether or not the component will be rendered. For example, the commandLink
component in the following section of a page is not rendered if the cart contains no items:

<h:commandLink id="check"

rendered="#{cart.numberOfItems > 0}">
<h:outputText
value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Value and Method Expressions” on page 112, these
rvalue expressions can only read data; they cannot write the data back to the data source.
Therefore, expressions used with rendered attributes can use the arithmetic operators and
literals that rvalue expressions can use but lvalue expressions cannot use. For example, the
expression in the preceding example uses the > operator.

The styleand styleClass Attributes

The style and styleClass attributes allow you to specify Cascading Style Sheets (CSS) styles
for the rendered output of your tags. “Displaying Error Messages With the h:message and
h:messages Tags” on page 148 describes an example of using the style attribute to specify
styles directly in the attribute. A component tag can instead refer to a CSS stylesheet class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="books"
styleClass="list-background"
value="#{bookDBAO.books}"

var="book">

The stylesheet that defines this class is stylesheet. css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets Specification at
http://www.w3.0rg/Style/CSS/.

The Java EE 6 Tutorial, Volume | « December 2009

http://www.w3.org/Style/CSS/

Adding Components to a Page Using HTML Tags

The valueand binding Attributes

A tag representing a Output component or a subclass of Output component class uses value
and binding attributes to bind its component’s value or instance respectively to an external data
source.

Adding HTML Head and Body Tags

The new HTML head (h: head) and body (h:body) tags add HTML type page structure to
JavaServer Faces web pages.

= The h:head tag represents the head element of a HTML page
= The h:body tag represents the body element of a HTML page

The following is an example of a XHTML page using the usual head and body markups:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Add a title</title>

</head>

<body>

Add Content

</body>

The following is an example of a XHTML page using h:head and h: body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

Add a title

</h:head>

<h:body>

Add Content

</h:body>

Both of the above example code segments render the same HTML elements. The head and body
tags are mainly useful for resource relocation. For more information on resource relocation see,
“Resource Relocation using h: output Tags” on page 150.

Adding a Form Component

A h:formtagrepresents an input form, which includes child components that can contain data,
that is either presented to the user or submitted with the form.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 129

Adding Components to a Page Using HTML Tags

Figure 7-1 shows a typical login form in which a user enters a user name and password, then
submits the form by clicking the Login button.

User Name: |Duke

Password: | Rt

FIGURE7-1 A Typical Form

The h: form tag represents the Form component on the page and encloses all the components
that display or collect data from the user, as shown here:

<h:form>
. other JavaServer Faces tags and other content...
</h:form>

The h: form tag can also include HTML markup to lay out the components on the page. Note
that the h: form tag itself does not perform any layout; its purpose is to collect data and to
declare attributes that can be used by other components in the form.

A page can include multiple h: form tags, but only the values from the form submitted by user
will be included in the postback request.

Using Text Components

Text components allow users to view and edit text in web applications. The basic types of text
components are as follows:

= Label, which displays read-only text.

= Text field, which allows users to enter text, often to be submitted as part of a form.

= Textarea, which is a type of text field that allows users to enter multiple lines of text.

= Password field, which is a type of text field that displays a set of characters, such as asterisks,

instead of the password text that the user enters.

Figure 7-2 shows examples of these text components.

130 The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

Label User Mame: |Duke +—— Text Field
Password: I?.-ki.—).—).—kf.-).-k —— Password Field
Comments: A uzer can enter text across Taxt Area
multiple lines.

FIGURE7-2 Example Text Components

Text components can be categorized into two types; Input and Output. A JavaServer Faces
Output component is rendered as a read-only text. An example is a label. A JavaServer Faces
Input component is rendered as an editable text. An example is a text field.

The Input and Output components can each be rendered in one of four ways to display more
specialized text. Table 7-2 and Table 7-3 list the Input and Output components and the tags
that represent the component.

Note - The name of a tag is composed of the name of the component and the name of the
renderer. For example, the h: inputText tag refers to a Input component that is rendered with
the Text renderer.

TABLE7-2 Input Tags

Component Tag Function
Input h:inputHidden Allows a page author to include a hidden variable in a page
h:inputSecret The standard password field: Accepts one line of text with no spaces

and displays it as a set of asterisks as it is typed
h:inputText The standard text field: Accepts a text string of one line

h:inputTextarea The standard text area: Accepts multiple lines of text

The Input tags support the following tag attributes in addition to those described in “Common
Component Tag Attributes” on page 127. Note that this list does not include all the attributes
supported by the Input tags, but just those that are used most often. For the complete list of
attributes, refer to the PDL Documents at http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

= converter: Identifies a converter that will be used to convert the component’s local data. See
“Using the Standard Converters” on page 155 for more information on how to use this
attribute.

= converterMessage: Specifies an error message to display when the converter registered on
the component fails.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 131

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Adding Components to a Page Using HTML Tags

132

= dir: Specifies the direction of the text displayed by this component. Acceptable values are
LTR, meaning left-to-right, and RTL, meaning right-to-left.

= label: Specifies a name that can be used to identify this component in error messages.
= lang: Specifies the code for the language used in the rendered markup, such asen_US.

® required: Takesa boolean value that indicates whether or not the user must enter a value in
this component.

= requiredMessage: Specifies an error message to display when the user does not enter a value
into the component.

= validator: Identifies a method expression pointing to a backing bean method that
performs validation on the component’s data. See “Referencing a Method That Performs
Validation” on page 165 for an example of using the f:validator tag.

= f:validatorMessage: Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

= valueChangeListener: Identifies a method expression that points to a backing bean
method that handles the event of entering a value in this component. See “Referencing a
Method That Handles a Value-Change Event” on page 166 for an example of using
valueChangelListener.

TABLE7-3 Output Tags

Component Tag Function
Output h:outputLabel The standard read-only label: Displays a component as a label for a
specified input field
h:outputLink Displays an <a href> tag that links to another page without
generating an action event
h:outputFormat Displays a localized message
h:outputText Displays a text string of one line

The Output tags support the converter tag attribute in addition to those listed in “Common
Component Tag Attributes” on page 127.

The rest of this section explains how to use selected tags listed in Table 7-2 and Table 7-3. The
other tags are written in a similar way.

Rendering a Text Field With the inputText Tag

The h:inputText tagis used to display a text field. A similar tag, the h:outputText tag, displays
aread-only, single-line string. This section shows you how to use the h: inputText tag. The
h:outputText tagis written in a similar way.

Here is an example of an h: inputText tag:

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">
<f:valueChangelListener
type="com.sun.bookstore6.listeners.NameChanged" />
</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a backing bean named CashierBean. This
property holds the data for the name component. After the user submits the form, the value of
the name property in CashierBean will be set to the text entered in the field corresponding to
this tag.

The required attribute causes the page to reload with errors (displayed on the screen) if the
user does not enter a value in the name text field. The JavaServer Faces implementation checks
whether the value of the component is null or is an empty string.

If your component must have a not null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a
required attribute that is set to true and the value is null or a zero-length string, no other
validators that are registered on the tag are called. If your tag does not have a required attribute
set to true, other validators that are registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string.

Rendering a Password Field With the inputSecret Tag

The h: inputSecret tag renders an <input type="password"> HTML tag. When the user types
a string into this field, a row of asterisks is displayed instead of the text typed by the user. Here is
an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label With the outputLabel Tag

The h:outputLabel tagis used to attach a label to a specified input field for the purpose of
making it accessible. The following page uses an h:outputLabel tag to render the label of a
check box:

<h:selectBooleanCheckbox
id="fanClub"
binding="#{cashier.specialOffer}" />

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 133

Adding Components to a Page Using HTML Tags

134

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The for attribute of the h:outputLabel tag maps to the id of the input field to which the label is
attached. The h:outputText tag nested inside the h: outputLabel tag represents the actual label
component. The value attribute on the h: outputText tag indicates the text that is displayed
next to the input field.

Instead of using an h: outputText tag for the text displayed as a label, you can simply use the
h:outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h: outputLabel tag to specify the text
of the label. Here is an example:

<h:selectBooleanCheckbox
id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

Rendering a Hyperlink With the h: outputLink Tag

The h:outputLink tagis used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the h: commandLink tag if

you always want the URL (specified by the h: outputLink tag’s value attribute) to open and do
not want any processing to performed when the user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the outputLink tag identifies the text that the user clicks to get to the
next page.

Displaying a Formatted Message With the h: outputFormat Tag

The h:outputFormat tag allows display of concatenated messages as aMessageFormat pattern,
as described in the API documentation for java.text.MessageFormat (see
http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html). Hereisan
example of an outputFormat tag:

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html

Adding Components to a Page Using HTML Tags

<h:outputFormat value="Hello, {0} !">
<f:param value="Bill"
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0} in the
sentence. The message displayed in the page is as follows:

Hello, Bill!

This is an example of hard-coding the data to be substituted in the message by using a literal
value with the value attribute on the param tag.

A h:outputFormat tag can include more than one param tag for those messages that have more
than one parameter that must be concatenated into the message. If you have more than one
parameter for one message, make sure that you put the paramtags in the proper order so that
the data is inserted in the correct place in the message. Here is the preceding example modified
with an additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="Bill"

<f:param value="#{bean.numVisitor}">

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression
bean.numVisitor, where the property numvisistor of backing bean bean, keeps track of
visitors to the page. This is an example of a value-expression-enabled tag attribute accepting an
EL expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Components for Performing Actions
and Navigation

In JavaServer Faces applications, the button and hyperlink component tags are used to perform
actions, such as submitting a form, and for navigating to another page. They are called
command components as they perform an action when activated.

The h: commandButton tag is rendered as a button. The h: commandLink tag is rendered as a
hyperlink.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 135

Adding Components to a Page Using HTML Tags

136

In addition to the tag attributes listed in “Common Component Tag Attributes” on page 127,
the h: commandButton and h: commandLink tags can use the following attributes:

= action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is
used to determine what page to access when the Command component is activated.

= actionListener, which isa method expression pointing to a bean method that processes an
action event fired by the Command component.

See “Referencing a Method That Performs Navigation” on page 165 for more information on
using the action attribute. See “Referencing a Method That Handles an Action Event” on
page 165 for details on using the actionListener attribute.

Rendering a Button With the h: commandButton Tag

If you are using a commandButton component, when a user clicks the button, the data from the
current page is processed, and the next page is opened. Here is a h: commandButton tag example:

<h:commandButton value="Submit"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references this method. The submit method performs some processing and
returns a logical outcome.

The value attribute of the example commandButton tag references the button’s label. For
information on how to use the action attribute, see “Referencing a Method That Performs
Navigation” on page 165.

Rendering a Hyperlink With the h: commandLink Tag

The h: commandLink tag represents an HTML hyperlink and is rendered asan HTML <a>
element. It acts like a form submit button and is used to submit an action event to the
application.

A h:commandLink tag must include a nested h: outputText tag, which represents the text that
the user clicks to generate the event. Here is an example:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooselLocaleFromLink}">
<h:outputText value="#{bundle.English}" />
</h:commandLink>

This tag will render the following HTML:

<a id=" id3:NAmerica" href="#"
onclick="document.forms[’ id3’1[’ id3:NAmerica’].

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

value="_id3:NAmerica’;
document.forms[’ id3’].submit();
return false;">English

Note - The h: commandLink tag will render JavaScript. If you use this tag, make sure your browser
is enabled for JavaScript.

Adding Graphics and Images With the
h:graphicImage Tag

In a JavaServer Faces application, the Graphic component represents an image. The
h:graphicImage tagis used to rendera Graphic component on a page.

<h:graphicImage id="mapImage" url="/template/world.jpg"/>
The url attribute specifies the path to the image. The URL of the example tag begins with a /,

which adds the relative context path of the web application to the beginning of the path to the
image.

Alternately, you can also use the “Resources” on page 108 facility to point to the image location.
Here is an example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

Laying Out Components With the Panel Component

In a JavaServer Faces application, you use the Panel component as a layout container for a set of
other components. The Panel component is rendered as an HTML table. Table 7-4 lists the tags
corresponding to the Panel component.

TABLE7-4 Panel Component Tags

Tag Attributes Function

h:panelGrid columns, columnClasses, footerClass, Displays a table
headerClass, panelClass, rowClasses

h:panelGroup layout Groups a set of components under one
parent

The h:panelGrid tag is used to represent an entire table. The h: panelGroup tag is used to
represent rows in a table. Other tags are used to represent individual cells in the rows.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 137

Adding Components to a Page Using HTML Tags

138

The columns attribute is required if you want your table to have more than one column as the
attribute defines how to group the data in the table. The h:panelGrid tag also has a set of
attributes that specify CSS stylesheet classes: columnClasses, footerClass, headerClass,
panelClass, and rowClasses. These stylesheet attributes are optional.

If the headerClass attribute value is specified, the panelGrid must have a header as its first
child. Similarly, ifa footerClass attribute value is specified, the panelGrid must have a footer
asits last child.

Here is an example:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">
<h:outputText value="#{bundle.Checkout}"/>
</f:facet>
<h:outputText value="#{bundle.Name}" />
<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangelListener
type="listeners.NameChanged" />
</h:inputText>
<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"
converter="CreditCardConverter" required="true">
<bookstore:formatValidator
formatPatterns="9999999999999999 |
9999 9999 9999 9999|9999-9999-9999-9999"/>
</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

</h:panelGrid>

The above h:panelGrid tag is rendered as a table that contains components in which the
bookstore customer inputs personal information. This h: panelGrid tag uses stylesheet classes
to format the table. The following code shows the 1ist-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

Because the h:panelGrid tag specifies a headerClass, the panelGrid must contain a header.
The example panelGrid tag uses a facet tag for the header. Facets can have only one child, so a
h:panelGroup tag is needed if you want to group more than one component within a facet.
The example h:panelGrid tag has only one cell of data, therefore a h: panelGroup tagis not
needed.

The h:panelGroup tag has an attribute, layout, in addition to those listed in “Common
Component Tag Attributes” on page 127. If the layout attribute has the value block, then an
HTML div element is rendered to enclose the row; otherwise, an HTML span element is
rendered to enclose the row. If you are specifying styles for the h: panelGroup tag, you should
set the layout attribute to block in order for the styles to be applied to the components within
the h:panelGroup tag. You should do this because styles such as those that set width and height
are not applied to inline elements, which is how content enclosed by the span element is
defined.

A h:panelGroup tag can also be used to encapsulate a nested tree of components so that the tree
of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h: panelGrid tag. The columns attribute in the example is set to 3, and therefore
the table will have three columns. The column in which each component is displayed is
determined by the order in which the component is listed on the page modulo 3. So, ifa
component is the fifth one in the list of components, that component will be in the 5 modulo 3
column, or column 2.

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value, whether it be
the only value available or one of a set of choices. The most common examples of this
selectOnecomponent are as follows:

= Ah:selectBooleanCheckbox tag, displayed as check box, which represents boolean state
= Ah:selectOneRadio tag, displayed as a set of radio buttons
= Ah:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list

= Ah:selectOneListbox tag, displayed as a list box, with an unscrollable list

Figure 7-3 shows examples of these components.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 139

Adding Components to a Page Using HTML Tags

140

Genre: | (Fiction Language: |Chinese |~ Format: |Hardcover

(% Man-fiction Cutch Faperhack

) Reference English L | Large-print

. b Cassette
) Biography French :

German | Dwh

_— Spanish Nustrated
Availability: [v] In print § . i
Sweahili =

FIGURE7-3 Example Select One Components

Displaying a Check Box Using the h: selectBooleanCheckbox Tag

The SelectBoolean component defines tags that have a boolean value. The
h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides for
representing boolean state.

Here is an example that shows how to use the selectBooleanCheckbox tag:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel
for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText
id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the outputLabel tag. The actual text
is represented by the nested outputText tag.

Displaying a Menu Using the h: selectOneMenu Tag

A SelectOne component allows the user to select one value from a set of values. This
component can be rendered as a list box, a set of radio buttons, or a menu. This section explains
the h:selectOneMenu tag. The h:selectOneRadio and h:selectOneListbox tags are usedina
similar way. The h: selectOneListbox tagis similar to the h: selectOneMenu tag except that
h:selectOneListbox definesa size attribute that determines how many of the items are
displayed at once.

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

The h:selectOneMenu tag represents a component that contains a list of items from which a
user can choose one item. This menu component is also commonly known as a drop-down list
or a combo box. The following code snippet shows how the h: selectOneMenu tag is used, to
allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemvValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h: selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
youdon’t provide a value, the first item in the list is selected by default.

Like the h: selectOneRadio tag, the selectOneMenu tag must contain either a f:selectItems
tag or a set of f:selectItem tags for representing the items in the list. “Using The SelectItem
and SelectItems Components” on page 143 explains these tags.

The other selectOne components are used in the same way.

Rendering Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. The SelectMany components are used for this purpose. You can do this
using one of the following component tags:

= Ah:selectManyCheckbox tag, displayed as a set of check boxes
= Ah:selectManyMenu tag, displayed as a drop-down menu
= Ah:selectManyListbox tag, displayed as a list box

Figure 7-4 shows examples of these components.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 141

Adding Components to a Page Using HTML Tags

142

Genre: | [v] Fiction Language: |Chinese |~ Format: |Hardcover
Mlan-fiction Dutch Paperback
checkboxes [Reference English i Large-print
i French [Cazgette
L Biography German | ovD
Spanish Nustrated
Swvahili ™

FIGURE7-4 Example SelectMany Components

The SelectMany component allows the user to select zero or more values from a set of values.
This section explains the h: selectManyCheckbox tag. The h:selectManyListbox tagand
h:selectManyMenu tag are used in a similar way.

A list box differs from a menu in that it displays a subset of items in a box, whereas a menu
displays only one item at a time when the user is not selecting the menu. The size attribute of
the h:selectManyListbox tag determines the number of items displayed at one time. The list
box includes a scroll bar for scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected.

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems
value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the h: selectManyCheckbox tag identifies the newsletters property of
the Cashier backing bean. This property holds the values of the currently selected items from
the set of check boxes. You are not required to provide a value for the currently selected items. If
you don’t provide a value, the first item in the list is selected by default.

The layout attribute indicates how the set of check boxes are arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of
check boxes. To represent a set of items, you use the f: selectItems tag. To represent each item
individually, you use a f: selectItem tag. The following subsection explains these tags in more
detail.

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

Using The SelectItemand SelectItems Components

The f:selectItemand f:selectItems tags represent components that can be nested inside a
SelectOne or a SelectMany component. A f:selectItemtagisassociated with a SelectItem
instance, which contains the value, label, and description of a single item in a SelectOne or
SelectMany component. The SelectItems instance represents a set of SelectItem instances,
containing the values, labels, and descriptions of the entire list of items

You can use either a set of f:selectItemtags or asingle f:selectItems tag within your
SelectOne or SelectMany component tag.

The advantages of using the f:selectItems tagare as follows:

= Anitem can be represented by using different data structures, including Array, Map and
Collection. The data structure is composed of SelectItem instances.

The value of f: selectItems tag can even represent a generic collection of POJOs.

= Different lists can be concatenated together into a single SelectMany or SelectOne
component and group the lists within the component.

= Values can be generated dynamically at runtime.

The advantages of using f: selectItemare as follows:

= [temsin the list can be defined from the page.
= Less code is needed in the bean for the selectItem properties.

For more information on writing component properties for the SelectItems components, see
“Writing Bean Properties” on page 170. The rest of this section shows you how to use the
f:selectItems and f:selectItemtags.

Using the f:selectItems Tag

The following example from “Rendering Components for Selecting Multiple Values” on
page 141 shows how to use the h: selectManyCheckbox tag:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems
value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tagis bound to the backing bean newsletters,
which is configured in the application configuration resource file.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 143

Adding Components to a Page Using HTML Tags

144

You can also create the list corresponding to a SelectMany or SelectOne component
programmatically in the backing bean. See “Writing Bean Properties” on page 170 for
information on how to write a backing bean property corresponding to a SelectMany or
SelectOne component.

The arguments to the SelectItem constructor are as follows:

= AnObject representing the value of the item
= A Stringrepresenting the label that displays in the SelectMany component on the page

= A Stringrepresenting the description of the item

“SelectItems Properties” on page 175 describes in more detail how to write a backing bean
property for a SelectItems component.

Using the f:selectItemTag

The f:selectItemtagrepresents a single item in alist of items. Here is the example from
“Displaying a Menu Using the h: selectOneMenu Tag” on page 140 once again:

<h:selectOneMenu
id="shippingOption" required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemvValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the default value of the SelectIteminstance. The
itemLabel attribute represents the String that appears in the drop-down menu component on
the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. They can also define literal
values, as shown in the example h: selectOneMenu tag.

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. Figure 7-5 shows an
example of this kind of table.

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

Quantity Title
Web Servers for Fun and Profit
Web Components for Web Developers

1
3
From Oak to Java: The Revolution of a
2
1
3

Language

My Early Years: Growing up on *7

Java Intermedliate Bytecodes

Duke: A Biography of the Java Evangelist
Subtotal:$362.20

Tpdate Cuantities

FIGURE7-5 Table ona Web Page

Price
$40.75 Remove ftem |
$27.75 [Remove ftem |

$10.75 [Remove fter |

$30.75 Remove ftem |
$30.95 [Remove ftem |
$45.00 [Remove ftem |

In a JavaServer Faces application, the h:dataTable component tag supports binding to a
collection of data objects. It displays the data as an HTML table. The h: column tag represents a
column of data within the table. It iterates over each record in the data source which is displayed

as arow. Here is an example:

<h:dataTable id="items"

captionClass="list-caption"

columnClasses="list-column-center, list-column-left,
list-column-right, list-column-center"

footerClass="list-footer"
headerClass="list-header"

rowClasses="list-row-even, list-row-odd"

styleClass="list-background"

<h:column headerClass="list-header-left">

<f:facet name="header">

<h:outputText value=Quantity"" />

</f:facet>

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

</h:inputText>

</h:column>
<h:column>
<f:facet name="header">

<h:outputText value="Title"/>

</f:facet>

<h:outputText value="#{item.title}"/>

</h:commandLink>
</h:column>

<f:facet name="footer"
<h:panelGroup>

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 145

Adding Components to a Page Using HTML Tags

146

<h:outputText value="Totall}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<
</h:dataTable>

Figure 7-5 shows a data grid that this h: dataTable tag can display.

The example h: dataTable tag displays the books in the shopping cart as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons, which the user can click to
remove books from the shopping cart.

The column tags represent columns of data in a Data component. While the Data component is
iterating over the rows of data, it processes the Column component associated with each
h:column tag for each row in the table.

The Data component shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time Data
iterates through the list of books, it renders one cell in each column.

The h:dataTable and h: column tags use facets to represent parts of the table that are not
repeated or updated. These include headers, footers, and captions.

In the preceding example, h: column tags include f: facet tags for representing column headers
or footers. The h: column tag allows you to control the styles of these headers and footers by
supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS style classes, which will be applied to the header and footer cells of
the corresponding column in the rendered table.

Facets can have only one child, and so a h: panelGroup tag is needed if you want to group more
than one component within a f: facet. Because the facet tag representing the footer includes
more than one tag, the panelGroup is needed to group those tags. Finally, this h:dataTable tag
includes a f: facet tag with its name attribute set to caption, causing a table caption to be
rendered below the table.

This table is a classic use case for a Data component because the number of books might not be
known to the application developer or the page author at the time that application is developed.
The Data component can dynamically adjust the number of rows of the table to accommodate
the underlying data.

The value attribute of a h: dataTable tag references the data to be included in the table. This
data can take the form of any of the following:

= Alist of beans
= Anarray of beans

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

A single bean

A javax.faces.model.DataModel

A java.sql.ResultSet

A javax.servlet.jsp.jstl.sql.ResultSet
A javax.sql.RowSet

All data sources for Data components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one around
data of any of the other acceptable types. See “Writing Bean Properties” on page 170 for more
information on how to write properties for use with a Data component.

The var attribute specifies a name that is used by the components within the h:dataTable tag
as an alias to the data referenced in the value attribute of dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute
points to a single book in that list. As the Data component iterates through the list, each
reference to item points to the current book in the list.

The Data component also has the ability to display only a subset of the underlying data. This is
not shown in the preceding example. To display a subset of the data, you use the optional first
and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

The h:dataTable tagalso has a set of optional attributes for adding styles to the table:

captionClass: Defines styles for the table caption
columnClasses: Defines styles for all the columns
footerClass: Defines styles for the footer
headerClass: Defines styles for the header
rowClasses: Defines styles for the rows
styleClass: Defines styles for the entire table

Each of these attributes can specify more than one style. If columnClasses or rowClasses
specifies more than one style, the styles are applied to the columns or rows in the order that the
styles are listed in the attribute. For example, if columnClasses specifies styles
list-column-center and list-column-right and if there are two columns in the table, the
first column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 147

Adding Components to a Page Using HTML Tags

148

attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Displaying Error Messages With the h: message and
h:messages Tags

The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input
component, whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessNumber application:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validatelLongRange minimum="0" maximum="10" />
<h:commandButton id="submit"
action="success" value="Submit" /><p>

<h:message

style="color: red;

font-family: ’'New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline" id="errorsl" for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h: message tag appears in the page. In this
case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other
attributes for defining styles. For more information on these attributes, refer to the PDL
documentation at http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

Another attribute supported by h:messages tag is the layout attribute. Its default value is list,
which indicates that the messages are displayed in a bullet list using the HTML ul and 1i
elements. If you set the attribute value to table, the messages will be rendered in a table using
the HTML table element.

The preceding example shows a standard validator that is registered on the input component.
The message tag displays the error message that is associated with this validator when the
validator cannot validate the input component’s value. In general, when you register a converter
or validator on a component, you are queueing the error messages associated with the converter
or validator on the component. The h:message and h:messages tags display the appropriate
error messages that are queued on the component when the validators or converters registered
on that component fail to convert or validate the component’s value.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Adding Components to a Page Using HTML Tags

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for
custom converters and validators by registering custom error messages with the application
through the message-bundle. Creating and using custom error messages is an advanced topic
covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

Creating Bookmarkable URLs with h: buttonand
h:1link Tags

Bookmarkability or the ability to create bookmarkable URLs refers to the ability to generate
hyperlinks based on specified navigation outcome and component parameters. Bookmarkable
URLSs are supported in JavaServer Faces 2.0.

In HTTP protocol, by default most browsers send GET requests for URL retrieval and POST
requests for data processing. The GET requests can have query parameters and can be cached
while it is not advised for POST's which send data to the external servers. The other JavaServer
faces tags capable of generating hyperlinks use either simple GET requests as in the case of
h:outputlink, or POST requests as in the case of h: commandLink or h: commandButton tags.
Get requests with query parameters provide finer granularity to URL strings. These URLs are
created with a one or more name=value parameters appended to the simple URL aftera ?
character and separated by either &; or ∓ strings.

Bookmarkable URLs or can be created with the help of the OutcomeTarget component, which
is rendered as one of the following two HTML tags:

® h:button
= h:link

Both of these tags are capable of generating a hyperlink based on the outcome attribute of the
component. For example:

<h:link outcome="response" value="Message">
<f:param name="Result" value="#{sampleBean.result}"/>
</h:link>

The h:link tag will generate a URL link that points to the response.xhtml file on the same
server, appended with the single query parameter created by the f: param tag. When processed,
the parameter Result is assigned the value of backing bean's result method
#{sampleBean.result}. A sample HTML generated from the above set of tags is as follows
assuming the value of the parameter is success:

Response

This is a simple GET request. To create more complex GET requests and utilize the h: link tag's
functionality, you may use View Parameters.

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 149

Adding Components to a Page Using HTML Tags

150

Using View Parameters

The core tags metadata and f: viewparam, are used as a source of parameters for configuring
the URLs. View parameters are declared as part of metadata for a page as shown in the
following example:

<h:body>

<f:metadata>

<f:viewParam id="name" name="Name" value="#{sampleBean.username}"/>
<f:viewParam id="ID" name="uid" value="#{sampleBean.useridentity}"/>

</f:metadata>

<h:1link outcome="response" value="Message" includeViewParams="true">
</h:link>

</h:body>

View parameters are declared with f:viewparam tag and are placed inside the f:metadata tag.
If includeViewParanms attribute is set on the component, the view parameters are added to the
hyperlink.

The resulting URL will look like this:

http://localhost:8080/guessNumber/guess/response.xhtml?Name=Duke&; uid=2001

As the URL can be the result of various parameter values, the order of the URL creation has
been predefined. The order in which the various parameter values are read is as under:

1. Component
2. Navigation-case parameters
3. View parameters

When there is a GET request for the page, the Restore View and Render Response phases (sub
phases of JavaServer Applications request lifecycle) are executed immediately. In case the page
is using view parameters for creating a bookmarkable URL, the post-back request lifecycle is
executed with all phases being processed.

Resource Relocation using h: output Tags

Resource relocation refers to the ability of a JavaServer Faces application to specify the location
where a resource can be rendered. Resource relocation can be defined with the following two
new HTML tags introduced in JavaServer Faces 2.0.

® h:outputScript
® h:outputStylesheet

These tags have a couple of attributes, name and target which can be used for defining the
render location. For a complete list of attributes for these tags, see the PDL Documentation at

The Java EE 6 Tutorial, Volume | « December 2009

Adding Components to a Page Using HTML Tags

http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

For h:outputScript tag, the name and target attributes define where the output of a resource
may appear. Here is an example:

IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Since target attribute is not defined in the tag, the Stylesheet hello. css is rendered in head
and the hello. js script will be rendered in the body of the page as defined by h: head tag.

Here is the HTML generated by the above page:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post" action="..." enctype="...">
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>
</form>
</body>
</html>

The original page can be recreated setting the target attribute for the h: outputScript tag
which allows the incoming GET request to provide the location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 151

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Adding Components to a Page Using HTML Tags

152

</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: the stylesheet is rendered in the head and the script inline. However if the
incoming request provides the location parameter as head, both the stylesheet and the script
will be rendered in the head element.

The HTML generated by the above page is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">

</script>
</head>
<body>
<form id="form" name="form" method="post" action="..." enctype="...">
</form>
</body>

</html>

Similarly if the incoming request provides the location parameter as body, the script will be
rendered in the body element.

The above section describes simple uses for the resource relocation. Resource relocation feature
can add even more functionality for the components and pages. A page author does not have to
know the location of a resource or its placement.

Component authors, by using @ResourceDependency annotation for the components, can
define the resources for the component such as a stylesheet and script. This allows the page
authors freedom from defining resource locations.

The Java EE 6 Tutorial, Volume | « December 2009

Using Core Tags

Using Core Tags

The tags included in the JavaServer Faces core tag library are used to perform core actions that
are not performed by HTML tags. Commonly used core tags are listed in Table 7-5 along with
the functions they perform.

TABLE7-5 The Core Tags

Tag Categories Tags Functions
Event-handling f:actionListener Adds an action listener to a parent component
tags
f:phaseListener Adds a PhaseListener to a page
f:setPropertyActionListener Registers a special action listener whose sole purpose is
to push a value into a backing bean when a form is
submitted
f:valueChangelistener Adds a value-change listener to a parent component
Attribute f:attribute Adds configurable attributes to a parent component
configuration tag
Data conversion f:converter Adds an arbitrary converter to the parent component
tags
f:convertDateTime Adds aDateTime converter instance to the parent
component
f:convertNumber Adds a Number converter instance to the parent
component
Facet tag f:facet Adds a nested component that has a special
relationship to its enclosing tag
f:metadata Registers a facet on a parent component
Localizationtag f:loadBundle Specifies a ResourceBundle that is exposed as a Map
Parameter f:param Substitutes parameters into a MessageFormat instance
substitution tag and adds query string name-value pairs to a URL
Tags for f:selectItem Represents one item in a list of items in a SelectOne or
representing SelectMany component
items in a list
fiselectItems Represents a set of items in a SelectOne or SelectMany

component

Chapter7 - Using JavaServer™ Faces Technology in Web Pages 153

Using Core Tags

154

TABLE7-5 The Core Tags (Continued)
Tag Categories Tags Functions
Validator tags f:validateDoubleRange Adds aDoubleRangeValidator to a component
f:validatelLength Addsalengthvalidator to acomponent
f:validatelLongRange Adds a LongRangeValidator to a component
f:validator Adds a custom validator to a component
f:validateRegEx Adds a RegExValidator instance to a component
f:validateBean Delegates the validation of a local value to a
BeanValidator instance
f:validateRequired Enforces the presence of a value in a component
Ajax tag f:ajax Associates Ajax action to a single or group of
components based on placement
Event tag f:event Allows installing ComponentSystemEventListener on

acomponent

These tags, which are used in conjunction with component tags, are explained in other sections

of this tutorial. Table 7-6 lists the sections that explain how to use specific core tags.

TABLE7-6 Where the Core Tags Are Explained

Tags

Where Explained

Event-handling tags

Data conversion tags

facet

loadBundle
param

selectItemand
selectItems

Validator tags

“Using Data-Bound Table Components” on page 144 and “Laying Out Components

“Registering Listeners on Components” on page 160

“Using the Standard Converters” on page 155

With the Panel Component” on page 137

“Rendering Components for Selecting Multiple Values” on page 141

“Displaying a Formatted Message With the h: outputFormat Tag” on page 134

“Using The SelectItemand SelectItems Components” on page 143

“Using the Standard Validators” on page 162

The Java EE 6 Tutorial, Volume | « December 2009

CHAPTER 8

Using Converters, Listeners and Validators

The previous chapter described different types of components and explained how to add them
to a web page. This chapter provides information on adding more functionality to the
components through converters, listeners and validators.

= Converters are used to convert data that is received from the input components

= Listeners are used to listen to the events happening in the page and perform actions as
defined

= Validators are used to validate the data that is received from the input components

The following topics are addressed in this chapter:

“Using the Standard Converters” on page 155
“Registering Listeners on Components” on page 160
“Using the Standard Validators” on page 162
“Referencing a Backing Bean Method” on page 164

Using the Standard Converters

The JavaServer™ Faces implementation provides a set of Converter implementations that you
can use to convert component data.

The standard Converter implementations, located in the javax. faces. convert package, are
as follows:

BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter

155

Using the Standard Converters

156

EnumConverter
FloatConverter
IntegerConverter
LongConverter
NumberConverter
ShortConverter

A standard error message associated with each of these converters. If you have registered one of
these converters onto a component on your page, and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
error message that displays if BigIntegerConverter fails to convert a value is:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
For more information about using DateTimeConverter, see “Using DateTimeConverter” on
page 157. For more information about using NumberConverter, see “Using NumberConverter”
on page 159. The following section explains how to convert a component’s value, including how
to register other standard converters with a component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following
four ways:

= Nest one of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using DateTimeConverter”
on page 157and “Using NumberConverter” on page 159, respectively.

= Bind the value of the component to a backing bean property of the same type as the
converter.

= Refer to the converter from the component tag’s converter attribute.
= Nesta converter tag inside of the component tag and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second way, if you want a component’s data to be converted to an Integer,
you can simply bind the component’s value to a backing bean property. Here is an example:

Integer age = 0;

public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

The Java EE 6 Tutorial, Volume | « December 2009

Using the Standard Converters

If the component is not bound to a bean property, you can employ the third method by using
the converter attribute directly on the component tag:

<h:inputText
converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully-qualified class name of the
converter. The converter attribute can also take the ID of the component.

The data from inputText tag in the this example will be converted to a java.lang.Integer.
The Integer type is already a supported type of the NumberConverter. If you don’t need to
specify any formatting instructions using the convertNumber tag attributes, and if one of the
standard converters will suffice, you can simply reference that converter by using the
component tag’s converter attribute.

Finally, you can nest a converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{LoginBean.Age}" />
<f:converter converterId="Integer" />
</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance.

Custom converters and using binding attribute are advanced topics covered in Java EE 6
Tutorial, Volume II: Advanced Topics.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 8-1 lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />
</h:outputText>

When binding the DateTime converter to a component, ensure that the backing bean property
to which the component is bound is of type java.util.Date. In the preceding example,
cashier.shipDate mustbe of type java.util.Date.

Chapter8 - Using Converters, Listeners and Validators 157

Using the Standard Converters

158

The example tag can display the following output:

Saturday, September 26, 2009

You can also display the same date and time by using the following tag where date format is
specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime
pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"
locale="Locale.SPAIN"
timeStyle="long" type="both" />
</h:inputText>

This tag would display the following output:
sabado 26 de septiembre de 2009

Refer to the Customizing Formats lesson of the Java Tutorial at http://java. sun.com/docs/
books/tutorial/il8n/format/simpleDateFormat.html for more information on how to
format the output using the pattern attribute of the convertDateTime tag.

TABLES-1 convertDateTime Tag Attributes

Attribute Type Description
binding DateTimeConverter Used to bind a converter to a backing bean property.
dateStyle String Defines the format, as specified by java. text.DateFormat, of a date or

the date part of a date string. Applied only if type is date (or both) and
patternis not defined. Valid values: default, short, medium, long, and
full. If no value is specified, default is used.

locale StringorLocale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified, dateStyle,
timeStyle, and type attributes are ignored.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html
http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html

Using the Standard Converters

TABLES-1 convertDateTime Tag Attributes (Continued)
Attribute Type Description
timeStyle String Defines the format, as specified by java. text.DateFormat, ofa time or

the time part of a date string. Applied only if type is time and patternis
not defined. Valid values: default, short, medium, long, and full.If no
value is specified, default is used.

timeZone StringorTimeZone Time zone in which to interpret any time information in the date string.

type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is used.

for String Used with composite components. Refers to one of the objects within the
composite component inside which this tag is nestled.

Using NumberConverter

You can convert a component’s data to a java. lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 8-2 lists the attributes.

The following example uses a convertNumber tag to display the total prices of the books in the
shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber type="currency"/>
</h:outputText>

When binding the Number converter to a component, ensure that the backing bean property to
which the component is bound is of primitive type or has a type of java.lang.Number. In the
case of the preceding example, cart.totalis of type java.lang.Number.

Here is an example of a number that this tag can display:

$934

This result can also be displayed using the following tag where currency pattern is specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >
<f:convertNumber pattern="
St
/>
</h:outputText>

See the Customizing Formats lesson of the Java Tutorial at http://java.sun. com/docs/books/
tutorial/il8n/format/decimalFormat.html for more information on how to format the
output using the pattern attribute of the convertNumber tag.

Chapter8 - Using Converters, Listeners and Validators 159

http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html
http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html

Registering Listeners on Components

TABLE8-2 convertNumber Attributes

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property.

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

groupingUsed boolean Specifies whether formatted output contains grouping
separators.

integerOnly boolean Specifies whether only the integer part of the value will be
parsed.

locale StringorLocale Locale whose number styles are used to format or parse data.

maxFractionDigits int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

type String Specifies whether the string value is parsed and formatted as
anumber, currency, or percentage. If not specified, number
is used.

for String Used with composite components. Refers to one of the

objects within the composite component inside which this
tag is nestled.

Registering Listeners on Components

160

An application developer can implement listeners as classes or as backing bean methods. If a
listener is a backing bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either a valueChangeListener tagor an
actionListener tag, and nest the tag inside the component tag, to register the listener on the

component.

The Java EE 6 Tutorial, Volume | « December 2009

Registering Listeners on Components

“Referencing a Method That Handles an Action Event” on page 165 and “Referencing a Method
That Handles a Value-Change Event” on page 166 describe how a page author uses the
valueChangelListener and actionListener attributes to reference backing bean methods that
handle events.

This section explains how to register the NameChanged value-change listener and a hypothetical
LocaleChange action listener implementation on components. Implementing value-change
listeners, and implementing action listeners are advanced topics that are covered in Java EE 6
Tutorial, Volume II: Advanced Topics.

Registering aValue-Change Listener on a Component

AvalueChangeListener implementation can be registered on a component that implements
EditableValueHolder by nesting a valueChangeListener tag within the component’s tag on
the page. The valueChangeListener tag supports two attributes:

= type: References the fully qualified class name of a ValueChangeListener implementation

= pinding: References an object that implements ValueChangeListener

One of these attributes must be used to reference the value-change listener. The type attribute
can accepta literal or a value expression. The binding attribute can only accept a value
expression, which must point to a backing bean property that accepts and returns a
ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangelListener type="listeners.NameChanged" />
</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
ValueChangeListener implementation which is registered on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent that is associated with the specified
ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangeListener implementation to a backing
bean property. It works in a similar way to the binding attribute supported by the standard
converter tags.

Chapter8 - Using Converters, Listeners and Validators 161

Using the Standard Validators

Registering an Action Listener on a Component

A page author can register an ActionListener implementation on a Command component by
nesting an actionListener tag within the component’s tag on the page. Similarly to the
valueChangelListener tag, the actionListener tag supports both the type and binding
attributes. One of these attributes must be used to reference the action listener.

Here is an example of commandLink tag, that references an ActionListener implementation
rather than a backing bean method:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />
</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tagalso supports the binding attribute.

Using the Standard Validators

JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 8-3 lists all the
standard validator classes and the tags that allow you to use the validators from the page.

TABLE8-3 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange Checks whether the local value of a component is within
a certain range. The value must be floating-point or
convertible to floating-point.

LengthValidator validatelLength Checks whether the length of a component’s local value
is within a certain range. The value must be a
java.lang.String.

LongRangeValidator validatelLongRange Checks whether the local value of a component is within
a certain range. The value must be any numeric type or
String that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a component is a
match against a regular expression from
java.util.regex package.

BeanValidator validateBean Registers a bean validator for the component

162 The Java EE 6 Tutorial, Volume | « December 2009

Using the Standard Validators

TABLE8-3 The Validator Classes (Continued)
Validator Class Tag Function
Requiredvalidator validateRequired Ensures that the local value is not empty on a

EditableValueHolder component

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that validator
on the component. You can do this in one of the following ways:

= Nest the validator’s corresponding tag (shown in Table 8-3) inside the component’s tag.
“Using the LongRangeValidator” on page 163 describes how to use the validateLongRange
tag. You can use the other standard tags in the same way.

= Refer to amethod that performs the validation from the component tag’s validator
attribute.

= Nestavalidator taginside the component tag and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 165 for more information on
using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 156.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder because these components accept values that can be validated.

Using the LongRangeValidator

The following example shows how to use the validateLongRange validator on a input
component tag quantity:

Chapter8 - Using Converters, Listeners and Validators 163

Referencing a Backing Bean Method

<h:inputText id="quantity" size="4"
value=
"#{item.quantity}
">
<f:validateLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>

This tag requires that the user enter a number that is at least 1. The size attribute specifies that
the number can have no more than four digits. The validateLongRange tag also has a maximum
attribute, with which you can set a maximum value of the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference backing bean properties rather than specify literal values. For example,
the validateLongRange tagin the preceding example can reference a backing bean property
called minimum to get the minimum value acceptable to the validator implementation as shown
here:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Referencing a Backing Bean Method

A component tag has a set of attributes for referencing backing bean methods that can perform
certain functions for the component associated with the tag. These attributes are summarized in
Table 8-4.

TABLE8-4 Component Tag Attributes That Reference Backing Bean Methods

Attribute Function

action Refers to a backing bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a backing bean method that handles action events
validator Refers to a backing bean method that performs validation on the component’s value

valueChangeListener Refers to a backing bean method that handles value-change events

Only components that implement ActionSource can use the action and actionListener
attributes. Only components that implement EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a backing bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,
which is defined by the tag attribute’s definition in the TLD. For example, the definition of the
validator attribute of the inputText tagin html_basic.tld is the following:

164 The Java EE 6 Tutorial, Volume | « December 2009

Referencing a Backing Bean Method

void validate(javax.faces.context.FacesContext,
javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the four different attributes.

“Referencing a Method That Performs Navigation” on page 165
“Referencing a Method That Handles an Action Event” on page 165
“Referencing a Method That Performs Validation” on page 165
“Referencing a Method That Handles a Value-Change Event” on page 166

Referencing a Method That Performs Navigation

If your page includes a component (such as a button or hyperlink) that causes the application to
navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

= Specifies alogical outcome String that tells the application which page to access next

= References a backing bean method that performs some processing and returns a logical
outcome String

The following examples shows how to reference a navigation method:

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by a backing
bean method, you refer to the method by using the component’s actionListener attribute.

The following example shows how the method is referenced:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooselLocaleFromLink}">

The actionListener attribute of this component tag references the chooseLocaleFromLink
method using a method expression. The chooseLocaleFromLink method handles the event
when user clicks the hyperlink rendered by this component.

Referencing a Method That Performs Validation

If the input of one of the components on your page is validated by a backing bean method, refer
to the method from the component’s tag using the validator attribute.

Chapter8 - Using Converters, Listeners and Validators 165

Referencing a Backing Bean Method

The following example shows how to reference a method that performs validation on email, an
input component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

Referencing a Method That Handles a Value-Change
Event

If you want a component on your page to generate a value-change event and you want that
event to be handled by a backing bean method, you refer to the method using the component’s
valueChangelListener attribute.

The following example shows how a component references a ValueChangeListener
implementation that handles the event when a user enters a name in the name input filed:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />
</h:inputText>

To refer to this backing bean method, the tag uses the valueChangeListener attribute:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangelListener="#{cashier.processValueChange}" />
</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean using a method expression. The
processValueChange method handles the event of a user entering a name in the input field
rendered by this component.

166 The Java EE 6 Tutorial, Volume | « December 2009

L K R 4 CHAPTER 9

Developing With JavaServer™ Faces Technology

The previous chapters, Chapter 7, “Using JavaServer Faces Technology in Web Pages,” and
Chapter 8, “Using Converters, Listeners and Validators,” show how to add components to a
page, connect them to server-side objects using the component tags, and how to provide
additional functionality to the components through converters, listeners, and validators.
Developing a JavaServer Faces application also involves the task of programming the
server-side objects. These objects include backing beans, converters, event handlers, and
validators.

This chapter provides an overview of the backing beans, and explains how to write methods and
properties of backing beans that are used by a JavaServer Faces application. It also introduces
the new bean validation (JSR 303) feature.

Backing Beans

A typical JavaServer Faces application includes one or more backing beans, each of which isa
type of JavaServer Faces managed bean that can be associated with the components used in a
particular page. This section introduces the basic concepts on creating, configuring, and using
backing beans in an application.

Creating a Backing Bean

A backing bean is created with a constructor with no arguments (like all JavaBeans™
components), and also a set of properties and a set of methods that perform functions for a
component.

Each of the component properties can be bound to one of the following:

= A component’s value
= A componentinstance
= A converter instance

167

Backing Beans

168

® A listener instance
® A validator instance

The most common functions that backing bean methods perform include the following:

= Validating a component’s data
= Handling an event fired by a component

= Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code:

Integer userNumber = null;

public void setUserNumber(Integer user number) {
userNumber = user_number;

}
public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {

}

When a bean property is bound to a component’s value, it can be any of the basic primitive and
numeric types, or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type Date if the application has access to a
converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 170 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, ifa SelectBoolean component is bound to the property,
the property must accept and return a SelectBoolean object.

Likewise, if the property is bound to a converter, validator, or listener instance, then the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 170.

The Java EE 6 Tutorial, Volume | « December 2009

Backing Beans

Using the EL to Reference Backing Beans

To bind component values and objects to backing bean properties or to reference backing bean
methods from component tags, page authors use the unified expression language (EL) syntax.
As explained in “Overview of EL” on page 109, the following are some of the features that EL
offers:

= Deferred evaluation of expressions
= The ability to use a value expression to both read and write data
= Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle is split
into several phases where component event handling, data conversion and validation, and data
propagation to external objects are all performed in an orderly fashion. The implementation
must be able to delay the evaluation of expressions until the proper phase of the life cycle has
been reached. Therefore, its tag attributes always use deferred evaluation syntax, which is
distinguished by the #{} delimiter.

In order to store data in external objects, almost all JavaServer Faces tag attributes use Ivalue
value expressions, which are expressions that allow both getting and setting data on external
objects.

Finally, some component tag attributes accept method expressions that reference methods that
handle component events, or validate or convert component data.

To illustrate a JavaServer Faces tag using EL, let’s suppose that a tag of an application referenced
amethod to perform the validation of user input:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean . userNumber backing bean
property using an Ivalue expression. It uses a method expression to refer to the
UserNumberBean.validate method, which performs validation of the component’s local value.
The local value is whatever the user enters into the field corresponding to this tag. This method
is invoked when the expression is evaluated, which is during the process validation phase of the
life cycle.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can also reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is binding a component instance to a backing bean property.
A page author does this by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

Chapter9 - Developing With JavaServer™ Faces Technology 169

Writing Bean Properties

In addition to using expressions with the standard component tags, you can also configure your
custom component properties to accept expressions by creating ValueExpression or
MethodExpression instances for them.

For information on EL, see Chapter 6, “Unified Expression Language”

For information on referencing backing bean methods from component tags, see “Referencing
a Backing Bean Method” on page 164.

Writing Bean Properties

170

As explained in “Backing Beans” on page 167, a backing bean property can be bound to one of
the following items:

A component value

A component instance

A converter implementation
A listener implementation
A validator implementation

These properties follow the conventions of JavaBeans components (also called beans). For more
information on JavaBeans components, see JavaBeans Tutorial.

The component’s tag binds the component’s value to a backing bean property using its value
attribute and binds the component’s instance to a backing bean property using its binding
attribute.

Likewise, all the converter, listener, and validator tags use their binding attributes to bind their
associated implementations to backing bean properties. Binding is an advanced topic covered
in Java EE 6 Tutorial, Volume II: Advanced Topics.

To bind a component’s value to a backing bean property, the type of the property must match
the type of the component’s value to which it is bound. For example, if a backing bean property
is bound to a SelectBoolean component’s value, the property should accept and return a
boolean value or a Boolean wrapper Object instance.

To bind a component instance to a backing bean property, the property must match the type of
component. For example, if a backing bean property is bound to a SelectBoolean instance, the
property should accept and return SelectBoolean value.

Similarly, to bind a converter, listener, or validator implementation to a backing bean property,
the property must accept and return the same type of converter, listener, or validator object. For
example, if you are using the convertDateTime tag to bind a DateTime converter to a property,
that property must accept and return a DateTime instance.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/docs/books/tutorial/javabeans/index.html

Writing Bean Properties

The rest of this section explains how to write properties that can be bound to component values,
to component instances for the component objects described in “Adding Components to a Page
Using HTML Tags” on page 124, and to converter, listener, and validator implementations.

Writing Properties Bound to Component Values

To write a backing bean property that is bound to a component’s value, you must match the
property type to the component’s value .

Table 9-1 lists the component classes described in “Adding Components to a Page Using
HTML Tags” on page 124 and the acceptable types of their values.

TABLE9-1 Acceptable Types of Component Values

Component Acceptable Types of Component Values
Input,Output, SelectItem, Any of the basic primitive and numeric types or any Java programming
SelectOne language object type for which an appropriate Converter implementation

is available

Data array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

SelectBoolean boolean or Boolean

SelectItems java.lang.String, Collection, Array, Map

SelectMany array or List though elements of the array or List can be any of the
standard types

When page authors bind components to properties using the value attributes of the
component tags, they need to ensure that the corresponding properties match the types of the
components’ values.

Input andOutput Properties

In the following example, an h: inputText tag binds the value of component to the name
property of a backing bean called CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}"

</h:inputText>

The following code segment from the backing bean CashierBean, shows the bean property type
bound by the preceding component tag:

Chapter9 - Developing With JavaServer™ Faces Technology 171

Writing Bean Properties

172

protected String name = null;
public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}

As described in “Using the Standard Converters” on page 155, to convert the value of a Input or
Output component, you can either apply a converter or create the bean property bound to the
component with the matching type.

Here is the example tag from “Using DateTimeConverter” on page 157 that displays the date
that books will be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />
</h:outputText>

The bean property represented by this tag must be of a type of java.util.Date. The following
code segment shows the shipDate property from the backing bean CashierBean, that is bound
by the tag's value in the preceding example:

protected Date shipDate;
public Date getShipDate() {
return this.shipDate;

}
public void setShipDate(Date shipDate) {
this.shipDate = shipDate;

Data Properties

Data components must be bound to one of the backing bean property types listed in Table 9-1.
The Data component is discussed in “Using Data-Bound Table Components” on page 144.
Here is part of the start tag of dataTable from that section:

<h:dataTable id="items"

value="#{cart.items}"
var="item" >

The value expression points to the items property of a shopping cart bean namedcart. The
cart bean maintains a map of ShoppingCartItembeans.

The getItems method from cart bean populates a List with ShoppingCartIteminstances that
are saved in the items map from when the customer adds books to the cart, as shown in the
following code segment:

The Java EE 6 Tutorial, Volume | « December 2009

Writing Bean Properties

public synchronized List getItems() {
List results = new ArraylList();
results.addAll(this.items.values());
return results;

}

All the components contained in the Data component are bound to the properties of the cart
bean that is bound to the entire Data component. For example, here is the h: outputText tag
that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>

SelectBoolean Properties

Backing bean properties that hold the SelectBoolean component’s data must be of boolean or
Boolean type. The example selectBooleanCheckbox tag from the section “Displaying
Components for Selecting One Value” on page 139 binds a component to a property. The
following example shows a tag that binds a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the example
tag:

protected boolean receiveEmails = false;

public void setReceiveEmails(boolean receiveEmails) {
this.receiveEmails = receiveEmails;

}
public boolean getReceiveEmails() {
return receiveEmails;

SelectMany Properties

Because a SelectMany component allows a user to select one or more items from a list of items,
this component must map to a bean property of type List or array. This bean property
represents the set of currently selected items from the list of available items.

The following example of selectManyCheckbox tag comes from“Rendering Components for
Selecting Multiple Values” on page 141:

Chapter9 - Developing With JavaServer™ Faces Technology 173

Writing Bean Properties

174

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>
</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from the
preceding example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {
this.newsletters = newsletters;

}
public String[] getNewsletters() {
return this.newsletters;

}

The SelectItemand SelectItems components are used to represent all the valuesina
SelectMany component. See “SelectItem Properties” on page 175 and “SelectItems
Properties” on page 175 for information on writing the bean properties for the SelectItemand
SelectItems components.

SelectOne Properties

SelectOne properties accept the same types as Input and Output properties, because a
SelectOne component represents the single selected item from a set of items. This item can be
any of the primitive types and anything else for which you can apply a converter.

Here is an example of the selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 140:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

Here is the bean property corresponding to this tag:

The Java EE 6 Tutorial, Volume | « December 2009

Writing Bean Properties

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

}

public String getShippingOption() {
return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
SelectOne component.

The SelectItemand SelectItems components are used to represent all the valuesin a
SelectOne component. This is explained in the section “Displaying a Menu Using the
h:selectOneMenu Tag” on page 140.

For information on how to write the backing bean properties for the SelectItemand
SelectItems components, see “SelectItem Properties” on page 175 and “SelectItems
Properties” on page 175.

SelectItemProperties

A SelectItem component represents a single value in a set of values in a SelectMany or
SelectOne component. A SelectItem component can be bound to a backing bean property of
type SelectItem. A SelectItemobjectis composed of an Object representing the value, along
with two Strings representing the label and description of the SelectItem object.

The example selectOneMenu tag from “Displaying a Menu Using the h: selectOneMenu Tag”
on page 140 contains selectItem tags that set the values of the list of items in the page. Here is
an example of a bean property that can set the values for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){
return itemOne;

void setItemOne(SelectItem item) {
itemOne = item;

SelectItems Properties

The SelectItems components are children of SelectMany and SelectOne components. Each
SelectItems component is composed of a set of either SelectIteminstances or anycollection
of objects such as an array, or a list or even POJOs..

Chapter9 - Developing With JavaServer™ Faces Technology 175

Writing Bean Properties

The following section describes how to write the properties for selectItems tags containing
SelectIteminstances.

Properties for SelectItems Composed of SelectItemInstances

You can populate the SelectItems with SelectItem instances programmatically in the
backing bean.

1. Inyour backing bean, create a list that is bound to the SelectItem component.

2. Then define a set of SelectItem objects, set their values, and populate the list with the
SelectItemobjects.

Here is an example code snippet from a backing bean that shows how to create a SelectItems
property:

import javax.faces.component.SelectItem;

protected ArraylList options = null;
protected SelectItem newsletter® =
new SelectItem("200", "Duke’s Quarterly", "");

//in constructor, populate the list
options.add(newsletter0);
options.add(newsletterl);
options.add(newsletter2);

public SelectItem getNewsletter®(){
return newsletter0;

void setNewsletter@(SelectItem firstNL) {
newsletter® = firstNL;

}
// Other SelectItem properties

public Collection[] getOptions(){
return options;

}
public void setOptions(Collection[] options){
this.options = new ArraylList(options);

}

The code first initializes options as a list. Each newsletter property is defined with values. Then,
each newsletter SelectItemis added to the list. Finally, the code includes the obligatory
setOptions and getOptions accessor methods.

176 The Java EE 6 Tutorial, Volume | « December 2009

Writing Bean Properties

Writing Properties Bound to Component Instances

A property bound to a component instance returns and accepts a component instance rather
than a component value. The following components bind a component instance to a backing
bean property:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub SelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
fanClubLabel component (which represents the check box’s label) to the specialOfferText
property of CashierBean. If the user orders more than $100 worth of books and clicks the
Submit button, the submit method of CashierBean sets both components’ rendered properties
to true, causing the check box and label to display when the page is re-rendered.

Because the components corresponding to the example tags are bound to the backing bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of Output type, and the specialOffer property must be
of SelectBoolean type:

UIOQutput specialOfferText = null;

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}
public void setSpecialOfferText(UIOutput specialOfferText) {
this.specialOfferText = specialOfferText;

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

}

public void setSpecialOffer(UISelectBoolean specialOffer) {
this.specialOffer = specialOffer;

}

For more general information on component binding, see “Backing Beans” on page 167.

Chapter9 - Developing With JavaServer™ Faces Technology 177

Writing Bean Properties

178

For information on how to reference a backing bean method that performs navigation when a
button is clicked, see “Referencing a Method That Performs Navigation” on page 165.

For more information on writing backing bean methods that handle navigation, see “Writing a
Method to Handle Navigation” on page 179 .

Writing Properties Bound to Converters, Listeners, or
Validators

All of the standard converter, listener, and validator tags that are included with JavaServer Faces
technology support binding attributes that allow binding converter, listener, or validator
implementations to backing bean properties.

The following example shows a standard convertDateTime tag using a value expression with its
binding attribute to bind the DateTimeConverter instance to the convertDate property of
LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />
</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter object, as
shown here:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

{

public void setConvertDate(DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy")
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property can
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter uses to parse the user’s input into a
Date object.

The backing bean properties that are bound to validator or listener implementations are written
in the same way and have the same general purpose.

The Java EE 6 Tutorial, Volume | « December 2009

Writing Backing Bean Methods

Writing Backing Bean Methods

Methods of a backing bean can perform several application-specific functions for components
on the page. These functions include:

Performing validation on the component’s value
Handling action events

Handling value-change events

Performing processing associated with navigation

By using a backing bean to perform these functions, you eliminate the need to implement the
Validator interface to handle the validation or the Listener interface to handle events. Also,
by using a backing bean instead of a Validator implementation to perform validation, you
eliminate the need to create a custom tag for the Validator implementation. Creating custom
validators is an advanced topic covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

In general, it’s good practice to include these methods in the same backing bean that defines the
properties for the components referencing these methods. The reason for doing so is that the
methods might need to access the component’s data to determine how to handle the event or to
perform the validation associated with the component.

This section describes the requirements for writing the backing bean methods. The following
topics explain writing different types of backing bean methods:

“Writing a Method to Handle Navigation” on page 179

“Writing a Method to Handle an Action Event” on page 181
“Writing a Method to Perform Validation” on page 181

“Writing a Method to Handle a Value-Change Event” on page 182

Writing a Method to Handle Navigation

A backing bean method that handles navigation processing, called an action method, must be a
public method that takes no parameters and returns an Object, which is the logical outcome
that the navigation system uses to determine the page to display next. This method is referenced
using the component tag’s action attribute.

The following action method is from a backing bean named CashierBean, which is invoked
when a user clicks the Submit button on the page. If the user has ordered more than $100 worth
of books, this method sets the rendered properties of the fanClub and specialOffer
components to true, causing them to be displayed on the page the next time that page is
rendered.

After setting the components’ rendered properties to true, this method returns the logical
outcome null. This causes the JavaServer Faces implementation to re-render the page without
creating a new view of the page, retaining the customer’s input. If this method were to return
purchase which is the logical outcome to use to advance to a payment page, the page would
re-render without retaining the customer’s input.

Chapter9 - Developing With JavaServer™ Faces Technology 179

Writing Backing Bean Methods

If the user does not purchase more than $100 worth of books or the thankYou component has
already been rendered, the method returns receipt.The JavaServer Faces implementation
loads the page after this method returns.

public String submit() {

if(cart().getTotal() > 100.00 &&
IspecialOffer.isRendered())

specialOfferText.setRendered(true);
specialOffer.setRendered(true);
return null;

} else if (specialOffer.isRendered() &&

'thankYou.isRendered()){

thankYou.setRendered(true);
return null;

} else {
clear();
return ("receipt");

}

Typically, an action method will return a String outcome, as shown in the previous example.
Alternatively, you can define an Enum class that encapsulates all possible outcome strings, and
then make an action method return an enum constant, which represents a particular String
outcome defined by the Enum class. In this case, the value returned by a call to the Enum class’s
toString method must match that specified by the from-outcome element in the appropriate
navigation rule configuration defined in the application configuration file.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {
main, accountHist, accountList, atm, atmAck, transferFunds,
transferAck, error

}
When an action method returns an outcome, it uses the dot notation to reference the outcome
from the Enum class:

public Object submit(){

return Navigation.accountHist;

}

The section “Referencing a Method That Performs Navigation” on page 165 explains how a
component tag references this method. The section “Writing Properties Bound to Component

Instances” on page 177 discusses how to write the bean properties to which the components are
bound.

180 The Java EE 6 Tutorial, Volume | « December 2009

Writing Backing Bean Methods

Writing a Method to Handle an Action Event

A backing bean method that handles an action event must be a public method that accepts an
action event and returns void. This method is referenced using the component tag’s
actionListener attribute. Only components that implement ActionSource can refer to this
method.

In the following example, a method from a backing bean named LocaleBean processes the
event of a user clicking one of the hyperlinks on the page:

public void chooselocaleFromLink(ActionEvent event) {
String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setlLocale((Locale)
locales.get(current));

}

This method gets the component that generated the event from the event object, and then it gets
the component’s ID, which indicates a region of the world. The method matches the ID against
aHashMap object that contains the locales available for the application. Finally, it sets the locale
using the selected value from the HashMap object.

“Referencing a Method That Handles an Action Event” on page 165 explains how a component
tag references this method.

Writing a Method to Perform Validation

Instead of implementing the Validator interface to perform validation for a component, you
can include a method in a backing bean to take care of validating input for the component.

A backing bean method that performs validation must accept a FacesContext, the component
whose data must be validated, and the data to be validated, just as the validate method of the
Validator interface does. A component refers to the backing bean method by using its
validator attribute. Only values of Input components or values of components that extend
Input can be validated.

Here is an example of a backing bean method that validates user input:

public void validateEmail(FacesContext context,
UIComponent toValidate, Object value) {
String message = "";
String email = (String) value;
if (email.contains(’@)) {
((UIInput)toValidate).setValid(false);
message = CoffeeBreakBean.loadErrorMessage(context,

Chapter9 - Developing With JavaServer™ Faces Technology 181

Writing Backing Bean Methods

182

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,
"EMailError");

context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

}

Let's take a closer look at the above code segment:

1. ThevalidateEmail method first gets the local value of the component.
2. It then checks whether the @ character is contained in the value.

3. Ifnot, the method sets the component’s valid property to false.
4

The method then loads the error message and queues it onto the FacesContext instance,
associating the message with the component ID.

See “Referencing a Method That Performs Validation” on page 165 for information on howa
component tag references this method.

Writing a Method to Handle a Value-Change Event

A backing bean that handles a value-change event must use a public method that accepts a
value-change event and returns void. This method is referenced using the component’s
valueChangelListener attribute.

.This section explains how to write a backing bean method to replace the
ValueChangeListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 161, where the h: inputText tag with the id of name, has a
ValueChangelListener instance registered on it. This ValueChangeListener instance handles
the event of entering a value in the field corresponding to the component. When the user enters
avalue, a value-change event is generated, and the processValueChange (ValueChangeEvent)
method of the ValueChangeListener class is invoked.

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangelListener type="listeners.NameChanged" />
</h:inputText>

Instead of implementing ValueChangeListener, you can write a backing bean method to
handle this event. To do this, you move the processValueChange (ValueChangeEvent) method
from the ValueChangeListener class, called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in the name field on
the page:

The Java EE 6 Tutorial, Volume | « December 2009

Bean Validation

public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {
if (null !'= event.getNewValue()) {
FacesContext.getCurrentInstance().
getExternalContext().getSessionMap().
put("name", event.getNewValue());

}

To make this method handle the ValueChangeEvent that is generated by an Input component,
reference this method from the component tag’s valueChangeListener attribute. See
“Referencing a Method That Handles a Value-Change Event” on page 166 for more
information.

Bean Validation

Bean validation (JSR 303) is a new feature that is available in Java EE 6. A JavaServer Faces 2.0
implementation must support bean validation if the server runtime (such as Java EE 6) requires
it.

Validation can take place at different layers in even the simplest of applications, as shown in the
guessNumber example application from the earlier chapter. The guessNumber example
application validates the user input (in the <h: inputText> tag) for numerical data at the
presentation layer and for a valid range of numbers at the business layer.

The bean validation model is supported by constraints in the form of annotations placed on a
field, method, or class of a JavaBeans component such as a backing bean.

Constraints can be built-in or user-defined. Several built-in annotations are available in the
javax.validation.constraints package. Some of the commonly used built-in annotations
are listed below:

= @Min: The annotated element must be a number whose value must be higher or equal to the
specified minimum.

= @Max: The annotated element must be a number whose value must be lower or equal to the
specified maximum.

= @Size: The annotated element must be between specified minimum and maximum
boundaries.

= @NotNull: The annotated element must not be null.
m @Null: The annotated element must be null.
= @Pattern: The annotated element must match the specified Java regular expression.

For a complete list of built-in constraint annotations, see API documentation for
javax.validation.constraints classathttp://java.sun.com/javaee/6/docs/api/.

Chapter9 - Developing With JavaServer™ Faces Technology 183

http://java.sun.com/javaee/6/docs/api/

Bean Validation

184

In the following example, a constraint is placed on a field using the built-in @NotNull
constraint:

public class Name {
@NotNull

private String firstname;
@NotNull

private String lastname;

}

You can also place more than one constraint on a single JavaBeans component object. For
example, you can place an additional constraint for size of field on the first name and the last
name fields:

public class Name {
@NotNull

@Size(min=1, max=16)
private String firstname;
@NotNull

@Size(min=1, max=16)
private String lastname;

}

The following example shows a user-defined constraint placed on a method which checks for a
predefined email address pattern such as a corporate email account:

@validEmail
public String getEmailAddress()
{

return emailAddress;

}

A user-defined constraint also needs a validation implementation. For a built-in constraint, a
default implementation is already available. Any validation failures are gracefully handled and
can be displayed by h:messages tag.

The Java EE 6 Tutorial, Volume | « December 2009

L K R 4 CHAPTER 10

Java Servlet Technology

Shortly after the web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for the same purpose. Initially, Common Gateway
Interface (CGI) server-side scripts were the main technology used to generate dynamic content.
Although widely used, CGI scripting technology had many shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java Servlet technology was
created as a portable way to provide dynamic, user-oriented content.

Whatls a Servlet?

A servlet is a Java programming language class that is used to extend the capabilities of servers
that host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for
writing servlets. All servlets must implement the Servlet interface, which defines life-cycle
methods. When implementing a generic service, you can use or extend the GenericServlet
class provided with the Java Servlet API. The HttpServlet class provides methods, such as
doGet and doPost, for handling HTTP-specific services.

185

Servlet Life Cycle

Servlet Life Cycle

The life cycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. Ifaninstance of the servlet does not exist, the web container
Loads the servlet class.
b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is covered in
“Initializing a Servlet” on page 189.

2. Invokesthe service method, passing request and response objects. Service methods are
discussed in “Writing Service Methods” on page 189.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet’s
destroy method. Finalization is discussed in “Finalizing a Servlet” on page 200.

Handling Servlet Life-Cycle Events

You can monitor and react to events in a servlet’s life cycle by defining listener objects whose
methods get invoked when life-cycle events occur. To use these listener objects you must define
and specify the listener class.

Defining the Listener Class

You define a listener class as an implementation of a listener interface. Table 10-1 lists the
events that can be monitored and the corresponding interface that must be implemented.
When a listener method is invoked, it is passed an event that contains information appropriate
to the event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

TABLE10-1 Servlet Life-Cycle Events

Object Event Listener Interface and Event Class

Web context (see Initialization and javax.servlet.ServletContextListener and
“Accessingthe Web destruction

Context” on page 198) ServletContextEvent

Attribute added, javax.servlet.ServletContextAttributeListener and

removed, or replaced :
ServletContextAttributeEvent

186 The Java EE 6 Tutorial, Volume | « December 2009

Servlet Life Cycle

TABLE10-1 Servlet Life-Cycle Events (Continued)

Object Event Listener Interface and Event Class
Session (See Creation, javax.servlet.http.HttpSessionListener,
“Maintaining Client invalidation, javax.servlet.http.HttpSessionActivationListener,
State” on page 198) activation, and

passivation, and)

. HttpSessionEvent
timeout
Attribute added, javax.servlet.http.HttpSessionAttributelListener and

removed, or replaced

Request A servlet request has
started being
processed by web
components

Attribute added,
removed, or replaced

HttpSessionBindingEvent

javax.servlet.ServletRequestListener and

ServletRequestEvent

javax.servlet.ServletRequestAttributeListener and

ServletRequestAttributeEvent

Specifying Event Listener Classes

You specify an event listener class using the listener element of the deployment descriptor.

You can specify an event listener using the deployment descriptor editor of NetBeans IDE by

doing the following:

Double-click web . xm1.

Click Add.

PN LD

Click OK.

Handling Servlet Errors

Expand your application’s project node.
Expand the project’s Web Pages and WEB-INF nodes.

Click General at the top of the web . xm1 editor.
Expand the Web Application Listeners node.

In the Add Listener dialog, click Browse to locate the listener class.

Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the message

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given

exception.

Chapter 10 - Java Servlet Technology

187

Sharing Information

Sharing Information

188

Web components, like most objects, usually work with other objects to accomplish their tasks.
There are several ways they can do this. They can use private helper objects (for example,
JavaBeans components), they can share objects that are attributes of a public scope, they can use
a database, and they can invoke other web resources. The Java Servlet technology mechanisms
that allow a web component to invoke other web resources are described in “Invoking Other
Web Resources” on page 196.

Using Scope Objects

Collaborating web components share information by means of objects that are maintained as
attributes of four scope objects. You access these attributes using the [get|set]Attribute
methods of the class representing the scope. Table 10-2 lists the scope objects.

TABLE10-2 Scope Objects

Scope Object Class Accessible From

Web context javax.servlet. Web components within a web context. See “Accessing the
ServletContext Web Context” on page 198.

Session javax.servlet. Web components handling a request that belongs to the
http.HttpSession session. See “Maintaining Client State” on page 198.

Request subtype of javax.servlet. Web components handling the request.
ServletRequest

Page javax.servlet. The JSP page that creates the object.

jsp.JspContext

Controlling Concurrent Access to Shared Resources

In a multithreaded server, it is possible for shared resources to be accessed concurrently. In
addition to scope object attributes, shared resources include in-memory data (such as instance
or class variables) and external objects such as files, database connections, and network
connections.

Concurrent access can arise in several situations:

= Multiple web components accessing objects stored in the web context.
= Multiple web components accessing objects stored in a session.

= Multiple threads within a web component accessing instance variables. A web container will
typically create a thread to handle each request. To ensure that a servlet instance handles
only one request at a time, a servlet can implement the SingleThreadModel interface. Ifa
servlet implements this interface, no two threads will execute concurrently in the servlet’s

The Java EE 6 Tutorial, Volume | « December 2009

Writing Service Methods

service method. A web container can implement this guarantee by synchronizing access to a
single instance of the servlet or by maintaining a pool of web component instances and
dispatching each new request to a free instance. This interface does not prevent
synchronization problems that result from web components accessing shared resources
such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. You
prevent this by controlling the access using the synchronization techniques described in the
Threads lesson in The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley,
2006).

Initializing a Servlet

After the web container loads and instantiates the servlet class and before it delivers requests
from clients, the web container initializes the servlet. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any other
one-time activities, you override the init method of the Servlet interface. If a servlet cannot
complete its initialization process, it throws an UnavailableException.

Writing Service Methods

The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) of an HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. The term service method is used for any method in a
servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response based on that information.

For HTTP servlets, the correct procedure for populating the response is to first retrieve an
output stream from the response, then fill in the response headers, and finally write any body
content to the output stream. Response headers must always be set before the response has been
committed. Any attempt to set or add headers after the response has been committed will be
ignored by the web container. The next two sections describe how to get information from
requests and generate responses.

Chapter 10 - Java Servlet Technology 189

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
http://java.sun.com/docs/books/tutorial/

Writing Service Methods

190

Getting Information from Requests

A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

= Parameters, which are typically used to convey information between clients and servlets

= Object-valued attributes, which are typically used to pass information between the servlet
container and a servlet or between collaborating servlets

= Information about the protocol used to communicate the request and about the client and
server involved in the request

= Information relevant to localization
You can also retrieve an input stream from the request and manually parse the data. To read

character data, use the BufferedReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStreamreturned by getInputStream.

HTTP servlets are passed an HT'TP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on.

An HTTP request URL contains the following parts:
http://[host]: [port] [request-path]? [query-string]

The request path is further composed of the following elements:

= Context path: A concatenation of a forward slash (/) with the context root of the servlet’s
web application.

= Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

= Path info: The part of the request path that is not part of the context path or the servlet path.

If the context path is /catalog and for the aliases listed in Table 10-3, Table 104 gives some
examples of how the URL will be parsed.

TABLE10-3 Aliases

Pattern Servlet
/lawn/* LawnServlet
/*.jsp JSPServlet

The Java EE 6 Tutorial, Volume | « December 2009

Writing Service Methods

TABLE10-4 Request Path Elements

Request Path Servlet Path Path Info
/catalog/lawn/index.html /lawn /index.html
/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings:

= A query string can explicitly appear in a web page.

= A query string is appended to a URL when a form with a GET HT TP method is submitted.

Constructing Responses

A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to:

= Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a MIME
body response, use the ServietOutputStream returned by getOutputStream. To mix
binary and text data (as in a multipart response), use a ServletOutputStream and manage
the character sections manually.

= Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority JANA) athttp://www.1ana.org/assignments/media-types/.

= Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is actually sent back to the client, thus providing the
servlet with more time to set appropriate status codes and headers or forward to another
web resource. The method must be called before any content is written or before the
response is committed.

= Setlocalization information such as locale and character encoding.

Chapter 10 - Java Servlet Technology 191

http://www.iana.org/assignments/media-types/

Filtering Requests and Responses

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields representing
HTTP headers such as the following:

Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

Cookies, which are used to store application-specific information at the client. Sometimes
cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 199).

Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way it can be composed with more than one type of web resource.

192

The main tasks that a filter can perform are as follows:

Query the request and act accordingly.
Block the request-and-response pair from passing any further.

Modify the request headers and data. You do this by providing a customized version of the
request.

Modify the response headers and data. You do this by providing a customized version of the
response.

Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filtersin a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

In summary, the tasks involved in using filters are

Programming the filter
Programming customized requests and responses
Specifying the filter chain for each web resource

Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

The Java EE 6 Tutorial, Volume | « December 2009

Filtering Requests and Responses

The most important method in this interface is doFilter, which is passed request, response,
and filter chain objects. This method can perform the following actions:

= Examine the request headers.
= Customize the request object if the filter wishes to modify request headers or data.
= Customize the response object if the filter wishes to modify response headers or data.

= Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that
ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object (passing in the
request and response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to invoke the next
entity. In the latter case, the filter is responsible for filling out the response.

= Examine response headers after it has invoked the next filter in the chain.

= Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The init
method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Programming Customized Requests and Responses

There are many ways for a filter to modify a request or response. For example, a filter can add an
attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends ServletResponseWrapper or
HttpServletResponseWrapper.

Chapter 10 - Java Servlet Technology 193

Filtering Requests and Responses

Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name, or to web resources by URL pattern.
The filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list fora WAR in its deployment descriptor, either with
NetBeans IDE or by coding the list by hand with XML.

To declare the filter and map it to a web resource using NetBeans IDE, do the following:

Expand the application’s project node in the Project pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-click web. xml.

Click Filters at the top of the editor pane.

Expand the Servlet Filters node in the editor pane.

Click Add Filter Element to map the filter to a web resource by name or by URL pattern.
In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

® Nk w =

Click Browse to locate the servlet class to which the filter applies. You can include wildcard
characters so that you can apply the filter to more than one servlet.

9. Click OK.

To constrain how the filter is applied to requests, do the following:

1. Expand the Filter Mappings node in the Filters tab of the editor pane.

2. Select the filter from the list of filters.

3. Click Add.

4. Inthe Add Filter Mapping dialog, select one of the following dispatcher types:
® REQUEST: Only when the request comes directly from the client

= FORWARD: Only when the request has been forwarded to a component (see “Transferring
Control to Another Web Component” on page 197)

= INCLUDE: Only when the request is being processed by a component that has been
included (see “Including Other Resources in the Response” on page 197)

= ERROR: Only when the request is being processed with the error page mechanism (see
“Handling Servlet Errors” on page 187)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is
REQUEST.

194 The Java EE 6 Tutorial, Volume | « December 2009

Filtering Requests and Responses

You can declare, map, and constrain the filter by editing the XML in the web application
deployment descriptor directly by following these steps:

1.
2.

While in the web . xml editor pane in NetBeans IDE, click XML at the top of the editor pane.

Declare the filter by adding a filter element right after the display-name element. The
filter element creates a name for the filter and declares the filter’s implementation class
and initialization parameters.

Map the filter to a web resource by name or by URL pattern using the filter-mapping
element:

a. Includea filter-name element that specifies the name of the filter as defined by the
filter element.

b. Includea servlet-name element that specifies to which servlet the filter applies. The
servlet-name element can include wildcard characters so that you can apply the filter to
more than one servlet.

Constrain how the filter will be applied to requests by specifying one of the enumerated
dispatcher options (described in step 4 of the preceding set of steps) with the dispatcher
element and adding the dispatcher element to the filter-mapping element.

You can direct the filter to be applied to any combination of the preceding situations by
including multiple dispatcher elements. If no elements are specified, the default option is
REQUEST.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*.

You can map a filter to one or more web resources and you can map more than one filter to a
web resource. This is illustrated in Figure 10-1, where filter F1 is mapped to servlets S1, S2, and
S3, filter F2 is mapped to servlet S2, and filter F3 is mapped to servlets S1 and S2.

Chapter 10 - Java Servlet Technology 195

Invoking Other Web Resources

FIGURE 10-1 Filter-to-Servlet Mapping

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3,F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

Invoking Other Web Resources

196

Web components can invoke other web resources in two ways: indirectly and directly. A web
component indirectly invokes another web resource when it embeds a URL that points to
another web component in content returned to a client.

A web component can also directly invoke another resource while it is executing. There are two
possibilities: The web component can include the content of another resource, or it can forward
arequest to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object using the getRequestDispatcher ("URL") method.

You can get a RequestDispatcher object from either a request or the web context; however, the
two methods have slightly different behavior. The method takes the path to the requested
resource as an argument. A request can take a relative path (that is, one that does not begin with

The Java EE 6 Tutorial, Volume | « December 2009

Invoking Other Web Resources

a /), but the web context requires an absolute path. If the resource is not available or if the server
has notimplemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the Response

It is often useful to include another web resource (for example, banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object, but it is limited in what it can do with the response object:

= It can write to the body of the response and commit a response.

= [tcannot set headers or call any method (for example, setCookie) that affects the headers of
the response.

Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary processing of
arequest and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the
forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward. [request-uri| context-path|servlet-path| path-info | query-string].

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStreamor PrintWriter object within the
servlet, you cannot use this method; doing so throws an I1legalStateException.

Chapter 10 - Java Servlet Technology 197

Accessing the Web Context

Accessing the Web Context

The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context using the getServietContext
method. The web context provides methods for accessing:

= [nitialization parameters

= Resources associated with the web context
= Object-valued attributes

= Logging capabilities

The counter’s access methods are synchronized to prevent incompatible operations by servlets
that are running concurrently. A filter retrieves the counter object using the context’s
getAttribute method. The incremented value of the counter is recorded in the log.

Maintaining Client State

198

Many applications require that a series of requests from a client be associated with one another.
For example, a web application can save the state of a user’s shopping cart across requests.
Web-based applications are responsible for maintaining such state, called a session, because
HTTP is stateless. To support applications that need to maintain state, Java Servlet technology
provides an API for managing sessions and allows several mechanisms for implementing
sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request, or, if the request does not have a session, it creates one.

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

The Java EE 6 Tutorial, Volume | « December 2009

Maintaining Client State

Notifying Objects That Are Associated with a Session

Recall that your application can notify web context and session listener objects of servlet
life-cycle events (“Handling Servlet Life-Cycle Events” on page 186). You can also notify objects
of certain events related to their association with a session such as the following:

= When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

= When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

Session Management

Because there is no way for an HTTP client to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout period can
be accessed by using a session’s [get | set]MaxInactiveInterval methods.

You can also set the timeout period in the deployment descriptor using NetBeans IDE:

1. Open theweb.xml file in the web. xml editor.
2. Click General at the top of the editor.

3. Enter an integer value in the Session Timeout field. The integer value represents the number
of minutes of inactivity that must pass before the session times out.

To ensure that an active session is not timed out, you should periodically access the session by
using service methods because this resets the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data.

Session Tracking

A web container can use several methods to associate a session with a user, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL (URL) method on all URLs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, it returns the URL
unchanged.

Chapter 10 - Java Servlet Technology 199

Finalizing a Servlet

Finalizing a Servlet

200

When a servlet container determines that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being shut down),
the container calls the destroy method of the Servlet interface. In this method, you release
any resources the servlet is using and save any persistent state. The destroy method releases the
database object created in the init method.

All of a servlet’s service methods should be complete when a servlet is removed. The server tries
to ensure this by calling the dest roy method only after all service requests have returned or
after a server-specific grace period, whichever comes first. If your servlet has operations that
take a long time to run (that is, operations that may run longer than the server’s grace period),
the operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section describes how to
do the following:

= Keep track of how many threads are currently running the service method.

= Provide a clean shutdown by having the destroy method notify long-running threads of the
shutdown and wait for them to complete.

= Have the long-running methods poll periodically to check for shutdown and, if necessary,
stop working, clean up, and return.

Tracking Service Requests

To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value.

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {
serviceCounter--;

}

protected synchronized int numServices() {
return serviceCounter;
}
}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that

The Java EE 6 Tutorial, Volume | « December 2009

Finalizing a Servlet

your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();
try {
super.service(req, resp);
} finally {
leavingServiceMethod();

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {
shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {
return shuttingDown;

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);

/* Wait for the service methods to stop. */
while(numServices() > 0) {
try {
Thread.sleep(interval);

Chapter 10 - Java Servlet Technology 201

Further Information about Java Servlet Technology

} catch (InterruptedException e) {
}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary.

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
lisShuttingDown()); i++) {

try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}

Further Information about Java Servlet Technology

For more information on Java Servlet technology, see:

= Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

® The Java Servlet web site:

http://java.sun.com/products/servlet

202 The Java EE 6 Tutorial, Volume | « December 2009

http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/products/servlet

PART I11

Web Services

Part Three explores web services.

203

204

L R 2 4 CHAPTER 11

Introduction to Web Services

This section of the tutorial discusses Java EE 6 web services technologies. For this book, these
technologies include Java API for XML Web Services (JAX-WS) and Java API for RESTful Web
Services (JAX-RS).

= “What Are Web Services?” on page 205
= “Types of Web Services” on page 205
= “Deciding Which Type of Web Service to Use” on page 208

What Are Web Services?

Web services are client and server applications that communicate over the World Wide Web's
(WWW) HyperText Transfer Protocol (HTTP) protocol.

As described by the World Wide Web Consortium (W3C,) web services provide a standard
means of interoperating between different software applications, running on a variety of
platforms and frameworks. Web services are characterized by their great interoperability and
extensibility, as well as their machine-processable descriptions thanks to the use of XML. They
can be combined in a loosely coupled way to achieve complex operations. Programs providing
simple services can interact with each other to deliver sophisticated added-value services.

Types of Web Services

On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider use messages to exchange
invocation request and response information in the form of self-containing documents that
make very few assumptions about the technological capabilities of the receiver.

On a technical level, web services can be implemented in different ways. The two types of web
services discussed in this section can be distinguished as “Big” web services and “RESTful” web
services.

205

http://www.w3.org/2002/ws/Activity

Types of Web Services

206

In Java EE 6, JAX-WS provides the functionality for “Big” web services. Big web services use
Extensible Markup Language (XML) messages that follow the Simple Object Access
Protocol (SOAP) standard, which is an XML language defining a message architecture and
message formats. In such systems, there is often a machine-readable description of the
operations offered by the service written in the Web Services Description Language
(WSDL), which is an XML language for defining interfaces syntactically.

The SOAP message format and the WSDL interface definition language have gained
widespread adoption and there are many development tools available, such as NetBeans
IDE, that reduce the complexity of developing web service applications.

A SOAP-based design must include the following elements:

= A formal contract must be established to describe the interface that the web service
offers. The Web Services Description Language (WSDL)can be used to describe the
details of the contract, which may include messages, operations, bindings, and the
location of the web service. You may also process SOAP messages in a JAX-WS service
without publishing a WSDL.

= The architecture must address complex nonfunctional requirements. Many web service
specifications address such requirements and establish a common vocabulary for them.
Examples include Transactions, Security, Addressing, Trust, Coordination, and so on.

= The architecture needs to handle asynchronous processing and invocation. In such
cases, the infrastructure provided by standards such as WSRM and APIs such as
JAX-WS with their client-side asynchronous invocation support can be leveraged out of
the box.

“Big” web services are described in Chapter 12, “Building Web Services with JAX-WS”

In Java EE 6, JAX-RS provides the functionality for REpresentational State Transfer
(RESTful) Web Services. REST is well suited for basic, ad hoc integration scenarios. RESTful
web services are often better integrated with HTTP than SOAP-based services are. They do
not require XML messages or WSDL service-API definitions.

Project Jersey is the production-ready reference implementation for JSR 311: JAX-RS: The
Java API for RESTful Web Services. Jersey implements support for the annotations defined
in JSR-311, making it easy for developers to build RESTful web services with Java and the
Java JVM. Jersey also adds additional features not specified by the JSR.

Because RESTful web services use existing well-known W3C/IETF standards (HTTP, XML,
URIL, MIME), and have a lightweight infrastructure, where services can be built with
minimal tooling, developing RESTful web services is inexpensive and thus has a very low
barrier for adoption. You can use one of the development tools, such as NetBeans IDE, to
further reduce the complexity of developing RESTful web services.

A few real-world web applications that use RESTful web services include most blog sites.
These are considered RESTful in that most blog sites involve downloading XML files in RSS
or Atom format which contain lists of links to other resources. Other web sites and web
applications that use REST-like developer interfaces to connect to data include Twitter and
Amazon Simple Storage Service (S3). With Amazon S3, buckets and objects can be created,

The Java EE 6 Tutorial, Volume | « December 2009

http://jcp.org/en/jsr/detail?id=311
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features

Types of Web Services

listed, and retrieved using either a REST-style HTTP interface or a SOAP interface. The
examples that ship with Project Jersey include a storage service example with a RESTful
interface. The tutorial at http://netbeans.org/kb/docs/websvc/twitter-swing.html
uses the NetBeans IDE to create a simple, graphical, REST-based client that displays Twitter
public time line messages and lets you view and update your Twitter status.

A RESTFul design may be appropriate in the following situation:

The web services are completely stateless. A good test is to consider whether the
interaction can survive a restart of the server.

A caching infrastructure can be leveraged for performance. If the data that the web
service returns is not dynamically generated and can be cached, then the caching
infrastructure that web servers and other intermediaries inherently provide can be
leveraged to improve performance. However, the developer must take care because such
caches are limited to the HTTP GET method for most servers.

The service producer and service consumer have a mutual understanding of the context
and content being passed along. Because there is no formal way to describe the web
services interface, both parties must agree out of band on the schemas that describe the
data being exchanged and on ways to process it meaningfully. In the real world, most
commercial applications that expose services as RESTful implementations also
distribute so-called value-added toolkits that describe the interfaces to developers in
popular programming languages.

Bandwidth is particularly important and needs to be limited. REST is particularly useful
for limited-profile devices such as PDAs and mobile phones, for which the overhead of
headers and additional layers of SOAP elements on the XML payload must be restricted.

Web service delivery or aggregation into existing web sites can be enabled easily with a
RESTful style. Developers can use technologies such as JAX-RS, Asynchronous
JavaScript with XML (AJAX) and toolkits such as Direct Web Remoting (DWR) to
consume the services in their web applications. Rather than starting from scratch,
services can be exposed with XML and consumed by HTML pages without significantly
refactoring the existing web site architecture. Existing developers will be more
productive because they are adding to something they are already familiar with, rather
than having to start from scratch with new technology.

RESTful web services are discussed in Chapter 13, “Building RESTful Web Services with
JAX-RS and Jersey.” This chapter contains information about generating the skeleton of a
RESTful web service using both NetBeans IDE and the Maven project management tool.

Chapter 11 « Introduction to Web Services 207

http://netbeans.org/kb/docs/websvc/twitter-swing.html

Deciding Which Type of Web Service to Use

Deciding Which Type of Web Service to Use

208

Basically, you would want to use RESTful web services for integration over the Web and use Big
web services in enterprise application integration scenarios that have advanced QoS
requirements. This topic is discussed in more detail in the following sections.

Note - For an article that provides more in-depth analysis of this issue, see RESTful Web Services
vs. “Big” Web Services: Making the Right Architectural Decision by Cesare Pautasso, Olaf
Zimmermann, and Frank Leymann from the WWW '08: Proceedings of the 17th International
Conference on the World Wide Web (2008), pp. 805-814.

When Should | Use JAX-WS?

JAX-WS addresses advanced quality of service (QoS) requirements commonly occurring in
enterprise computing. When compared to JAX-RS, JAX-WS makes it easier to support the
WS-* set of protocols (which provide standards for security and reliability, among other things)
and interoperate with other WS-* conforming clients and servers.

When Should | Use JAX-RS?

When compared with JAX-WS, JAX-RS makes it easier to write applications for the web that
apply some or all of the constraints of the REST style to induce desirable properties in the
application like loose coupling (evolving the server is easier without breaking existing clients),
scalability (start small and grow), and architectural simplicity (use off-the-shelf components
like proxies, HTTP routers, or others). You would choose to use JAX-RS for your web
application because it is easier for many types of clients to consume RESTful web services while
enabling the server side to evolve and scale. Clients can choose to consume some or all aspects
of the service and mash it up with other web-based services.

The Java EE 6 Tutorial, Volume | « December 2009

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf

CHAPTER 12

Building Web Services with JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-WS is a technology for building web
services and clients that communicate using XML. JAX-WS allows developers to write
message-oriented as well as RPC-oriented web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol such
as SOAP. The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and responses. These calls and responses
are transmitted as SOAP messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from the
application developer. On the server side, the developer specifies the web service operations by
defining methods in an interface written in the Java programming language. The developer also
codes one or more classes that implement those methods. Client programs are also easy to code.
A client creates a proxy (a local object representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages.
It is the JAX-WS runtime system that converts the API calls and responses to and from SOAP
messages.

With JAX-WS, clients and web services have a big advantage: the platform independence of the
Java programming language. In addition, JAX-WS is not restrictive: a JAX-WS client can access
aweb service that is not running on the Java platform, and vice versa. This flexibility is possible
because JAX-WS uses technologies defined by the World Wide Web Consortium (W3C):
HTTP, SOAP, and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

209

Setting the Port

Setting the Port

Several files in the JAX-WS examples depend on the port that you specified when you installed
the Enterprise Server. The tutorial examples assume that the server runs on the default port,
8080. If you have changed the port, you must update the port number in the following file
before building and running the JAX-WS examples:

tut-install/examples/jaxws/simpleclient/src/java/simpleclient/HelloClient. java

Creating a Simple Web Service and Client with JAX-WS

210

This section shows how to build and deploy a simple web service and client. The source code for
the service is in tut-install/examples/jaxws/helloservice/ and the client is in
tut-install/examples/jaxws/simpleclient/.

Figure 12-1 illustrates how JAX-WS technology manages communication between a web
service and client.

Client Service

[JAX-WS runtime] 4—[SOAP message]—} [JAX-WS runtime]

\. S \. S

FIGURE 12-1 Communication between a JAX-WS Web Service and a Client

The starting point for developing a JAX-WS web service is a Java class annotated with the
javax.jws.WebService annotation. The @WebService annotation defines the class as a web
service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class,
respectively, that declares the methods that a client can invoke on the service. An interface is not
required when building a JAX-WS endpoint. The web service implementation class implicitly
defines an SEI.

The Java EE 6 Tutorial, Volume | « December 2009

Creating a Simple Web Service and Client with JAX-WS

You may specify an explicit interface by adding the endpointInterface element to the
@WebService annotation in the implementation class. You must then provide an interface that
defines the public methods made available in the endpoint implementation class.

You use the endpoint implementation class and the wsgen tool to generate the web service
artifacts that connect a web service client to the JAX-WS runtime. For reference documentation
onwsgen, see the Sun GlassFish Enterprise Server v3 Reference Manual.

Together, the wsgen tool and the Enterprise Server provide the Enterprise Server’s
implementation of JAX-WS.

These are the basic steps for creating the web service and client:
Code the implementation class.
Compile the implementation class.

Use wsgen to generate the artifacts required to deploy the service.
Package the files into a WAR file.

ook WD

Deploy the WAR file. The web service artifacts (which are used to communicate with
clients) are generated by the Enterprise Server during deployment.

Code the client class.

a

7. Usewsimport to generate and compile the web service artifacts needed to connect to the
service.

8. Compile the client class.

9. Run the client.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint

JAX-WS endpoints must follow these requirements:

= The implementing class must be annotated with either the javax. jws.WebService or
javax.jws.WebServiceProvider annotation.

= The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation, but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

= The business methods of the implementing class must be public, and must not be declared
staticor final.

= Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Chapter 12 - Building Web Services with JAX-WS 211

http://docs.sun.com/doc/820-7701

Creating a Simple Web Service and Client with JAX-WS

212

= Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See JAXB default data type bindings (http://java.sun.com/
javaee/5/docs/tutorial/doc/bnazq.html#bnazs).

= Theimplementing class must not be declared final and must not be abstract.
= The implementing class must have a default public constructor.
= The implementing class must not define the finalize method.

= Theimplementing class may use the javax.annotation.PostConstruct or
javax.annotation.PreDestroy annotations on its methods for life cycle event callbacks.

The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.

The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Coding the Service Endpoint Implementation Class

In this example, the implementation class, Hello, is annotated as a web service endpoint using
the @WebService annotation. Hello declares a single method named sayHello, annotated with
the @webMethod annotation. @WebMethod exposes the annotated method to web service clients.
sayHello returns a greeting to the client, using the name passed to sayHello to compose the
greeting. The implementation class also must define a default, public, no-argument
constructor.

package helloservice.endpoint;
import javax.jws.WebService;

@WebService
public class Hello {
private String message = new String("Hello, ");

public void Hello() {}

@WebMethod
public String sayHello(String name) {

return message + name + . ;

}

Building, Packaging, and Deploying the Service

You can build, package, and deploy the helloservice application using either NetBeans IDE or
ant.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

Creating a Simple Web Service and Client with JAX-WS

Building, Packaging, and Deploying the Service Using NetBeans IDE

Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/jaxws/.
Select the helloservice folder.

Select the Open as Main Project check box.

Click Open Project.

A

In the Projects tab, right-click the helloservice project and select Undeploy and Deploy.

This builds and packages to application into helloservice.war,located in
tut-install/examples/jaxws/helloservice/dist/, and deploys this WAR file to your
Application Server instance.

Building, Packaging, and Deploying the Service Using Ant

To build and package helloservice using Ant, in a terminal window, go to the
tut-install/examples/jaxws/helloservice/ directory and type the following:

ant

This command calls the default target, which builds and packages the application into an
WAR file, helloservice.war,located in the dist directory.

To deploy the helloservice example, follow these steps:

1. Inaterminal window, go to tut-install/examples/jaxws/helloservice/.
2. Make sure the Enterprise Server is started.
3. Run ant deploy.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/hello?WSDL in a web browser. Now you are ready to
create a client that accesses this service.

Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished with this
example, you can undeploy the service by typing this command:

ant undeploy

Chapter 12 - Building Web Services with JAX-WS 213

Creating a Simple Web Service and Client with JAX-WS

214

The all Task

Asa convenience, the all task will build, package, and deploy the application. To do this, enter
the following command:

ant all

Testing the Service without a Client

Enterprise Server allows you to test the methods of a web service endpoint. To test the sayHello
method of HelloService, do the following:

1. Open the web service test interface by entering the following URL in a web browser:
http://localhost:8080/helloservice/HelloService?Tester

2. Under Methods, enter a name as the parameter to the sayHello method.

3. Click the sayHello button.
This will take you to the sayHello Method invocation page.

4. Under Method returned, you’ll see the response from the endpoint.

A Simple JAX-WS Client

HelloClient isa standalone Java program that accesses the sayHello method of
HelloService. It makes this call through a port, alocal object that acts as a proxy for the remote
service. The port is created at development time by the wsimport tool, which generates JAX-WS
portable artifacts based on a WSDL file.

Coding the Client

When invoking the remote methods on the port, the client performs these steps:

1. Usesthe generated helloservice.endpoint.HelloService class which represents the
service at the URI of the deployed service’s WSDL file.

HelloService service = new HelloService();

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the
service.

Hello port = service.getHelloPort();

The port implements the SEI defined by the service.
3. Invokes the port’s sayHello method, passing to the service a name.

String response = port.sayHello(name);

The Java EE 6 Tutorial, Volume | « December 2009

Creating a Simple Web Service and Client with JAX-WS

Here is the full source of HelloClient, which is located in the
tut-install/examples/jaxws/simpleclient/src/java/ directory.

package simpleclient;

import javax.xml.ws.WebServiceRef;
import helloservice.endpoint.HelloService;
import helloservice.endpoint.Hello;

public class HelloClient {

public static void main(String[] args) {
try {
HelloClient client = new HelloClient();
client.doTest(args);
} catch(Exception e) {
e.printStackTrace();

public void doTest(String[] args) {
try {
System.out.println("Retrieving the port from
the following service: "
HelloService service = new HelloService();
Hello port = service.getHelloPort();

+ service);

System.out.println("Invoking the sayHello operation

on the port.");

String name;

if (args.length > 0) {
name = args[0];

} else {
name = "No Name";

String response = port.sayHello(name);
System.out.println(response);

} catch(Exception e) {
e.printStackTrace();

Chapter 12 - Building Web Services with JAX-WS

215

Types Supported by JAX-WS

Building and Running the Client

You can build and run the simpleclient application using either NetBeans IDE or ant. To
build the client, you must first have deployed helloservice, as described in “Building,
Packaging, and Deploying the Service” on page 212.

Building and Running the Clientin NetBeans IDE

Do the following to build and run simpleclient:

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/jaxws/.
Select the simpleclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the simpleclient project and select Run.

AR e

You will see the output of the application client in the Output pane.

Building and Running the Client Using Ant

In a terminal navigate to tut-install/examples/jaxws/simpleclient/ and type the following
command:

ant

This command calls the default target, which builds and packages the application into a JAR
file, simpleclient.jar,located in the dist directory.

The run the client, type the following command:

ant run

Types Supported by JAX-WS

216

JAX-WS delegates the mapping of Java programming language types to and from XML
definitions to JAXB. Application developers don’t need to know the details of these mappings,
but they should be aware that not every class in the Java language can be used as a method
parameter or return type in JAX-WS. For information on which types are supported by JAXB,
see JAXB default data type bindings (http://java.sun.com/javaee/5/docs/tutorial/doc/
bnazq.html#bnazs).

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

Further Information about JAX-WS

Web Services Interoperability and JAX-WS

JAX-WS 2.0 supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1. The
WS-I Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications to
promote SOAP interoperability. For links related to WS-I, see “Further Information about
JAX-WS” on page 217.

To support WS-1Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal and
rpc/literal encodings for services, static ports, dynamic proxies, and DII.

Further Information about JAX-WS

For more information about JAX-WS and related technologies, see:

= Java API for XML Web Services 2.0 specification
https://jax-ws.dev.java.net/spec-download.html

= JAX-WShome
https://jax-ws.dev.java.net/

= Simple Object Access Protocol (SOAP) 1.2 W3C Note
http://www.w3.0rg/TR/soap/

= Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.0rg/TR/wsdl

= 'WS-IBasic Profile 1.1
http://www.ws-1i.0rg

Chapter 12 - Building Web Services with JAX-WS 217

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

218

L K R 4 CHAPTER 13

Building RESTful Web Services with JAX-RS and
Jersey

PUThis chapter describes the REST architecture, RESTful web services, and Sun's reference
implementation for JAX-RS (Java™ API for RESTful Web Services, JSR-311), which is referred
to as Jersey.

What are RESTful Web Services?

RESTful web services are services that are built to work best on the web. Representational State
Transfer (REST) is an architectural style that specifies constraints, such as the uniform interface,
that if applied to a web service induce desirable properties, such as performance, scalability, and
modifiability, that enable services to work best on the Web. In the REST architectural style, data
and functionality are considered resources, and these resources are accessed using Uniform
Resource Identifiers (URIs), typically links on the web. The resources are acted upon by using a
set of simple, well-defined operations. The REST architectural style constrains an architecture
to a client-server architecture, and is designed to use a stateless communication protocol,
typically HTTP. In the REST architecture style, clients and servers exchange representations of
resources using a standardized interface and protocol. These principles encourages RESTful
applications to be simple, lightweight, and have high performance.

A paper that expands on the basic principles of REST technology can be found at
http://www2008.0rg/papers/pdf/p805-pautassoA.pdf.

= Resource identification through URI. A RESTful Web service exposes a set of resources
which identify the targets of the interaction with its clients. Resources are identified by URIs,
which provide a global addressing space for resource and service discovery. This topic is
discussed in “The @Path Annotation and URI Path Templates” on page 223.

= Uniform interface. Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can
be then deleted using DELETE. GET retrieves the current state of a resource in some
representation. POST transfers a new state onto a resource. This topic is discussed in
“Responding to HTTP Resources” on page 226.

219

https://jsr311.dev.java.net/
http://www2008.org/papers/pdf/p805-pautassoA.pdf

Creating a RESTful Root Resource Class

= Self-descriptive messages. Resources are decoupled from their representation so that their
content can be accessed in a variety of formats (such as HTML, XML, plain text, PDFE, JPEG,
JSON, and others). Metadata about the resource is available and used, for example, to
control caching, detect transmission errors, negotiate the appropriate representation
format, and perform authentication or access control. This topic is discussed in
“Responding to HTTP Resources” on page 226 and “Using Entity Providers to Map HTTP
Response and Request Entity Bodies” on page 227.

m Stateful interactions through hyperlinks. Every interaction with a resource is stateless; that is,
request messages are self-contained. Stateful interactions are based on the concept of
explicit state transfer. Several techniques exist to exchange state, such as URI rewriting,
cookies, and hidden form fields. State can be embedded in response messages to point to
valid future states of the interaction. This topic is discussed somewhat in “Using Entity
Providers to Map HTTP Response and Request Entity Bodies” on page 227, is discussed
somewhat in the section Building URIs in the JAX-RS Overview document, and may be
discussed in more detail in a forthcoming advanced version of this tutorial.

Where Does Jersey Fit In?

Jersey is Sun's production quality reference implementation for JSR 311: JAX-RS: The Java API
for RESTful Web Services. Jersey implements support for the annotations defined in JSR-311,
making it easy for developers to build RESTful web services with Java and the Java JVM. Jersey
also adds additional features not specified by the JSR.

The latest version of the JAX-RS API's can be viewed at https://jsr311.dev.java.net/
nonav/javadoc/index.html

If you are developing with Enterprise Server v3, you can install the Jersey samples and
documentation using the Update Tool. Instructions for using the Update Tool can be found in
the section “Java EE 6 Tutorial Component” on page 57.

Creating a RESTful Root Resource Class

220

Root resource classes are POJOs (Plain Old Java Objects) that are either annotated with@Path or
have at least one method annotated with @Path or a request method designator such as @GET,
@PUT, @POST, or @DELETE. Resource methods are methods of a resource class annotated with a
request method designator. This section describes how to use Jersey to annotate Java objects to
create RESTful web services.

The Java EE 6 Tutorial, Volume | « December 2009

http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features
http://jcp.org/en/jsr/detail?id=311
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features
https://jsr311.dev.java.net/nonav/javadoc/index.html
https://jsr311.dev.java.net/nonav/javadoc/index.html

Creating a RESTful Root Resource Class

Developing RESTful Web Services with JAX-RS and
Jersey

The JAX-RS API for developing RESTful web services is a Java programming language API
designed to make it easy to develop applications that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with
HTTP-specific annotations to define resources and the actions that can be performed on those
resources. Jersey annotations are runtime annotations, therefore, runtime reflection will
generate the helper classes and artifacts for the resource, and then the collection of classes and
artifacts will be built into a web application archive (WAR). The resources are exposed to clients
by deploying the WAR to a Java EE or web server.

Here is a listing of some of the Java programming annotations that are defined by JAX-RS, with
a brief description of how each is used. Further information on the JAX-RS API's can be viewed
athttps://jsr31ll.dev.java.net/nonav/javadoc/index.html.

TABLE13-1 Summary of Jersey Annotations

Annotation Description

@Path The @Path annotation's value is a relative URI path indicating where the Java class will
be hosted, for example, /helloworld. You can also embed variables in the URIs to
make a URI path template. For example, you could ask for the name of a user, and pass
it to the application as a variable in the URI, like this, /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP GET requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP POST requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP PUT requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP DELETE requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 221

https://jsr311.dev.java.net/nonav/javadoc/index.html

Creating a RESTful Root Resource Class

222

TABLE 13-1 Summary of Jersey Annotations (Continued)
Annotation Description
@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly

named HTTP method. The Java method annotated with this request method
designator will process HTTP HEAD requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query
parameters.

@Consumes The @Consumes annotation is used to specify the MIME media types of representations

aresource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations
aresource can produce and send back to the client, for example, "text/plain”.

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method
parameters. On the response side, a return value is mapped to an HTTP response
entity body using a MessageBodyWriter. If the application needs to supply additional
metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity, and which can be built using
Response.ResponseBuilder.

Overview of a Jersey-Annotated Application

The following code sample is a very simple example of a root resource class using JAX-RS

annotations. The sample shown here is from the samples that ship with Jersey, and which can be

found in the following directory of that installation:
jersey/samples/helloworld/src/main/java/com/sun/jersey/samples/helloworld/resources/HelloWo

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"

@Path("/helloworld")
public class HelloWorldResource {

The Java EE 6 Tutorial, Volume | « December 2009

Creating a RESTful Root Resource Class

// The Java method will process HTTP GET requests
@GET
// The Java method will produce content identified by the MIME Media
// type "text/plain”
@Produces ("text/plain")
public String getClichedMessage() {
// Return some cliched textual content
return "Hello World"

¥
The following sections describe the annotations used in this example.

= The@Path annotation's value is a relative URI path. In the example above, the Java class will
be hosted at the URI path /helloworld. This is an extremely simple use of the @Path
annotation. What makes JAX-RS so useful is that you can embed variables in the URIs. URI
path templates are URIs with variables embedded within the URI syntax.

= The @GET annotation is a request method designator, along with @0ST, @PUT, @DELETE, and
@HEAD, that is defined by JAX-RS, and which correspond to the similarly named HTTP
methods. In the example above, the annotated Java method will process HTTP GET
requests. The behavior of a resource is determined by the HTTP method to which the
resource is responding.

= The@Produces annotation is used to specify the MIME media types of representations a
resource can produce and send back to the client. In this example, the Java method will
produce representations identified by the MIME media type "text/plain”.

= The@Consumes annotation is used to specify the MIME media types of representations a
resource can consume that were sent by the client. The above example could be modified to
set the cliched message as shown in this code example.

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}

The @Path Annotation and URI Path Templates

The @Path annotation identifies the URI path template to which the resource responds, and is
specified at the class level of a resource. The @Path annotation's value is a partial URI path
template relative to the base URI of the server on which the resource is deployed, the context
root of the WAR, and the URL pattern to which the Jersey helper servlet responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables
are substituted at runtime in order for a resource to respond to a request based on the
substituted URI. Variables are denoted by curly braces. For example, look at the following
@Path annotation:

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 223

Creating a RESTful Root Resource Class

224

@Path("/users/{username}")

In this type of example, a user will be prompted to enter their name, and then a Jersey web
service configured to respond to requests to this URI path template will respond. For example, if
the user entered their user name as Galileo, the web service will respond to the following URL:

http://example.com/users/Galileo

To obtain the value of the username variable, the @PathParamannotation may be used on the
method parameter of a request method, as shown in the following code example.

@Path("/users/{username}")
public class UserResource {

@GET
@Produces ("text/xml")
public String getUser(@PathParam("username") String userName) {

}
}

If it is required that a user name must only consist of lower and upper case numeric characters,
itis possible to declare a particular regular expression that will override the default regular
expression, "[*/]+?". The following example shows how this could be used with the @Path
annotation.

@Path("users/{username: [a-zA-Z][a-zA-Z 0-91}")

In this type of example the username variable will only match user names that begin with one
upper or lower case letter and zero or more alpha numeric characters and the underscore
character. If a user name does not match that template, then a 404 (Not Found) response will
occur.

An @Path value may or may not begin with a forward slash (/), it makes no difference. Likewise,
by default, an @Path value may or may not end in a forward lash (/), it makes no difference, and
thus request URLSs that end or do not end with a forward slash will both be matched. However,
Jersey has a redirection mechanism, which, if enabled, automatically performs redirection to a
request URL ending in a / if a request URL does not end in a / and the matching @Path does end
ina/.

More on URI Path Template Variables

A URI path template has one or more variables, with each variable name surrounded by curly
braces, { to begin the variable name and } to end it. In the example above, username is the
variable name. At runtime, a resource configured to respond to the above URI path template
will attempt to process the URI data that corresponds to the location of {username} in the URI
as the variable data for username.

The Java EE 6 Tutorial, Volume | « December 2009

Creating a RESTful Root Resource Class

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/jerseybeans/{namel}/{name2}/, you must deploy the
WAR to a Java EE server that responds to requests to the http://example.com/myContextRoot
URI, and then decorate your resource with the following @Path annotation:

@Path("/{namel}/{name2}/")
public class SomeResource {

}

In this example, the URL pattern for the Jersey helper servlet, specified in web . xm, is the
default:

<servlet-mapping>
<servlet-name>My Jersey Bean Resource</servlet-name>
<url-pattern>/jerseybeans/*</url-pattern>
</servlet-mapping>

A variable name can be used more than once in the URI path template.

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the
value of a variable should be substituted with %20.

Be careful when defining URI path templates that the resulting URI after substitution is valid.

The following table lists some examples of URI path template variables and how the URIs are
resolved after substitution. The following variable names and values are used in the examples:

B namel:jay

name2: gatsby

name3:

location: Main%20Street
question:why

Note - The value of the name3 variable is an empty string.

TABLE13-2 Examples of URI path templates

URI Path Template URI After Substitution
http://example.com/{namel}/{name2}/ http://example.com/jay/gatsby/
http://example.com/{question}/ http://example.com/why/why/why/

{question}/{question}/

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 225

Creating a RESTful Root Resource Class

226

TABLE13-2 Examples of URI path templates (Continued)

URI Path Template URI After Substitution
http://example.com/maps/{location} http://example.com/maps/Main%20Street
http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Resources

The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT,
DELETE) to which the resource is responding.

The Request Method Designator Annotations

A request method designatorannotations are runtime annotations, defined by JAX-RS, and
which correspond to the similarly named HTTP methods. Within a resource class file, HTTP
methods are mapped to Java programming language methods using the request method
designator annotations. The behavior of a resource is determined by which of the HTTP
methods the resource is responding to. Jersey defines a set of request method designators for the
common HTTP methods: @GET, @POST, @PUT, @ELETE, @HEAD, but you can create your own
custom request method designators. Creating custom request method designators is outside the
scope of this document.

The following example is an extract from the storage service sample that shows the use of the
PUTmethod to create or update a storage container.

@PUT
public Response putContainer() {
System.out.println("PUT CONTAINER " + container);

URI uri = wuriInfo.getAbsolutePath();
Container ¢ = new Container(container, uri.toString());

Response r;
if (!MemoryStore.MS.hasContainer(c)) {
r = Response.created(uri).build();
} else {
r = Response.noContent().build();

MemoryStore.MS.createContainer(c);
return r;
}

By default the JAX-RS runtime will automatically support the methods HEAD and OPTIONS if not
explicitly implemented. For HEAD, the runtime will invoke the implemented GET method (if

The Java EE 6 Tutorial, Volume | « December 2009

Creating a RESTful Root Resource Class

present) and ignore the response entity (if set). For OPTIONS, the Allow response header will be
set to the set of HT'TP methods support by the resource. In addition Jersey will return a WADL
document describing the resource.

Methods decorated with request method designators must return void, a Java programming
language type, ora javax.ws.rs.core.Response object. Multiple parameters may be extracted
from the URI using the PathParam or QueryParam annotations as described in “Extracting
Request Parameters” on page 231. Conversion between Java types and an entity body is the
responsibility of an entity provider, such as MessageBodyReader or MessageBodyWriter.
Methods that need to provide additional metadata with a response should return an instance of
Response. The ResponseBuilder class provides a convenient way to create a Response instance
using a builder pattern. The HTTP PUT and POST methods expect an HTTP request body, so you
should use a MessageBodyReader for methods that respond to PUT and POST requests.

As PUT and POST can post be used to create or update, here is a bit more information on when
you'd use each:

= PUT has defined/specified semantics. POST can mean anything, so when using POSTit is up to
the application to define the semantics.

= When using PUT for creation, the client declares the URI for the newly created resource.

PUT has very clear semantics for creating and updating. The representation the client sends
must be the same representation that is received using a GET, given the same media type. It
does not specify partial update, a mistake people often make. A common application pattern
is to use POST to create a resource and return a 201 response with a location header whose
value is the URI to the newly-created resource. Thus in this pattern, the web service declares
the URI for the newly-created resource.

Using Entity Providers to Map HTTP Response and Request Entity
Bodies

Entity providers supply mapping services between representations and their associated Java
types. There are two types of entity providers: MessageBodyReader and MessageBodyWriter.
For HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to
method parameters. On the response side, a return value is mapped to an HTTP response entity
body using a MessageBodyWriter. If the application needs to supply additional metadata, such
as HTTP headers or a different status code, a method can return a Response that wraps the
entity, and which can be built using Response.ResponseBuilder.

The following list contains the standard types that are supported automatically for entities. You
only need to write an entity provider if you are not choosing one of the following, standard

types.

= pyte[] — All media types (*/*)

= java.lang.String — All text media types (text/*)
= java.io.InputStream — All media types (*/*)

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 227

https://wadl.dev.java.net/

Creating a RESTful Root Resource Class

= java.io.Reader — All media types (*/*)
= java.io.File — All media types (*/*)
® javax.activation.DataSource — All media types (*/*)

= javax.xml.transform.Source — XML types (text/xml, application/xml, and
application/*+xml)

= javax.xml.bind.JAXBElement and application-supplied JAXB classes XML media types
(text/xml, application/xml, and application/*+xml)

® MultivaluedMap<String, String> — Form content
(application/x-www-form-urlencoded)

= StreamingOutput — All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @onsumes and
@Provider annotations:

@Consumes ("application/x-www-form-urlencoded")
@Provider
public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @roduces and
@Provider annotations:

@Produces ("text/html")
@Provider
public class FormWriter implements MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET
public Response getItem() {
System.out.println("GET ITEM " + container +

+ item);

Item i = MemoryStore.MS.getItem(container, item);
if (i == null)
throw new NotFoundException("Item not found");
Date lastModified = i.getlLastModified().getTime();
EntityTag et = new EntityTag(i.getDigest());
ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);
if (rb !'= null)
return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).
lastModified(lastModified).tag(et).build();

228 The Java EE 6 Tutorial, Volume | « December 2009

Creating a RESTful Root Resource Class

Using @Consumes and @Produces to Customize
Requests and Responses

The information sent to a resource and then passed back to the client is specified as a MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the
javax.ws.rs.Consumes and javax.ws. rs.Produces annotations.

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @Produces Annotation

The @Produces annotation is used to specify the MIME media types or representations a
resource can produce and send back to the client. If @Produces is applied at the class level, all
the methods in a resource can produce the specified MIME types by default. If it is applied at the
method level, it overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the Jersey
runtime sends back an HTTP “406 Not Acceptable” error.

The value of @roduces is an array of String of MIME types. For example:

@Produces ({"image/jpeg, image/png"})

The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces ("text/plain")
public class SomeResource {
@GET
public String doGetAsPlainText() {

}

@GET
@Produces ("text/html")
public String doGetAsHtml() {

}
}

The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation
at the class level. The doGetAsHtml method's @Produces annotation overrides the class-level
@Produces setting, and specifies that the method can produce HTML rather than plain text.

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 229

Creating a RESTful Root Resource Class

230

If a resource class is capable of producing more that one MIME media type, the resource
method chosen will correspond to the most acceptable media type as declared by the client.
More specifically, the Accept header of the HT'TP request declared what is most acceptable. For
example if the Accept header is Accept: text/plain, the doGetAsPlainText method will be
invoked. Alternatively if the Accept header is Accept: text/plain;g=0.9, text/html, which
declares that the client can accept media types of text/plain and text/html, but prefers the
latter, then the doGetAsHtml method will be invoked.

More than one media type may be declared in the same @Produces declaration. The following
code example shows how this is done.

@Produces ({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

}

The doGetAsXxml0OrJson method will get invoked if either of the media types application/xml
and application/json are acceptable. If both are equally acceptable, then the former will be
chosen because it occurs first. The examples above refer explicitly to MIME media types for
clarity. It is possible to refer to constant values, which may reduce typographical errors. For
more information, see the constant field values of MediaType.

The @Consumes Annotation

The @Consumes annotation is used to specify which MIME media types of representations a
resource can accept, or consume, from the client. If @onsumes is applied at the class level, all the
response methods accept the specified MIME types by default. If @Consumes is applied at the
method level, it overrides any @Consumes annotations applied at the class level.

If a resource is unable to consume the MIME type of a client request, the Jersey runtime sends
back an HTTP “415 Unsupported Media Type” error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

@Consumes ({"text/plain, text/html"})

The following example shows how to apply @Consumes at both the class and method levels:

@Path("/myResource")
@Consumes ("multipart/related")
public class SomeResource {
@POST
public String doPost(MimeMultipart mimeMultipartData) {

}

@POST

The Java EE 6 Tutorial, Volume | « December 2009

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html

Creating a RESTful Root Resource Class

@Consumes ("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

¥
¥

The doPost method defaults to the MIME media type of the @ onsumes annotation at the class
level. The doPost2 method overrides the class level @ onsumes annotation to specify that it can
accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 error
(Unsupported Media Type) is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the cliched
message using @Consumes, as shown in the following code example.

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}

In this example, the Java method will consume representations identified by the MIME media
type text/plain. Notice that the resource method returns void. This means no representation
is returned and response with a status code of HTTP 204 (No Content) will be returned.

Extracting Request Parameters

Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @athParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path. There are six types of parameters you can extract for use in
your resource class: query parameters, URI path parameters, form parameters, cookie
parameters, header parameters, and matrix parameters.

Query parameters are extracted from the request URI query parameters, and are specified by
using the javax.ws. rs.QueryParamannotation in the method parameter arguments. The
following example (from the sparklines sample application) demonstrates using @ueryParam
to extract query parameters from the Query component of the request URL.

@Path("smooth")

@GET

public Response smooth(
@DefaultValue("2") @QueryParam("step") int step,
@DefaultValue("true") @QueryParam('min-m") boolean hasMin,
@DefaultValue("true") @QueryParam('max-m") boolean hasMax,

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 231

Creating a RESTful Root Resource Class

@efaultValue("true") @QueryParam("last-m") boolean haslLast,
@DefaultValue("blue") @QueryParam('min-color") ColorParam minColor,
@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,
@efaultValue("red") @QueryParam("last-color") ColorParam lastColor
) { ...}

If a query parameter "step" exists in the query component of the request URI, then the "step"
value will be extracted and parsed as a 32-bit signed integer and assigned to the step method
parameter. If "step" does not exist, then a default value of 2, as declared in the @DefaultValue
annotation, will be assigned to the step method parameter. If the "step" value cannot be parsed
as a 32-bit signed integer, then an HTTP 400 (Client Error) response is returned.

User-defined Java types such as ColorParam may be used. The following code example shows
how to implement this.

public class ColorParam extends Color {
public ColorParam(String s) {

super(getRGB(s));
}
private static int getRGB(String s) {
if (s.charAt(0) == "#') {
try {

Color ¢ = Color.decode("0x" + s.substring(1));
return c.getRGB();

} catch (NumberFormatException e) {
throw new WebApplicationException(400);

}
} else {

try {
Field f = Color.class.getField(s);
return ((Color)f.get(null)).getRGB();
} catch (Exception e) {
throw new WebApplicationException(400);
}

}

@QueryParam and @PathParam can only be used on the following Java types:
= All primitive types except char

= All wrapper classes of primitive types except Character

= Have a constructor that accepts a single String argument

= Any class with the static method named valueOf (String) that accepts a single String
argument

= Any class with a constructor that takes a single String as a parameter

232 The Java EE 6 Tutorial, Volume | « December 2009

Creating a RESTful Root Resource Class

= |ist<T>,Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes
parameters may contain more than one value for the same name. If this is the case, these
types may be used to obtain all values

If @DefaultValue is not used in conjunction with @QueryParam, and the query parameter is not
present in the request, then value will be an empty collection for List, Set, or SortedSet; null
for other object types; and the Java-defined default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond
to the URI path template variable names specified in the @Path class-level annotation. URI
parameters are specified using the javax.ws. rs.PathParam annotation in the method
parameter arguments. The following example shows how to use @Path variables and the
@PathParam annotation in a method:

@Path("/{userName}")
public class MyResourceBean {
@GET
public String printUserName(@PathParam("userName") String userId) {

}
}

In the above snippet, the URI path template variable name userName is specified as a parameter
to the printUserName method. The @PathParam annotation is set to the variable name
userName. At runtime, before printUserName is called, the value of userName is extracted from
the URI and cast to a String. The resulting String is then available to the method as the userId
variable.

If the URI path template variable cannot be cast to the specified type, the Jersey runtime returns
an HTTP 400 Bad Request error to the client. If the @PathParam annotation cannot be cast to
the specified type, the Jersey runtime returns an HTTP 404 Not Found error to the client.

The @PathParam parameter and the other parameter-based annotations, @MatrixParam,
@HeaderParam, @ookieParam, and @FormParam obey the same rules as @ueryParam.

Cookie parameters (indicated by decorating the parameter with javax.ws.rs.CookieParam)
extract information from the cookies declared in cookie-related HTTP headers. Header
parameters (indicated by decorating the parameter with javax.ws. rs.HeaderParam) extracts
information from the HTTP headers. Matrix parameters (indicated by decorating the
parameter with javax.ws. rs.MatrixParam) extracts information from URL path segments.
These parameters are beyond the scope of this tutorial.

Form parameters (indicated by decorating the parameter with javax.ws.rs.FormParam)
extract information from a request representation that is of the MIME media type
application/x-www-form-urlencoded and conforms to the encoding specified by HTML

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 233

Creating a RESTful Root Resource Class

234

forms, as described here. This parameter is very useful for extracting information that is
POSTed by HTML forms. The following example extracts the form parameter named "name"
from the POSTed form data.

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(@FormParam("name") String name) {
// Store the message

}

If it is necessary to obtain a general map of parameter names to values, use code such as that
shown in the following example , for query and path parameters.

@GET

public String get(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

Or code such as the following for header and cookie parameters:

@GET

public String get(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = ui.getRequestHeaders();
Map<String, Cookie> pathParams = ui.getCookies();

}

In general @Context can be used to obtain contextual Java types related to the request or
response.

For form parameters it is possible to do the following:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(MultivaluedMap<String, String> formParams) {
// Store the message

Overview of JAX-RS and Jersey: Further Information

The following documents contain information that you might find useful when creating
applications using Jersey and JAX-RS.

m QOverview of JAX-RS 1.0 Features

The Java EE 6 Tutorial, Volume | « December 2009

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

Example Applications for JAX-RS and Jersey

This document contains some of the information from this tutorial, as well as additional
topics such as Representations and Java types, Building Responses, Sub-resources, Building
URIs, WebApplicationException and mapping Exceptions to Responses, Conditional GETs
and Returning 304 (Not Modified) Responses, Life-cycle of root resource classes, Security, Rules
of Injection, Use of @Context, and APIs defined by JAX-RS.

= QOverview of Jersey 1.0 Features

This document contains the following topics: Deployment, Web-Deployment Using
Servlet, Embedded-Web-Deployment Using GlassFish, Embedded-Deployment Using
Grizzly, Embedded-Web-Deployment Using Grizzly, Client-Side API, Client-Side Filters,
Integration with Spring, JSON, JAXB, Module View Controller with JSPs, Resource Class
Life-Cycle, Resource Class Instantiation, Web Application Description Language (WADL)
Support, Pluggable Templates for Model View Controller, Server-Side Filters URI utilities,
Web Application Reloading, Pluggable Injection, Pluggable Life-Cycle, Pluggable HTTP
containers, and Pluggable IoC Integration.

Example Applications for JAX-RS and Jersey

This section provides an introduction to creating, deploying, and running your own Jersey
applications. This section demonstrates the steps that you would take to create, build, deploy,
and test a very simple web application that is annotated with Jersey.

Another way that you could learn more about deploying and running Jersey applications is to
review the many sample applications that ship with Jersey. These samples are installed into the
as-install/ jersey/samples directory when the Jersey Documentation and Samples are installed
onto the Enterprise Server using the Update Tool. The process of installing from the Update
Tool is described in “Java EE 6 Tutorial Component” on page 57. There is a README . htm1 file for
each sample that describes the sample and describes how to deploy and test the sample. These
samples also include a Project Object Model file, pom. xml, that is used by Maven to build the
project. The sample applications that ship with Jersey require Maven to run. The sample
applications included with the tutorial will run using Ant.

Creating a RESTful Web Service

This section discusses two ways that you can create a RESTful web service. If you choose to use
NetBeans IDE to create a RESTful web service, the IDE generates a skeleton where you simply

need to implement the appropriate methods. If you choose not to use an IDE, try using one of

the example applications that ship with Jersey as a template to modify.

¥ Creating a RESTful Web Service Using NetBeans IDE

This section describes, using a very simple example, how to create a Jersey-annotated web
application from NetBeans IDE.

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 235

http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features
http://maven.apache.org/

Example Applications for JAX-RS and Jersey

236

In NetBeans IDE, create a simple web application. This example creates a very simple “Hello,
World” web application.

Open NetBeans IDE.
Select File—New Project.

From Categories, select Java Web. From Projects, select Web Application. Click Next.

Note - For this step, you could also create a RESTful web service in a Maven web project by
selecting Maven as the category and Maven Web Project as the project. The remaining steps
would be the same.

Enter a project name, HelloWorldApplication, click Next.
Make sure the Server is Sun GlassFish v3 (or similar wording.)

Click Finish. You may be prompted for your server Administrator User Name and Password. If
so, enter this information.

The project will be created. The file index. j sp will display in the Source pane.

Right-click the project and select New, then select RESTful Web Services from Patterns.

a.

b.

Select Simple Root Resource. Click Next.
Enter a Resource Package name, like helloWorld.

Enter helloworld in the Path field. Enter HelloWorld in the Class Name field. For MIME Type
select text/html.

Click Finish.

The REST Resources Configuration page displays. Select OK.

A new resource, HelloWorld. java, is added to the project and displays in the Source pane.
This file provides a template for creating a RESTful web service.

InHelloWorld. java, find the getHtm1() method. Replace the //TODO comment and the
exception with the following text, so that the finished product resembles the following method.

Note - Because the MIME type that is produces is HTML, you can use HTML tags in your return
statement.

The Java EE 6 Tutorial, Volume | « December 2009

Example Applications for JAX-RS and Jersey

5

SeeAlso

/**
* Retrieves representation of an instance of helloWorld.HelloWorld
* @return an instance of java.lang.String
*/
@GET
@Produces ("text/html")
public String getHtml() {
return "<html><body><hl>Hello, World!'!</body></hl></html>"
}

Test the web service. To do this, right-click the project node and click Test RESTful Web Services.
This step will deploy the application and bring up a test client in the browser.

When the test client displays, select the helloworld resource in the left pane, and click the Test
button in the right pane.

The words Hello, World! ! will display in the Response window below.
Deploy and Run the application.
a. Setthe Run Properties. To do this, right-click the project node, select Properties, and then

select the Run category. Set the Relative URL to the location of the RESTful web service
relative to the Context Path, which for this example is resources/helloworld.

Tip - You can find the value for the Relative URL in the Test RESTful Web Services browser
window. In the top of the right pane, after Resource, is the URL for the RESTful web service
being tested. The part following the Context Path
(http://localhost:8080/HelloWorldApp) is the Relative URL that needs to be entered
here.

If you don't set this property, by default the file index. jsp will display when the application
is run. As this file also contains Hello World as its default value, you might not notice that
your RESTful web service isn't running, so just be aware of this default and the need to set
this property, or update index. jsp to provide a link to the RESTful web service.

b. Right-click the projectand select Deploy.

c. Right-click the projectand select Run.

A browser window opens and displays the return value of Hello, World! !

For other sample applications that demonstrate deploying and running Jersey applications
using NetBeans, read “Example: Creating a Simple Hello World Application Using JAX-RS and
Jersey” on page 242 and/or look at the tutorials on the NetBeans tutorial site, such as the one

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 237

Example Applications for JAX-RS and Jersey

titled Getting Started with RESTful Web Services. This tutorial includes a section on creating a
CRUD application from a database. Create, read, update and delete (CRUD) are the four basic
functions of persistent storage and relational databases.

V¥ Creating a RESTful Web Service From Examples

The easiest way to create and run an application without NetBeans IDE is to copy and edit one
of the Jersey sample applications. These samples are installed into the
as-install/jersey/samples directory when the Jersey Documentation and Samples are installed
onto the Enterprise Server using the Update Tool. The process of installing from the Update
Tool is described in “Java EE 6 Tutorial Component” on page 57. This task uses the simplest
sample application, helloworld-webapp, to demonstrate one way you could go about creating
your own application without NetBeans IDE.

BeforeYouBegin Before you can deploy the Jersey sample applications to GlassFish from the command line, you
must have downloaded and installed Maven onto your system. You can install Maven from the
Maven website at http://maven.apache.org.

1 Copythe helloworld-webapp application to a new directory named helloworld2. You will find
this application in the directory as-install/glassfish/jersey/samples/helloworld-webapp.

2 Do asearchforall directories named helloworld-webapp and rename them to helloworld2.

3 Searchagain for all files containing the text helloworld-webapp and edit these files to replace
this text with helloworld2.

4 Using a text editor, open the file
jersey/samples/helloworld2/src/main/java/com/sun/jersey/samples/helloworld/resources/Helloh

5 Modify the text that is returned by the resource to Hello World 2. Save and close the file.

6 Use Maven to compile and deploy the application. For this sample application, itis deployed
onto Grizzly. Enter the following command from the command line in the directory
jersey/samples/helloworld2 to compile and deploy the application: mvn glassfish: run.

7 Openaweb browser, and enter the URL to which the application was deployed, which in this
examples is http://localhost:8080/helloworld2/helloworld. Hello World 2 will display
in the browser.

SeeAlso You can learn more about deploying and running Jersey applications by reviewing the many
sample applications that ship with Jersey. There is a README . htm1 file for each sample that
describes the sample and describes how to deploy and test the sample, and there is a Project
Object Model file, pom. xml, that is used by Maven to build the project. Find a project that is
similar to one you are hoping to create and use it as a template to get you started.

238 The Java EE 6 Tutorial, Volume | « December 2009

http://www.netbeans.org/kb/docs/websvc/rest.html
http://maven.apache.org

Example Applications for JAX-RS and Jersey

Before You Begin

An example that starts from scratch can be found here.

For questions regarding Jersey sample applications, visit the Jersey Community Wiki page, or
send an email to the users mailing list, users@jersey.dev.java.net.

Creating a RESTful Web Service From Maven Archetype

Although this tutorial does not present instructions on using Maven for creating applications as
a general rule, because Project Jersey is built, assembled and installed using Maven, and all of its
sample applications are Maven-based, this section provides an example that creates a skeleton
Jersey application from a Maven archetype.

This example requires that Maven be installed and configured to run from the command line on
your system. Maven can be downloaded from http://maven.apache.org/.

Start the Enterprise Server. For instructions on how to do this, read “Starting and Stopping the
Enterprise Server”on page 58.

After Maven is installed, run the following from the command line:

mvn archetype:generate -DarchetypeCatalog=http://download.java.net/maven/2

The archetype catalog will download. You will be prompted to select the type of archetype you
want to create. As of the publication date of this tutorial, the following choices display in the
command window. These options are likely to change, but are provided here to give you an idea
of what they might look like.

Choose archetype:

1: http://download.java.net/maven/2/archetype-catalog.xml ->
jersey-quickstart-grizzly (Archetype for creating a RESTful web
application with Jersey and Grizzly)

2: http://download.java.net/maven/2/archetype-catalog.xml ->
jersey-quickstart-webapp (Archetype for creating a Jersey based RESTful
web application with WAR packaging)

3: http://download.java.net/maven/2/archetype-catalog.xml ->
jersey-quickstart-ejb (Archetype for creating a Jersey based RESTful EJB
application with WAR packaging)

4: http://download.java.net/maven/2/archetype-catalog.xml ->

jsf2-simple-example-archetype (Simple JSF project with no non-JavaEE
dependencies)

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 239

https://jersey.dev.java.net/source/browse/*checkout*/jersey/tags/jersey-1.0/jersey/getting-started.html
http://wikis.sun.com/display/Jersey/Main
http://maven.apache.org/

Example Applications for JAX-RS and Jersey

240

10

Select the appropriate option for the type of RESTful web service you would like to create.

With the Grizzly-based archetype (selection 1), you will get a sample Java application, which
you can run directly from Java without a need to deploy it to any container. The web application
archetype (selection 2) enables you to build a WAR archive, which you could deploy onto any
web Servlet container.

Define a value for groupId, such as RESTHello.

DefineavalueforartifactId,suchasRESTHelloApp.Thisisthe name of the web application as
well as the directory in which the application is created.

Define value for version: 1.0-SNAPSHOT. You can accept the default by not entering anything.

Define value for package: groupld, such as restHello. This is the directory where the main Java
files will be located, which is basedir/artifactld/src/main/java/package. If you used the example
entries, this directory will be RESTHe 1 loApp/src/main/java/restHello.

Confirm properties configuration. Enter Y to confirm or N to cancel.
Maven generates a new project containing a simple Hello World RESTful web service.

Build and run your RESTful web service. First, change into the project directory, which is the
artifactld, or RESTHelloApp if you used the example text.

= For the Grizzly-based scenario (selection 1), build and run the web service on the Grizzy
container using this command: mvn clean compile exec:java.

= Ifyouselected the WAR-based scenario (selection 2), build your WAR file using the command
mvn clean package. Deploy the WAR file to your favorite Servlet container. To run it using
the embedded version of GlassFish V3, use this command: mvn glassfish: run.

Test the service in your browser.

= Enter the following URL to run the Grizzly-based application (selection 1):
http://localhost:9998/myresource.Thisis the location where it is published by default.
The browser displays the text Got it!

= Enter the following URL to run the WAR-based scenario (selection 2):
http://localhost:8080/artifactld/webresources/myresource. If you used the example
entries, enterhttp://localhost:8080/RESTHelloApp/webresources/myresource.Thisis
the location where it is published by default. The browser displays the text Hi there!

After starting the application using Grizzly, you should see output that looks similar to that
in the example output, below:

[O I e
[INFO] Building RESTHelloApp

The Java EE 6 Tutorial, Volume | « December 2009

Example Applications for JAX-RS and Jersey

[INFO] task-segment: [clean, compile, exec:javal

[Ol I e e

[INFO] [clean:clean]

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:compile]

[INFO] Compiling 2 source files to /export/home/japod/test/jaxrs-tutorial/
RESTHelloApp/target/classes

[INFO] Preparing exec:java

[INFO] No goals needed for project - skipping

[INFO] [exec:java]

Starting grizzly...

Jersey app started with WADL available at http://localhost:9998/application.wadl

Hit enter to stop it...

After starting the application for the WAR-based scenario, you should see output that looks
similar to that in the example output, below:

[INFO] Building RESTHelloApp Jersey Webapp
[INFO] task-segment: [glassfish:run]
O e e e
[INFO] Preparing glassfish:run
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] snapshot org.glassfish:glassfish-parent:10.0-SNAPSHOT: checking for
updates from glassfish-maven2-repository.dev.java.net
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /export/home/japod/test/jaxrs-tutorial/
RESTHelloApp/target/classes
[INFO] [glassfish:run]
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: HK2 initialized in 479 ms
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.naming.impl.ServicesHookup@1342545 Init done in 486 ms
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.v3.server.Globals@6de609 Init done in 488 ms
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.v3.server.SystemTasks@e7e8eb Init done in 493 ms
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.v3.services.impl.HouseKeeper@la6518 Init done in 503 ms
Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.v3.services.impl.CmdLineParamProcessor@8390b0
Init done in 506 ms
JMXMP connector server URL = service:jmx:jmxmp://localhost:8888
Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.services.impl.GrizzlyProxy start
INFO: Listening on port 8080
Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run
INFO: com.sun.enterprise.v3.services.impl.GrizzlyService@59cbhda startup
done in 815 ms

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 241

Example Applications for JAX-RS and Jersey

242

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.services.impl.
ApplicationLoaderService postConstruct

INFO: loader service postConstruct started at 1260231635181

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: Application Loader startup done in 883 ms

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: Glassfish v3 started in 883 ms

Dec 8, 2009 1:20:38 AM com.sun.enterprise.web.WebModuleContextConfig
authenticatorConfig

SEVERE: webModuleContextConfig.missingRealm

Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init

INFO: Scanning for root resource and provider classes in the packages:

restHello
Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init
INFO: Root resource classes found:
class restHello.MyResource

Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init

INFO: Provider classes found:

Dec 8, 2009 1:20:38 AM com.sun.jersey.server.impl.application.
WebApplicationImpl initiate

INFO: Initiating Jersey application, version 'Jersey: 1.1.4.1 11/24/2009 01:30 AM’

Hit ENTER for redeploy

Example: Creating a Simple Hello World Application
Using JAX-RS and Jersey

This section discusses the simple RESTful web service that is included with the tutorial
examples in the directory jaxrs/JAXRSHelloWorld. This example was created by following the
steps similar to those described in “ Creating a RESTful Web Service Using NetBeans IDE” on
page 235.

JAXRSHelloWorld Example: Discussion

With this simple application, a simple root resource for a RESTful web service was selected.
This generates a RESTful root resource class with GET and PUT methods. This design is useful
for creating examples such as this simple Hello World service.

In this example, the method getHtm1 () is annotated with @GET and the

@Produces ("text/html") annotation. This method will process HTTP GET requests and
produce content in HTML. To finish this example, you simply need to replace the current
contents of this example with a statement that returns Hello World. This example has also
replaced the name of the method with the name sayHello. Here is the code for the completed
sayHello() method:

The Java EE 6 Tutorial, Volume | « December 2009

Example Applications for JAX-RS and Jersey

@GET
@Produces ("text/html")
public String sayHello() {
return "Hello World";

Testing the JAXRSHelloWorld Example

Open the project javaeetutorial/ jaxrs/JAXRSHelloWorld in NetBeans IDE.
Right-click the project node, JAXRSHe1loWor1ld, and select Test RESTful Web Services.
Clickthe helloWorld service in the left pane.

The Get (text/html) method is selected by default. Click Test.

The response Hello World, displays in the lower pane, as shown in the following figure.

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 243

Example Applications for JAX-RS and Jersey

244

VG http://localhost:2080/Hel loWorld/resources’application . wad|

Test RESTful Web Services

=& Helloworld
-8 nhelloworld

HelleWorld = helloWorld

Resource: helloWeorld

(hitp:ilocalhost: 20280WHelloWorld'resourcesshelloWorld]

Choose method to test: GETged /hitml)

Status: 200 (0K)

Response:

Tabular View

Raw View

Sub-Resour:

Hello World

|

FIGURE 13-1 Testing JAXRSHelloWorld Web Service
The Java EE 6 Tutorial, Volume | « December 2009

Example Applications for JAX-RS and Jersey

v

Before You Begin

Deploying and Running the JAXRSHelloWorld Example

The application's Run properties must be set to run the RESTful web service. For the provided
application, this task has been completed. For future reference, right-click the project node,
select Properties, then select Run, and enter the Relative URL. For this example, you would
enter /resources/helloWorld.

Right-click the project node, JAXRSHe1loWor1ld, and select Deploy.
Right-click the project node, JAXRSHelloWorld, and select Run.

A browser opens and displays Hello World at the URL
http://localhost:8080/HelloWorld/resources/helloWorld.

The browser displays the text “Hello World”.

Example: Adding on to the Simple Hello World RESTful
Web Service

This section discusses the simple RESTful web service that is included with the tutorial
examples in the directory jaxrs/HelloWorld3. This example was created by following the steps
similar to those described in “ Creating a RESTful Web Service Using NetBeans IDE” on

page 235.

HelloWorld3 Example: Discussion

This example takes the simple Hello World application discussed in the previous section and
adds to it. In this example, there are methods for getting a user's name, and then the name is
appended to the Hello World greeting. An annotation that wasn't used in the previous example,
@QueryParam, is used in this example.

In this example, there is a simple RESTful web service that returns HTML messages. To
accomplish this task, you would first create a class that uses Java Architecture for XML Binding
(JAXB). This class represents the HTML message in Java (RESTGreeting. java), then creates a
RESTful web service that returns an HTML message (HelloGreetingService. java.)

The JAXB class that represents the HTML message gets the message and the name. This file,
RESTGreeting.java, is basic Java code that creates a new instance of RESTGreeting and the
getter and setter methods for its parameters.

The RESTful web service that returns an HTML message is in the file
HelloGreetingService.java. You may notice that method that is annotated with JAX-RS
annotations is similar to the one described in the previous example, however, this example adds
an @QueryParam annotation to extract query parameters from the Query component of the
request URL. The following code example shows the JAX-RS-annotated method:

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 245

Example Applications for JAX-RS and Jersey

v

Before You Begin

246

@GET
@Produces ("text/html")
public RESTGreeting getHtml(@QueryParam("name")String name) {
return new RESTGreeting(getGreeting(), name);

}
private String getGreeting(){
return "Hello "

}
Testing the HelloWorld3 Example
Open the project javaeetutorial/jaxrs/HelloWorld3in NetBeans IDE.
Right-click the project node, HelloWor1ld3, and select Test RESTful Web Services.
Clickthe helloGreeting service in the left pane.
Enter aname in the name text field.

The Get (text/html) method is selected by default. Click Test.

The response Hello name, displays in the Response pane, under the Raw View tab.

Deploying and Running the HelloWorld3 Example

The application's Run properties must be set to run the RESTful web service. For the provided
application, this task has been completed. For future reference, right-click the project node,
select Properties, then select Run, and enter the Relative URL. For this example, you would
enter /helloGreeting.

Right-click the project node, HelloWor1d3, and select Deploy.

Right-click the project node, HelloWorld3, and select Run.

The Run property does not specify a particular name, so none is shown in the browser window
when it displays. The browser window simply shows the message Hello.

Append a name to the URL in the web browser, so that the URL looks like this:
http://localhost:8080/HelloWorld3/helloGreeting?name=your_name.

The message Hello and the name your_name display in the browser.

The Java EE 6 Tutorial, Volume | « December 2009

Further Information

JAX-RS in the First Cup Example

JAX-RS is used in the Your First Cup of Java example, which you will find at Your First Cup: An
Introduction to the Java EE Platform

Real World Examples

A few real-world web applications that use RESTful web services include most blog sites. These
are considered RESTful in that most blog sites involve downloading XML files in RSS or Atom
format which contain lists of links to other resources. Other web sites and web applications that
use REST-like developer interfaces to data include Twitter and Amazon S3 (Simple Storage
Service). With Amazon S3, buckets and objects can be created, listed, and retrieved using either
aREST-style HTTP interface or a SOAP interface. The examples that ship with Jersey include a
storage service example with a RESTful interface. The tutorial at http://netbeans.org/kb/
docs/websvc/twitter-swing.html uses the NetBeans IDE to create a simple, graphical,
REST-based client that displays Twitter public time line messages and lets you view and update
your Twitter status.

Further Information

The information in this tutorial focuses on learning about JAX-RS and Jersey. If you are
interested in learning more about RESTful Web Services in general, here are a few links to get
you started.

= The Community Wiki for Project Jersey has loads of information on all things RESTful.
You'llfinditathttp://wikis.sun.com/display/Jersey/Main.
= Fielding Dissertation: Chapter 5: Representational State Transfer (REST), at

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm.
= Representational State Transfer, from Wikipedia, http://en.wikipedia.org/wiki/
Representational State Transfer.

= RESTful Web Services, by Leonard Richardson and Sam Ruby. Available from O'Reilly
Mediaat http://oreilly.com/catalog/9780596529260/.

Some of the Jersey team members discuss topics out of the scope of this tutorial on their blogs. A
few are listed below:

= Earthly Powers, by Paul Sandoz, at http://blogs.sun.com/sandoz/category/REST.
= Marc Hadley's Blog, at http://weblogs. java.net/blog/mhadley/
= Japod's Blog, by Jakub Podlesak, at http://blogs.sun.com/japod/category/REST.

Chapter 13 - Building RESTful Web Services with JAX-RS and Jersey 247

http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7759
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://oreilly.com/catalog/9780596529260/
http://blogs.sun.com/sandoz/category/REST
http://weblogs.java.net/blog/mhadley/
http://blogs.sun.com/japod/category/REST

Further Information

You can always get the latest technology and information by visiting the Java Developer's
Network. The links are listed below:

m Get thelatest on JSR-311, the Java API's for RESTful Web Services (JAX-RS), at
https://jsr31ll.dev.java.net/.

= Getthe latest on Jersey, the open source JAX-RS reference implementation, at
https://jersey.dev.java.net/.

248 The Java EE 6 Tutorial, Volume | « December 2009

https://jsr311.dev.java.net/
https://jersey.dev.java.net/

PART IV

Enterprise Beans

Part Four explores Enterprise JavaBeans.

249

250

L K R 4 CHAPTER 14

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
Enterprise Server (see “Container Types” on page 38). Although transparent to the application
developer, the EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enterprise beans,
which form the core of transactional Java EE applications.

What Is an Enterprise Bean?

Written in the Java programming language, an enterprise bean is a server-side component that
encapsulates the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the enterprise
beans might implement the business logic in methods called checkInventoryLevel and
orderProduct. By invoking these methods, clients can access the inventory services provided
by the application.

Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to enterprise beans,
the bean developer can concentrate on solving business problems. The EJB container, rather
than the bean developer, is responsible for system-level services such as transaction
management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic, the
client developer can focus on the presentation of the client. The client developer does not have
to code the routines that implement business rules or access databases. As a result, the clients
are thinner, a benefit that is particularly important for clients that run on small devices.

251

What Is an Enterprise Bean?

252

Third, because enterprise beans are portable components, the application assembler can build
new applications from existing beans. These applications can run on any compliant Java EE
server provided that they use the standard APIs.

When to Use Enterprise Beans

You should consider using enterprise beans if your application has any of the following
requirements:

= The application must be scalable. To accommodate a growing number of users, you may
need to distribute an application’s components across multiple machines. Not only can the
enterprise beans of an application run on different machines, but also their location will
remain transparent to the clients.

= Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

= Theapplication will have a variety of clients. With only a few lines of code, remote clients
can easily locate enterprise beans. These clients can be thin, various, and numerous.

Types of Enterprise Beans

Table 14-1 summarizes the two types of enterprise beans. The following sections discuss each
type in more detail.

TABLE 14-1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally may implement a web service

Message-Driven Acts as a listener for a particular messaging type, such as the Java
Message Service API

Note - Entity beans have been replaced by Java Persistence API entities. For information about
entities, see Chapter 19, “Introduction to the Java Persistence AP1”

The Java EE 6 Tutorial, Volume | « December 2009

What Is a Session Bean?

What s a Session Bean?

A session bean encapsulates business logic that can be invoked programmatically by a client
over local, remote, or web service client views. To access an application that is deployed on the
server, the client invokes the session bean’s methods. The session bean performs work for its
client, shielding the client from complexity by executing business tasks inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 16, “Running the Enterprise Bean Examples.”

Types of Session Beans

There are three types of session beans: stateful, stateless, and singleton.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session bean,
the instance variables represent the state of a unique client-bean session. Because the client
interacts (“talks”) with its bean, this state is often called the conversational state.

As its name suggests, a session bean is similar to an interactive session. A session bean is not
shared; it can have only one client, in the same way that an interactive session can have only one
user. When the client terminates, its session bean appears to terminate and is no longer
associated with the client.

The state is retained for the duration of the client-bean session. If the client removes the bean,
the session ends and the state disappears. This transient nature of the state is not a problem,
however, because when the conversation between the client and the bean ends there is no need
to retain the state.

Stateless Session Beans

A stateless session bean does not maintain a conversational state with the client. When a client
invokes the methods of a stateless bean, the bean’s instance variables may contain a state specific
to that client, but only for the duration of the invocation. When the method is finished, the
client-specific state should not be retained. Clients may, however, change the state of instance
variables in pooled stateless beans, and this state is held over to the next invocation of the
pooled stateless bean. Except during method invocation, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client. That is, the state of a
stateless session bean should apply across all clients.

Because stateless session beans can support multiple clients, they can offer better scalability for
applications that require large numbers of clients. Typically, an application requires fewer
stateless session beans than stateful session beans to support the same number of clients.

Chapter 14 - Enterprise Beans 253

What s a Session Bean?

254

A stateless session bean can implement a web service, but a stateful session bean cannot.

Singleton Session Beans

A singleton session bean is instantiated once per application, and exists for the lifecycle of the
application. Singleton session beans are designed for circumstances where a single enterprise
bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans, but differ from
stateless session beans in that there is only one singleton session bean per application, as
opposed to a pool of stateless session beans, any of which may respond to a client request. Like
stateless session beans, singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations, but are not required to
maintain their state across server crashes or shutdowns.

Applications that use a singleton session bean may specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform initialization tasks
for the application. The singleton may perform cleanup tasks on application shutdown as well,
because the singleton will operate throughout the lifecycle of the application.

When to Use Session Beans

Stateful session beans are appropriate if any of the following conditions are true:
= Thebean’s state represents the interaction between the bean and a specific client.
= The bean needs to hold information about the client across method invocations.

= The bean mediates between the client and the other components of the application,
presenting a simplified view to the client.

= Behind the scenes, the bean manages the work flow of several enterprise beans.

To improve performance, you might choose a stateless session bean if it has any of these traits:

m Thebean’s state has no data for a specific client.

= Inasingle method invocation, the bean performs a generic task for all clients. For example,
you might use a stateless session bean to send an email that confirms an online order.

= The bean implements a web service.

Singleton session beans are appropriate in the following circumstances:

= State needs to be shared across the application.
= A single enterprise bean needs to be accessed by multiple threads concurrently.

= Theapplication needs an enterprise bean to perform tasks upon application startup and
shutdown.

The Java EE 6 Tutorial, Volume | « December 2009

What Is a Message-Driven Bean?

= Thebean implements a web service.

What Is a Message-Driven Bean?

A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. It normally acts as a JMS message listener, which is similar to an
event listener except that it receives JMS messages instead of events. The messages can be sent
by any Java EE component (an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use Java EE technology.
Message-driven beans can process JMS messages or other kinds of messages.

What Makes Message-Driven Beans Different from
Session Beans?

The most visible difference between message-driven beans and session beans is that clients do
not access message-driven beans through interfaces. Interfaces are described in the section
“Accessing Enterprise Beans” on page 256. Unlike a session bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

= A message-driven bean’s instances retain no data or conversational state for a specific client.

= Allinstances of a message-driven bean are equivalent, allowing the EJB container to assign a
message to any message-driven bean instance. The container can pool these instances to
allow streams of messages to be processed concurrently.

= A single message-driven bean can process messages from multiple clients.
The instance variables of the message-driven bean instance can contain some state across the

handling of client messages (for example, a JMS API connection, an open database connection,
or an object reference to an enterprise bean object).

Client components do not locate message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through, for example, JMS by sending messages
to the message destination for which the message-driven bean class is the MessageListener.
You assign a message-driven bean’s destination during deployment by using Enterprise Server
resources.

Message-driven beans have the following characteristics:

= They execute upon receipt of a single client message.
= Theyare invoked asynchronously.

= They are relatively short-lived.

Chapter 14 - Enterprise Beans 255

Accessing Enterprise Beans

= They do not represent directly shared data in the database, but they can access and update
this data.

= They can be transaction-aware.

= They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application’s business logic. The onMessage
method can call helper methods, or it can invoke a session bean to process the information in
the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. If message processing
is rolled back, the message will be redelivered. For more information, see Chapter 27,
“Transactions.”

When to Use Message-Driven Beans

Session beans allow you to send JMS messages and to receive them synchronously, but not
asynchronously. To avoid tying up server resources, do not to use blocking synchronous
receives in a server-side component, and in general JMS messages should not be sent or
received synchronously. To receive messages asynchronously, use a message-driven bean.

Accessing Enterprise Beans

256

Note - The material in this section applies only to session beans and not to message-driven
beans. Because they have a different programming model, message-driven beans do not have
interfaces or no-interface views that define client access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of an
enterprise bean may invoke any public methods in the enterprise bean implementation class, or
any superclasses of the implementation class. A business interface is a standard Java
programming language interface that contains the business methods of the enterprise bean.

A client can access a session bean only through the methods defined in the bean’s business
interface, or through the pubic methods of an enterprise bean that has a no-interface view. The
business interface or no-interface view defines the client’s view of an enterprise bean. All other
aspects of the enterprise bean (method implementations and deployment settings) are hidden
from the client.

The Java EE 6 Tutorial, Volume | « December 2009

Accessing Enterprise Beans

Well-designed interfaces and no-interface views simplify the development and maintenance of
Java EE applications. Not only do clean interfaces and no-interface views shield the clients from
any complexities in the EJB tier, but they also allow the enterprise beans to change internally
without affecting the clients. For example, if you change the implementation of a session bean
business method, you won’t have to alter the client code. But if you were to change the method
definitions in the interfaces, then you might have to modify the client code as well. Therefore, it
is important that you design the interfaces and no-interface views carefully to isolate your
clients from possible changes in the enterprise beans.

Session beans can have more than one business interface. Session beans should, but are not
required to, implement their business interface or interfaces.

Using Enterprise Beans in Clients

The client of an enterprise bean obtains a reference to an instance of an enterprise bean either
through dependency injection, using Java programming language annotations, or JNDI lookup,
using the Java Naming and Directory Interface syntax to find the enterprise bean instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients that
run within a Java EE server-managed environment, like JSF web applications, JAX-RS web
services, other enterprise beans, or Java EE application clients support dependency injection
using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Java EE components to simplify this explicit lookup.

Portable JNDI Syntax

There are three JNDI namespaces used for portable JNDI lookups: java:global, java:module,
and java:app.

The java:global JNDI namespace is the portable way of finding remote enterprise beans using
JNDI lookups. JNDI addresses are of the following form:

java:globall/application name]/module name/enterprise bean name|/interface namel

Application name and module name default to the name of the application and module minus
the file extension. Application names are only required if the application is packaged within an
EAR. The interface name is only required if the enterprise bean implements more than one
business interface.

The java:module namespace is used to lookup local enterprise beans within the same module.
JNDI addresses using the java:module namespace are of the following form:

java:module/enterprise bean name/ [interface name]

Chapter 14 - Enterprise Beans 257

Accessing Enterprise Beans

The interface name is only required if the enterprise bean implements more than one business
interface.

The java:app namespace is used to lookup local enterprise beans packaged within the same
application. That is, the enterprise bean is packaged within an EAR file containing multiple Java
EE modules. JNDI addresses using the java:app namespace are of the following form:

java:app[/module namel/enterprise bean namel /interface name]

The module name is optional. The interface name is only required if the enterprise bean
implements more than one business interface.

EXAMPLE 14-1 JNDI Address of an Enterprise Bean Packaged Within a WAR File

If an enterprise bean, MyBean, is packaged in within the web application archive myApp.war, the
module name is myApp. The portable JNDI name is:

java:module/MyBean

An equivalent JNDI name using the java:global namespace is:

java:global/myApp/MyBean

Deciding on Remote or Local Access

When you design a Java EE application, one of the first decisions you make is the type of client
access allowed by the enterprise beans: remote, local, or web service.

Whether to allow local or remote access depends on the following factors.

= Tight orloose coupling of related beans: Tightly coupled beans depend on one another.
For example, if a session bean that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly coupled. Tightly coupled
beans are good candidates for local access. Because they fit together as a logical unit, they
typically call each other often and would benefit from the increased performance that is
possible with local access.

= Type of client: If an enterprise bean is accessed by application clients, then it should allow
remote access. In a production environment, these clients almost always run on different
machines than the Enterprise Server. If an enterprise bean’s clients are web components or
other enterprise beans, then the type of access depends on how you want to distribute your
components.

= Component distribution: Java EE applications are scalable because their server-side
components can be distributed across multiple machines. In a distributed application, for
example, the web components may run on a different server than do the enterprise beans
they access. In this distributed scenario, the enterprise beans should allow remote access.

258 The Java EE 6 Tutorial, Volume | « December 2009

Accessing Enterprise Beans

= Performance: Due to factors such as network latency, remote calls may be slower than local
calls. On the other hand, if you distribute components among different servers, you may
improve the application’s overall performance. Both of these statements are generalizations;
actual performance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote access.
This decision gives you more flexibility. In the future you can distribute your components to
accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote and local
access. If this is the case, either the business interface of the bean must be explicitly designated as
abusiness interface by being decorated with the @Remote or @Local annotations, or the bean
class must explicitly designate the business interfaces by using the @emote and @Local
annotations. The same business interface cannot be both alocal and remote business interface.

Local Clients

A local client has these characteristics:

= [t must run in the same application as the enterprise bean it accesses.

= [tcanbe aweb component or another enterprise bean.

= Tothelocal client, the location of the enterprise bean it accesses is not transparent.

The no-interface view of an enterprise bean is a local view. The public methods of the enterprise
bean implementation class are exposed to local clients that access the no-interface view of the

enterprise bean. Enterprise beans that use the no-interface view do not implement a business
interface.

The local business interface defines the bean’s business and lifecycle methods. If the bean’s
business interface is not decorated with @Local or @Remote, and the bean class does not specify
the interface using @Local or @Remote, the business interface is by default a local interface.

To build an enterprise bean that allows only local access, you may, but are not required to do
one of the following:

= Create an enterprise bean implementation class that does not implement a business
interface, indicating that the bean exposes a no-interface view to clients. For example:

@Session
public class MyBean { ... }

= Annotate the business interface of the enterprise bean as a @Local interface. For example:

@Local
public interface InterfaceName { ... }

= Specify the interface by decorating the bean class with @Local and specify the interface
name. For example:

Chapter 14 - Enterprise Beans 259

Accessing Enterprise Beans

260

@Local(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

Accessing Local Enterprise Beans Using the No-Interface View

Client access to an enterprise bean that exposes a local, no-interface view is accomplished either
through dependency injection or JNDI lookup.

Clients do not use the new operator to obtain a new instance of an enterprise bean that uses a
no-interface view.

EXAMPLE 14-2 Injecting an Enterprise Bean Using the No-Interface View

To obtain a reference to the no-interface view of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean's implementation
class.

@EJB
ExampleBean exampleBean;

EXAMPLE 14-3 Looking Up an Enterprise Bean Using the No-Interface View

To obtain a reference to the no-interface view of an enterprise bean using JNDI lookup, use the
javax.naming.InitialContext interface's lookup method.

ExampleBean exampleBean = (ExampleBean)
InitialContext.lookup("java:module/ExampleBean")

Accessing Local Enterprise Beans That Implement Business Interfaces

Client access to enterprise beans that implement local business interfaces is accomplished using
either dependency injection or JNDIlookup.

EXAMPLE 14-4 Injecting an Enterprise Bean's Local Business Interface

To obtain a reference to the local business interface of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean's local business
interface name.

@EJB
Example example;

EXAMPLE 14-5 Looking Up a Local Enterprise Bean Using JNDI

The obtain a reference to a local business interface of an enterprise bean using JNDI lookup, use
the javax.naming.InitialContext interface's lookup method.

The Java EE 6 Tutorial, Volume | « December 2009

Accessing Enterprise Beans

EXAMPLE 14-5 Looking Up a Local Enterprise Bean Using JNDI (Continued)

ExampleLocal example = (ExampleLocal)
InitialContext.lookup("java:module/ExamplelLocal");

Remote Clients

A remote client of an enterprise bean has the following traits:

® [t canrun on a different machine and a different Java virtual machine (JVM) than the
enterprise bean it accesses. (It is not required to run on a different JVM.)

It can be a web component, an application client, or another enterprise bean.

= Toaremote client, the location of the enterprise bean is transparent.

The enterprise bean must implement a business interface. That is, remote clients may not
access an enterprise bean using a no-interface view.

To create an enterprise bean that allows remote access, you must do one of the following:

= Decorate the business interface of the enterprise bean with the @emote annotation:

@Remote
public interface InterfaceName { ... }

= Decorate the bean class with @Remote, specifying the business interface or interfaces:

@Remote(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

The remote interface defines the business and life cycle methods that are specific to the bean. For
example, the remote interface of a bean named BankAccountBean might have business methods
named deposit and credit. Figure 14-1 shows how the interface controls the client’s view of
an enterprise bean.

Chapter 14 - Enterprise Beans 261

Accessing Enterprise Beans

262

Remote Client Remote BankAccountBean

Interface

—> deposit () —P
credit ()

=

FIGURE 14-1 Interfaces for an Enterprise Bean with Remote Access

Accessing Remote Enterprise Beans

Client access to an enterprise bean that implements a remote business interface is accomplished
using either dependency injection or JNDI lookup.

EXAMPLE 14-6 Injecting an Enterprise Bean's Remote Business Interface

To obtain a reference to the remote business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean's
remote business interface name.

@EJB
Example example;

EXAMPLE 14-7 Looking Up an Enterprise Bean's Remote Business Interface

The obtain a reference to a remote business interface of an enterprise bean using JNDI lookup,
use the javax.naming.InitialContext interface's lookup method.

ExampleRemote example = (ExampleRemote)
InitialContext.lookup("java:global/myApp/ExampleRemote")

Web Service Clients

A web service client can access a Java EE application in two ways. First, the client can access a
web service created with JAX-WS. (For more information on JAX-WS, see Chapter 12,

“Building Web Services with JAX-WS?) Second, a web service client can invoke the business
methods of a stateless session bean. Message beans cannot be accessed by web service clients.

The Java EE 6 Tutorial, Volume | « December 2009

Accessing Enterprise Beans

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web service client can
access a stateless session bean, whether or not the client is written in the Java programming
language. The client doesn’t even “know” what technology implements the service: stateless
session bean, JAX-WS, or some other technology. In addition, enterprise beans and web
components can be clients of web services. This flexibility enables you to integrate Java EE
applications with web services.

A web service client accesses a stateless session bean through the bean’s web service endpoint
implementation class. By default, all public methods in the bean class are accessible to web
service clients. The @WebMethod annotation may be used to customize the behavior of web
service methods. If the @WebMethod annotation is used to decorate the bean class’s methods,
only those methods decorated with @WebMethod are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 294.

Method Parameters and Access

The type of access affects the parameters of the bean methods that are called by clients. The
following topics apply not only to method parameters but also to method return values.

Isolation

The parameters of remote calls are more isolated than those of local calls. With remote calls, the
client and bean operate on different copies of a parameter object. If the client changes the value
of the object, the value of the copy in the bean does not change. This layer of isolation can help
protect the bean if the client accidentally modifies the data.

In alocal call, both the client and the bean can modify the same parameter object. In general,
you should not rely on this side effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters than does
the bean that implements the web service.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parameters in remote methods
should be relatively coarse-grained. A coarse-grained object contains more data than a
fine-grained one, so fewer access calls are required. For the same reason, the parameters of the
methods called by web service clients should also be coarse-grained.

Chapter 14 - Enterprise Beans 263

The Contents of an Enterprise Bean

The Contents of an Enterprise Bean

264

To develop an enterprise bean, you must provide the following files:
= Enterprise bean class: Implements the business methods of the enterprise bean and any life
cycle callback methods.

= Business Interfaces: The business interface defines the business methods implemented by
the enterprise bean class. A business interface is not required if the enterprise bean exposes a
local, no-interface view.

= Helper classes: Other classes needed by the enterprise bean class, such as exception and
utility classes.

Package the programming artifacts in the preceding list into either an EJB JAR file (a standalone
module that stores the enterprise bean), or within a web application archive (WAR) module.

Packaging Enterprise Beans In EJB JAR Modules
An EJB JAR file is portable and can be used for different applications.

To assemble a Java EE application, package one or more modules (such as EJB JAR files) into an
EAR file, the archive file that holds the application. When deploying the EAR file that contains
the enterprise bean’s EJB JAR file, you also deploy the enterprise bean to the Enterprise Server.
You can also deploy an EJB JAR that is not contained in an EAR file. Figure 14-2 shows the
contents of an EJB JAR file.

The Java EE 6 Tutorial, Volume | « December 2009

The Contents of an Enterprise Bean

Assembly
Root

META-INF

—
) S

All .class files
for this module

ejb-jar.xml

sun-oipjarxml MANIFESTMF

FIGURE 14-2 Structure of an Enterprise Bean JAR

Packaging Enterprise Beansin WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application's WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the
WEB-INF/1ib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb- jar.xml deployment
descriptor. If the application uses ejb-jar.xml, it must be located in the WAR module's
WEB- INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered E]JB JAR files, even if the bundled JAR file conforms to the format of an EJB JAR file.
The enterprise beans contained within the JAR file are semantically equivalent to enterprise
beans located in the WAR module's WEB- INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

EXAMPLE 14-8 Enterprise Beans Packaged In A WAR Module

Suppose a web application consisted of a shopping cart enterprise bean, a credit card processing
enterprise bean, and a Java servlet front-end. The shopping cart bean exposes a local,
no-interface view and is defined as follows:

Chapter 14 - Enterprise Beans 265

Naming Conventions for Enterprise Beans

EXAMPLE 14-8 Enterprise Beans Packaged In A WAR Module (Continued)

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc. jar. It exposes a local,
no-interface view and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet handles the web front-end and uses both
CartBean and CreditCardBean. The WAR module layout for this application looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 14-2 summarizes the conventions for the example
beans in this tutorial.

TABLE 14-2 Naming Conventions for Enterprise Beans

Item Syntax Example
Enterprise bean name nameBean AccountBean
Enterprise bean class nameBean AccountBean
Business interface name Account

266 The Java EE 6 Tutorial, Volume | « December 2009

The Life Cycles of Enterprise Beans

The Life Cycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or life cycle. Each type of
enterprise bean (stateful session, stateless session, or message-driven) has a different life cycle.

The descriptions that follow refer to methods that are explained along with the code examples
in the next two chapters. If you are new to enterprise beans, you should skip this section and run
the code examples first.

The Life Cycle of a Stateful Session Bean

Figure 14-3 illustrates the stages that a session bean passes through during its lifetime. The
client initiates the life cycle by obtaining a reference to a stateful session bean. The container
performs any dependency injection and then invokes the method annotated with
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

1. Create
2. Dependency injection, if any
3. PostConstruct callback, if any
4. Init method, or ejbCreate<METHOD>,
if any PrePassivate

callback, if any

"o P ooy PN rossio

PostActivate

1. Remove callback, if any
2. PreDestroy callback, if any

FIGURE 14-3 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by
moving it from memory to secondary storage. (Typically, the EJB container uses a
least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the
method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes
abusiness method on the bean while it is in the passive stage, the EJB container activates the
bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

At the end of the life cycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for
garbage collection.

Chapter 14 - Enterprise Beans 267

The Life Cycles of Enterprise Beans

268

Your code controls the invocation of only one lifecycle method: the method annotated @Remove.
All other methods in Figure 14-3 are invoked by the EJB container. See Chapter 28, “Resource
Connections,” for more information.

The Lifecycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its life cycle has only two stages: nonexistent
and ready for the invocation of business methods. Figure 144 illustrates the stages of a stateless
session bean.

1. Dependency injection, if any
2. PostConstruct callbacks, if any

Does Not

Exist Ready

PreDestroy callbacks, if any
FIGURE 14-4 Lifecycle of a Stateless Session Bean

The EJB container typically creates and maintains a pool of stateless session beans, beginning
the stateless session bean's lifecycle. The container performs any dependency injection and then
invokes the method annotated @PostConstruct, if it exists. The bean is now ready to have its
business methods invoked by a client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton Session Bean

Like a stateless session bean, a singleton session bean is never passivated and has only two
stages: nonexistent and ready for the invocation of business methods.

The Java EE 6 Tutorial, Volume | « December 2009

The Life Cycles of Enterprise Beans

1. Dependency injection, if any
2. PostConstruct callbacks, if any

PreDestroy callbacks, if any

FIGURE 14-5 Lifecycle of a Singleton Session Bean

The EJB container initiates the singleton session bean lifecycle by creating the singleton
instance. This occurs upon application deployment if the singleton is annotated with the
@Startup annotation The container performs any dependency injection and then invokes the
method annotated @PostConstruct, if it exists. The singleton session bean is now ready to have
its business methods invoked by the client.

At the end of the lifecycle, the EJB container calls the method annotated @reDestroy, if it
exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of a Message-Driven Bean

Figure 14-6 illustrates the stages in the life cycle of a message-driven bean.

1. Dependency injection, if any
2. PostConstruct callback, if any w

Does Not onMessage Ready

Exist

& PreDestroy callback, if any 4J

FIGURE 14-6 Life Cycle of a Message-Driven Bean

The EJB container usually creates a pool of message-driven bean instances. For each instance,
the EJB container performs these tasks:

1. Ifthe message-driven bean uses dependency injection, the container injects these references
before instantiating the instance.

2. The container calls the method annotated @PostConstruct, ifany.

Chapter 14 - Enterprise Beans 269

Further Information about Enterprise Beans

Like a stateless session bean, a message-driven bean is never passivated, and it has only two
states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the method annotated @PreDestroy, ifany. The
bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans

For more information on Enterprise JavaBeans technology, see:

= Enterprise JavaBeans 3.1 specification:
http://java.sun.com/products/ejb/docs.html

= The Enterprise JavaBeans web site:

http://java.sun.com/products/ejb

270 The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

L K R 4 CHAPTER 15

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application named
converter. The purpose of converter is to calculate currency conversions between Japanese
yen and Eurodollars. converter consists of an enterprise bean, which performs the
calculations, and two types of clients: an application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

Create the enterprise bean: ConverterBean.
Create the web client.

Deploy converter onto the server.

Using a browser, run the web client.

Ll

Before proceeding, make sure that you've done the following:

= Read Chapter 1, “Overview.”
= Become familiar with enterprise beans (see Chapter 14, “Enterprise Beans”).
= Started the server (see “Starting and Stopping the Enterprise Server” on page 58).

Creating the Enterprise Bean

The enterprise bean in our example is a stateless session bean called ConverterBean. The source
code for ConverterBean is in the tut-install/examples/ejb/converter/src/java/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code with the Ant tool

271

Creating the Enterprise Bean

Coding the Enterprise Bean

The enterprise bean in this example needs the following code:

= Enterprise bean class

Coding the Enterprise Bean Class

The enterprise bean class for this example is called ConverterBean. This class implements two
business methods (dollarToYen and yenToEuro). Because the enterprise bean class doesn't
implement a business interface, the enterprise bean exposes a local, no-interface view. The
public methods in the enterprise bean class are available to clients that obtain a reference to
ConverterBean. The source code for the ConverterBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;
import javax.ejb.*;

@Stateless

public class ConverterBean {
private BigDecimal yenRate = new BigDecimal("115.3100")
private BigDecimal euroRate = new BigDecimal("0.0071")

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND UP);

public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal.ROUND UP);

}

Note the @Stateless annotation decorating the enterprise bean class. This lets the container
know that ConverterBean is a stateless session bean.

Creating the converter Web Client

The web client is contained in the servlet class
tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java. A
Java servlet is a web component that responds to HTTP requests.

272 The Java EE 6 Tutorial, Volume | « December 2009

Creating the Enterprise Bean

Coding the converter Web Client

The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the private
member variable converterBean, which is of type ConverterBean. ConverterBean exposes a
local, no-interface view, so the enterprise bean implementation class is the variable type.

@WebServlet

public class ConverterServlet extends HttpServlet {
@EJB
ConverterBean converterBean;

}

When the user enters an amount to be converted to Yen and Euro, the amount is retrieved from
the request parameters, then the ConverterBean.dollarToYen and
ConverterBean.yenToEuro methods are called.

try {

String amount = request.getParameter("“amount");

if (amount !'= null && amount.length() > 0) {
// convert the amount to a BigDecimal from the request parameter
BigDecimal d = new BigDecimal(amount);
// call the ConverterBean.dollarToYen() method to get the amount
// in Yen
BigDecimal yenAmount = converter.dollarToYen(d);

// call the ConverterBean.yenToEuro() method to get the amount

// in Euros
BigDecimal euroAmount = converter.yenToEuro(yenAmount);

}

The results are displayed to the user.

Compiling, Packaging, and Running the converter
Example

Now you are ready to compile the enterprise bean class (ConverterBean. java) and the servlet
class (ConverterServlet. java), and package the compiled classes into a WAR file.

Chapter 15 - Getting Started with Enterprise Beans 273

Creating the Enterprise Bean

274

Compiling, Packaging, and Running the converter Examplein
NetBeans IDE

Follow these instructions to build and package the converter example in NetBeans IDE.
. In NetBeans IDE, select File—Open Project.
. Inthe Open Project dialog, navigate to tut-install/examples/ejb/.
. Select the converter folder.

1
2
3
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.

6

. Inthe Projects tab, right-click the converter project and select Run. A web browser window
will open the URL http://localhost:8080/converter

Compiling, Packaging, and Running the converter Example Using Ant
To compile and package converter using Ant, do the following:
1. Inaterminal window, go to this directory:
tut-install/examples/ejb/converter/
2. Type the following command:
ant all
3. Opena web browser to the following URL:
http://localhost:8080/converter
This command calls the default task, which compiles the source files for the enterprise bean
and the servlet, placing the class files in the build subdirectory (not the src directory) of the

project. The default task packages the project into a WAR module: converter.war. For more
information about the Ant tool, see “Building the Examples” on page 60.

Note - When compiling the code, the preceding ant task includes the Java EE API JAR files in
the classpath. These JARs reside in the modules directory of your Enterprise Server installation.
If you plan to use other tools to compile the source code for Java EE components, make sure
that the classpath includes the Java EE API JAR files.

After entering 100 in the input field and clicking Submit, you should see the screen shown in
Figure 15-1.

The Java EE 6 Tutorial, Volume | « December 2009

Modifying the Java EE Application

File Edit WView Go Bookmarks Tools Help

<}§| T L:\, - @ '_' @ |_| http: fflocalhost: 8080 /converter/ [VJ @,

Converter

Enter an amount to convert:

Done Adblock

FIGURE 15-1 converter Web Client

Modifying the Java EE Application

The Enterprise Server supports iterative development. Whenever you make a change to a Java
EE application, you must redeploy the application.

Modifying a Class File

To modify a class file in an enterprise bean, you change the source code, recompile it, and
redeploy the application. For example, if you want to change the exchange rate in the
dollarToYen business method of the ConverterBean class, you would follow these steps.

1. Edit ConverterBean. java and save the file.

2. Recompile ConverterBean. java in NetBeans IDE by right-clicking the converter project
and selecting Run.

This recompiles the ConverterBean. java file, replaces the old class file in the build
directory, and redeploys the application to Enterprise Server.

3. Recompile ConverterBean. java using Ant.
a. Inaterminal window, go to the tut-install/examples/ejb/converter/ subdirectory.
b. Type the following command:

ant all
This command repackages, deploys, and runs the application.

To modify ConvererServlet the procedure is the same as that described in the preceding steps.

Chapter 15 - Getting Started with Enterprise Beans 275

276

L K R 4 CHAPTER 16

Running the Enterprise Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within an
application. They can be accessed from remote Java clients, web service clients, and from
components running in the same server.

In Chapter 15, “Getting Started with Enterprise Beans,” you built a stateless session bean named
ConverterBean. This chapter examines the source code of four more session beans:

= CartBean: astateful session bean that is accessed by a remote client

= CounterBean:asingleton session bean.

= HelloServiceBean: a stateless session bean that implements a web service
= TimerSessionBean: a stateless session bean that sets a timer

The cart Example

The cart example represents a shopping cart in an online bookstore, and uses a stateful session
bean to manage the operations of the shopping cart. The bean’s client can add a book to the cart,
remove a book, or retrieve the cart’s contents. To assemble cart, you need the following code:

= Session bean class (CartBean)
®m Remote business interface (Cart)

All session beans require a session bean class. All enterprise beans that permit remote access
must have a remote business interface. To meet the needs of a specific application, an enterprise
bean may also need some helper classes. The CartBean session bean uses two helper classes
(BookException and IdVerifier) which are discussed in the section “Helper Classes” on

page 282.

The source code for this example is in the tut-install/examples/ejb/cart/ directory.

277

The cart Example

278

The Business Interface

The Cart business interface is a plain Java interface that defines all the business methods
implemented in the bean class. If the bean class implements a single interface, that interface is
assumed to the business interface. The business interface is a local interface unless it is
annotated with the javax.ejb.Remote annotation; the javax.ejb.Local annotation is
optional in this case.

The bean class may implement more than one interface. If the bean class implements more than
one interface, either the business interfaces must be explicitly annotated either @Local or
@Remote, or the business interfaces must be specified by decorating the bean class with @Local
or @emote. However, the following interfaces are excluded when determining if the bean class
implements more than one interface:

® java.io.Serializable
® java.io.Externalizable
= Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:
package com.sun.tutorial.javaee.ejb;

import java.util.List;
import javax.ejb.Remote;

@Remote
public interface Cart {
public void initialize(String person) throws BookException;
public void initialize(String person, String id)
throws BookException;
public void addBook(String title);
public void removeBook(String title) throws BookException;
public List<String> getContents();
public void remove();

Session Bean Class

The session bean class for this example is called CartBean. Like any stateful session bean, the
CartBean class must meet these requirements:

= The classis annotated @Stateful.
= The class implements the business methods defined in the business interface.

The Java EE 6 Tutorial, Volume | « December 2009

The cart Example

Stateful session beans also may:

Implement the business interface, a plain Java interface. It is good practice to implement the
bean’s business interface.

Implement any optional life cycle callback methods, annotated @PostConstruct,
@PreDestroy, @ostActivate,and @PrePassivate.

Implement any optional business methods annotated @Remove.

The source code for the CartBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.util.ArraylList;
import java.util.List;
import javax.ejb.Remove;
import javax.ejb.Stateful;

@Stateful
public class CartBean implements Cart {

String customerName;
String customerlId;
List<String> contents;

public void initialize(String person) throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {
customerName = person;

customerId = "0";
contents = new ArraylList<String>();

public void initialize(String person, String id)
throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {

customerName = person;

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {
customerId = id;
} else {

Chapter 16 « Running the Enterprise Bean Examples 279

The cart Example

280

throw new BookException("Invalid id: " + id);

contents = new ArraylList<String>();

public void addBook(String title) {
contents.add(title);

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {
throw new BookException(title +

not in cart.");

public List<String> getContents() {
return contents;

@Remove
public void remove() {
contents = null;

Lifecycle Callback Methods

Methods in the bean class may be declared as a lifecycle callback method by annotating the
method with the following annotations:

javax.annotation.PostConstruct
javax.annotation.PreDestroy
javax.ejb.PostActivate
javax.ejb.PrePassivate

Lifecycle callback methods must return void and have no parameters.

@PostConstruct methods are invoked by the container on newly constructed bean instances
after all dependency injection has completed and before the first business method is invoked on
the enterprise bean.

@PreDestroy methods are invoked after any method annotated @Remove has completed, and
before the container removes the enterprise bean instance.

@PostActivate methods are invoked by the container after the container moves the bean from
secondary storage to active status.

The Java EE 6 Tutorial, Volume | « December 2009

The cart Example

@PrePassivate methods are invoked by the container before the container passivates the
enterprise bean, meaning the container temporarily removes the bean from the environment
and saves it to secondary storage.

Business Methods

The primary purpose of a session bean is to run business tasks for the client. The client invokes
business methods on the object reference it gets from dependency injection or JNDI lookup.
From the client’s perspective, the business methods appear to run locally, but they actually run
remotely in the session bean. The following code snippet shows how the CartClient program
invokes the business methods:

cart.create("Duke DeEarl", "123")
cart.addBook("Bel Canto");
List<String> bookList = cart.getContents();

cart.removeBook("Gravity’s Rainbow")

The CartBean class implements the business methods in the following code:

public void addBook(String title) {
contents.addElement (title);

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {
throw new BookException(title + "not in cart.");

public List<String> getContents() {
return contents;

i
The signature of a business method must conform to these rules:

= The method name must not begin with ejb to avoid conflicts with callback methods defined
by the EJB architecture. For example, you cannot call a business method ejbCreate or
ejbActivate.

m The access control modifier must be public.

= Ifthe bean allows remote access through a remote business interface, the arguments and
return types must be legal types for the Java RMI API.

= Ifthe bean is a web service endpoint, the arguments and return types for the methods
annotated @WebMethod must be legal types for JAX-WS.

Chapter 16 « Running the Enterprise Bean Examples 281

The cart Example

282

= The modifier must not be static or final.

The throws clause can include exceptions that you define for your application. The removeBook
method, for example, throws a BookException if the book is not in the cart.

To indicate a system-level problem, such as the inability to connect to a database, a business
method should throw a javax.ejb.EJBException. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of RuntimeException,
you do not need to include it in the throws clause of the business method.

The Remove Method

Business methods annotated with javax.ejb.Remove in the stateful session bean class can be
invoked by enterprise bean clients to remove the bean instance. The container will remove the
enterprise bean after a @Remove method completes, either normally or abnormally.

In CartBean, the remove method is a @Remove method:

@Remove
public void remove() {
contents = null;

Helper Classes

The CartBean session bean has two helper classes: BookException and Idverifier. The
BookException is thrown by the removeBook method, and the IdVerifier validates the
customerIdin one of the create methods. Helper classes may reside in an EJB JAR file that
contains the enterprise bean class, a WAR file if the enterprise bean is packaged within a WAR,
orin an EAR that contains an EJB JAR or a WAR file that contains an enterprise bean.

Building, Packaging, Deploying, and Running the cart
Example

You can build, package, deploy, and run the cart application using either NetBeans IDE or the
Anttool.

The Java EE 6 Tutorial, Volume | « December 2009

The cart Example

Building, Packaging, and Deploying the cart Example Using NetBeans
IDE

Follow these instructions to build, package, and deploy the cart example to your Application
Server instance using the NetBeans IDE IDE.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.

Select the cart folder.

Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project Folder.

In the Projects tab, right-click the cart project and select Deploy Project.

S e

This builds and packages the application into cart.ear, located in
tut-install/examples/ejb/cart/dist/, and deploys this EAR file to your Application Server
instance.

Running the cart Application Client Using NetBeans IDE

To run cart’s application client, select Run—Run Main Project. You will see the output of the
application client in the Output pane:

Retrieving book title from cart: Infinite Jest
Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore
Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.
Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

Building, Packaging, and Deploying the cart Example Using Ant

Now you are ready to compile the remote interface (Cart.java), the home interface
(CartHome. java), the enterprise bean class (CartBean. java), the client class
(CartClient.java), and the helper classes (BookException.javaand IdVerifier.java).

1. Inaterminal window, go to this directory:

tut-install/examples/ejb/cart/

2. Type the following command:

ant

This command calls the default target, which builds and packages the application into an
EARfile, cart.ear,located in the dist directory.

Chapter 16 « Running the Enterprise Bean Examples 283

The cart Example

3. Type the following command:

ant deploy

cart.ear will be deployed to the Application Server.

Running the cart Application Client Using Ant

When you run the client, the application client container injects any component references
declared in the application client class, in this case the reference to the Cart enterprise bean. To
run the application client, perform the following steps.

1. Inaterminal window, go to this directory:
tut-install/examples/ejb/cart/
2. Type the following command:
ant run
This task will retrieve the application client JAR, cartClient. jar and run the application
client. cartClient. jar contains the application client class, the helper class
BookException, and the Cart business interface.
This is the equivalent of running:
appclient -client cartClient.jar
3. Inthe terminal window, the client displays these lines:

[echo
[exec

running application client container.
Retrieving book title from cart: Infinite Jest
[exec] Retrieving book title from cart: Bel Canto

1
]
1
[exec] Retrieving book title from cart: Kafka on the Shore
]
1
1

[exec] Removing "Gravity’s Rainbow" from cart.
[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.
[exec] Result: 1

The all Task

As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

284 The Java EE 6 Tutorial, Volume | « December 2009

A Singleton Session Bean Example: counter

Undeploying the cart Example

To undeploy cart.ear using NetBeans IDE:
1. Click the Runtime tab.

2. Expand the Servers node and locate the Application Server instance to which you deployed
cart.

3. Expand your Application Server instance node, then Applications—Enterprise
Applications.

4. Right-click cart and select Undeploy.

To undeploy cart.ear using Ant, enter the following command:

ant undeploy

A Singleton Session Bean Example: counter

The counter example demonstrates how to create a singleton session bean.

Creating a Singleton Session Bean

The javax.ejb.Singleton annotation is used to specify that the enterprise bean
implementation class is a singleton session bean.

@Singleton
public class SingletonBean { ... }

Initializing Singleton Session Beans

The EJB container is responsible for determining when to initialize a singleton session bean
instance unless the singleton session bean implementation class is annotated with the
javax.ejb.Startup annotation. This is sometimes called eager initialization. In this case, the
EJB container must initialize the singleton session bean upon application startup. The singleton
session bean is initialized before the EJB container delivers client requests to any enterprise
beans in the application. This allows the singleton session bean to perform, for example,
application startup tasks.

EXAMPLE 16-1 An Eagerly Initialized Singleton Session Bean

The following singleton session bean stores the status of an application, and is eagerly
initialized:

Chapter 16 « Running the Enterprise Bean Examples 285

A Singleton Session Bean Example: counter

286

EXAMPLE16-1 An Eagerly Initialized Singleton Session Bean (Continued)

@Startup

@Singleton

public class StatusBean {
private String status;

@PostConstruct
void init {
status = "Ready"

}

Sometimes multiple singleton session beans are used to initialize data for an application, and
therefore must be initialized in a specific order. In these cases, use the javax.ejb.DependsOn
annotation to declare the startup dependencies of the singleton session bean. The @Depends0On
annotation's value attribute is one or more strings that specify the name of the target singleton
session bean. If more than one dependent singleton bean is specifies in @ependsOn, the order
that they are listed is not necessarily the order that the EJB container will initialize the target
singleton session beans.

EXAMPLE 16-2 Specifying the Ordering Of Singleton Session Bean Initialization
The following singleton session bean, PrimaryBean should be started up first:

@Singleton
public class PrimaryBean { ... }

SecondaryBean depends on PrimaryBean:

@Singleton
@DependsOn ("PrimaryBean")
public class SecondaryBean { ... }

This guarantees that the EJB container will initialize PrimaryBean before SecondaryBean.

EXAMPLE 16-3 Specifying Multiple Dependent Singleton Session Beans

The following singleton session bean, TertiaryBean, depends on PrimaryBean and
SecondaryBean:

@Singleton
@DependsOn ("PrimaryBean", "SecondaryBean")
public class TertiaryBean { ... }

The Java EE 6 Tutorial, Volume | « December 2009

A Singleton Session Bean Example: counter

EXAMPLE 16-3 Specifying Multiple Dependent Singleton Session Beans (Continued)

SecondaryBean explicitly requires PrimaryBean to be initialized before it is initialized (through
it's own @DependsOn annotation). In this case, the EJB container will first initialize
PrimaryBean, then SecondaryBean, and finally TertiaryBean.

If, however, SecondaryBean did not explicitly depend on PrimaryBean, the EJB container may
initialize either PrimaryBean or SecondaryBean first. That is, the EJB container could initialize
the singletons in the following order: SecondaryBean, PrimaryBean, TertiaryBean.

Managing Concurrent Access in a Singleton Session Bean

Singleton session beans are designed for concurrent access, or situations where many clients
need to access a single instance of a session bean at the same time. A singleton's client only
needs a reference to a singleton in order to invoke any business methods exposed by the
singleton, and doesn't need to worry about any other clients that may be simultaneously
invoking business methods on the same singleton.

When creating a singleton session bean there are two ways of controlling concurrent access to
the singleton's business methods: container-managed concurrency and bean-managed
concurrency.

The javax.ejb.ConcurrencyManagement annotation is used to specify either
container-managed or bean-managed concurrency for the singleton.
@ConcurrencyManagement requires a type attribute to be set, one of
javax.ejb.ConcurrencyManagementType.CONTAINER or
javax.ejb.ConcurrencyManagementType.BEAN. If no @oncurrencyManagement annotation is
present on the singleton implementation class, the EJB container default of container-managed
concurrency is used.

Container-Managed Concurrency

If a singleton uses container-managed concurrency, the EJB container controls client access to
the business methods of the singleton. The javax.ejb.Lock annotation and a
javax.ejb.LockType type are used to specify the access level of the singleton's business
methods or @Timeout methods.

Annotate a singleton's business or timeout method using @Lock (READ) if the method can be
concurrently accessed, or shared, with many clients. Annotate the business or timeout method
with @Lock (WRITE) if the singleton session bean should be locked to other clients while a client
is calling that method. Typically, the @ ock (WRITE) annotation is used when clients are
modifying the state of the singleton.

Annotating a singleton class with @Lock specifies that all the business methods and any timeout
methods of the singleton will use the specified lock type unless they explicitly set the lock type
with a method-level @Lock annotation. If no @Lock annotation is present on the singleton class,
the default lock type of @Lock (WRITE) is applied to all business and timeout methods.

Chapter 16 « Running the Enterprise Bean Examples 287

A Singleton Session Bean Example: counter

EXAMPLE 16-4 Specifying Container-Managed Concurrency in a Singleton Session Bean

The following example shows how to use the @ConcurrencyManagement, @Lock (READ), and
@Lock (WRITE) annotations for a singleton that uses container-managed concurrency.

Although by default singletons use container-managed concurrency, the
@ConcurrencyManagement (CONTAINER) annotation may be added at the class level of the
singleton to explicitly set the concurrency management type.

@ConcurrencyManagement (CONTAINER)

@Singleton

public class ExampleSingletonBean {
private String state;

@Lock (READ)
public String getState() {
return state;

@Lock (WRITE)
public void setState(String newState) {
state = newState;
}
}

The getState method can be accessed by many clients at the same time, because it is annotated
with @Lock (READ). When the setState method is called, however, all the methods in
ExampleSingletonBean will be locked to other clients because setState is annotated with
@Lock (WRITE). This prevents two clients from attempting to simultaneously change the state
variable of ExampleSingletonBean.

EXAMPLE 16-5 Using Class- and Method-Level @Lock Annotations in a Singleton Session Bean

The getData and getStatus methods in the following singleton are of type READ, and the
setStatus method is of type WRITE:

@Singleton

@Lock (READ)

public class SharedSingletonBean {
private String data;
private String status;

public String getData() {
return data;

public String getStatus() {

288 The Java EE 6 Tutorial, Volume | « December 2009

A Singleton Session Bean Example: counter

EXAMPLE 16-5 Using Class- and Method-Level @.ock Annotations in a Singleton Session Bean
(Continued)

return status;

}

@Lock (WRITE)
public void setStatus(String newStatus) {
status = newStatus;

}
}

If a method is of locking type WRITE, client access to all the singleton's methods are blocked until
the current client finishes its method call, or an access timeout occurs. When an access timeout
occurs, the E]JB container throws a javax.ejb.ConcurrentAccessTimeoutException. The
javax.ejb.AccessTimeout annotation is used to specify the number of milliseconds before an
access timeout occurs. If @AccessTimeout is added at the class level of a singleton, it specifies the
access timeout value for all methods in the singleton unless a method explicitly overrides the
default with its own @AccessTimeout annotation.

The @AccessTimeout annotation can be applied to both @Lock (READ) and @Lock (WRITE)
methods.

@AccessTimeout has one required element, value, and one optional element, timeUnit. By
default, the value is specified in milliseconds. To change the value unit, set timeUnit to one of
the java.util.concurrent.TimeUnit constants: MICROSECONDS, MILLISECONDS,
MICROSECONDS, or SECONDS.

EXAMPLE 16-6 Setting the Access Timeout in a Singleton

The following singleton has a default access timeout value of 120,000 milliseconds, or 2
minutes. The doTediousOperation method overrides the default access timeout and sets the
value to 360,000 milliseconds, or 6 minutes.

@Singleton

@AccessTimeout (value=120000)

public class StatusSingletonBean {
private String status;

@Lock (WRITE)
public void setStatus(String new Status) {
status = newStatus;

i
@Lock (WRITE)

@AccessTimeout (value=360000)
public void doTediousOperation {

Chapter 16 « Running the Enterprise Bean Examples 289

A Singleton Session Bean Example: counter

290

EXAMPLE 16-6 Setting the Access Timeout in a Singleton (Continued)

EXAMPLE 16-7 Setting the Access Timeout in a Singleton in Seconds

The following singleton has a default access timeout value of 60 seconds, specified using the
TimeUnit.SECONDS constant.

@Singleton
@AccessTimeout (value=60, timeUnit=SECONDS)
public class StatusSingletonBean { ... }

Bean-Managed Concurrency

Singletons that use bean-managed concurrency allow full concurrent access to all the business
and timeout methods in the singleton. The developer of the singleton is responsible for
ensuring that the state of the singleton is synchronized across all clients. Developers who create
singletons with bean-managed concurrency are allowed to use the Java programming language
synchronization primitives like synchronization and volatile to prevent errors during
concurrent access.

EXAMPLE 16-8 Specifying Bean-Managed Concurrency in a Singleton Session Bean
Add a@ConcurrencyManagement annotation at the class level of the singleton to specify

bean-managed concurrency.

@ConcurrencyManagement (BEAN)
@Singleton
public class AnotherSingletonBean { ... }

Handling Errors in a Singleton Session Bean

If a singleton session bean encounters an error when it is initialized by the EJB container, that
singleton instance will be destroyed.

Unlike other enterprise beans, once a singleton session bean instance is initialized it is not
destroyed if the singleton's business or lifecycle methods cause system exceptions. This ensures
that the same singleton instance is used throughout the application lifecycle.

The Architecture of the counter Example

The counter example consists of a singleton session bean, CounterBean, and a JavaServer Faces
Facelets web front-end.

The Java EE 6 Tutorial, Volume | « December 2009

A Singleton Session Bean Example: counter

CounterBean is a simple singleton with one method, getHits, that returns an integer
representing the number of times a web page has been accessed. Here is the code of
CounterBean:

package counter.ejb;
import javax.ejb.Singleton;

/**
*
* @author ian
* CounterBean is a simple singleton session bean that records the number
* of hits to a web page.
*/
@Singleton
public class CounterBean {
private int hits = 1;

// Increment and return the number of hits
public int getHits() {
return hits++;

}

The @Singleton annotation marks CounterBean as a singleton session bean. CounterBean uses
alocal, no-interface view.

CounterBean uses the EJB container's default metadata values for singletons to simplify the
coding of the singleton implementation class. There is no @ConcurrencyManagement
annotation on the class, so the default of container-managed concurrency access is applied.
There is no @Lock annotation on the class or business method, so the default of @Lock (WRITE) is
applied to the only business method, getHits. The following version of CounterBean is
functionally equivalent to the version above:

package counter.ejb;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;
import javax.ejb.Lock;

import javax.ejb.LockType.WRITE;

/**

* @author ian

* CounterBean is a simple singleton session bean that records the number
* of hits to a web page.

*/

Chapter 16 « Running the Enterprise Bean Examples 291

A Singleton Session Bean Example: counter

@Singleton

@ConcurrencyManagement (CONTAINER)

public class CounterBean {
private int hits = 1;

// Increment and return the number of hits
@Lock (WRITE)
public int getHits() {

return hits++;

}

The web-front end of counter consists of a JSF managed bean, Count. java, that is used by the
Facelets XHTML files template.xhtml and template-client.xhtml. The Count JSF managed
bean obtains a reference to CounterBean through dependency injection. Count defines a
hitCount JavaBeans property. When the getHitCount getter method is called from the
XHTML files, CounterBean's getHits method is called to return the current number of page
hits.

Here's the Count managed bean class:

@ManagedBean
@SessionScoped
public class Count {
@EJB
private CounterBean counterBean;

private int hitCount;

public Count() {
this.hitCount = 0;

public int getHitCount() {
hitCount = counterBean.getHits();
return hitCount;

public void setHitCount(int newHits) {
this.hitCount = newHits;

}

The template.xhtml and template-client.xhtml files are used to render a Facelets view that
displays the number of hits to that view. The template-client.xhtml file uses an expression
language statement, #{count.hitCount}, to access the hitCount property of the Count
managed bean. Here is the content of template-client.xhtml:

292 The Java EE 6 Tutorial, Volume | « December 2009

A Singleton Session Bean Example: counter

<?xml version="1.0' encoding='UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">
<body>

This text above will not be displayed.
<ui:composition template="/template.xhtml">
This text will not be displayed.

<ui:define name="title">
This page has been accessed #{count.hitCount} time(s).
</ui:define>

This text will also not be displayed.

<ui:define name="body">
Hooray!
</ui:define>

This text will not be displayed.
</ui:composition>
This text below will also not be displayed.

</body>
</html>

Follow these instructions to build, package, and deploy the cart example to your Application
Server instance using the NetBeans IDE IDE.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.

Select the cart folder.

Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project Folder.

In the Projects tab, right-click the cart project and select Deploy Project.

SN

Building, Deploying, and Running the counter
Example

The counter example application can be built, deployed, and run using NetBeans IDE or Ant.

Chapter 16 « Running the Enterprise Bean Examples 293

AWeb Service Example: helloservice

v

Building, Deploying, and Running the counter Example in NetBeans
IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.
Select the counter folder.

Select the Open as Main Project check box.

Click Open Project Folder.

In the Projects tab, right-click the counter project and select Run.

A web browser will open the URL http://localhost:8080/counter that displays the number
of hits.

Click the browser's Refresh button to see the hit count increment.

Building, Deploying, and Running the counter Example Using Ant
In a terminal, navigate to tut-install/examples/ejb/counter.

Enter the following command:
ant all

This will build and deploy counter to your Enterprise Server instance.
In a web browser, enter the following URL: http://localhost:8080/counter.

Click the browser's Refresh button to see the hit count increment.

A Web Service Example: helloservice

294

This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean that
implements a single method, sayHello. This method matches the sayHello method invoked by
the client described in “A Simple JAX-WS Client” on page 214.

The Java EE 6 Tutorial, Volume | « December 2009

AWeb Service Example: helloservice

The Web Service Endpoint Implementation Class

HelloServiceBean is the endpoint implementation class. The endpoint implementation class is
typically the primary programming artifact for enterprise bean web service endpoints. The web
service endpoint implementation class has the following requirements:

The class must be annotated with either the javax. jws.WebService or
javax.jws.WebServiceProvider annotations.

The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation, but is not required to do so. If no
endpointInterface isspecified in @WebService, an SEI is implicitly defined for the
implementing class.

The business methods of the implementing class must be public, and must not be declared
staticor final.

Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See JAXB default data type bindings (http://java.sun.com/
javaee/5/docs/tutorial/doc/bnazq.html#bnazs).

The implementing class must not be declared final and must not be abstract.
The implementing class must have a default public constructor.

The endpoint class must be annotated @Stateless.

The implementing class must not define the finalize method.

The implementing class may use the javax.annotation.PostConstruct or
javax.annotation.PreDestroy annotations on its methods for lifecycle event callbacks.

The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.

The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Stateless Session Bean Implementation Class

The HelloServiceBean class implements the sayHello method, which is annotated
@WebMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebService;

Chapter 16 « Running the Enterprise Bean Examples 295

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

AWeb Service Example: helloservice

296

@Stateless
@WebService
public class HelloServiceBean {

private String message = "Hello,
public void HelloServiceBean() {}

@WebMethod
public String sayHello(String name) {

return message + name +

}

Building, Packaging, Deploying, and Testing the
helloservice Example

You can build, package, and deploy the helloservice example using either NetBeans IDE or
Ant. You can then use the Admin Console to test the web service endpoint methods.

Building, Packaging, and Deploying the helloservice Example Using
NetBeans IDE

Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

. In NetBeans IDE, select File—Open Project.
. Inthe Open Project dialog, navigate to tut-install/examples/ejb/.
. Select the helloservice folder.

1
2
3
4.
5
6

Select the Open as Main Project and Open Required Projects check boxes.

. Click Open Project Folder.
. Inthe Projects tab, right-click the helloservice project and select Deploy Project.

This builds and packages to application into helloservice.ear,located in
tut-install/examples/ejb/helloservice/dist, and deploys this ear file to your Application
Server instance.

The Java EE 6 Tutorial, Volume | « December 2009

AWeb Service Example: helloservice

Building, Packaging, and Deploying the helloservice Example Using
Ant

Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using Ant.

1. Inaterminal window, go to the tut-install/examples/ejb/helloservice/ directory.
2. Tobuild helloservice, type the following command:
ant
This runs the default task, which compiles the source files and packages the application

into a JAR file located at
tut-install/examples/ejb/helloservice/dist/helloservice.jar.

3. Todeploy helloservice, type the following command:
ant deploy

Upon deployment, the Application Server generates additional artifacts required for web
service invocation, including the WSDL file.

Testing the Service without a Client

1. The Application Server Admin Console allows you to test the methods of a web service
endpoint. To test the sayHello method of HelloServiceBean, do the following: Open the
Admin Console by opening the following URL in a web browser:

http://localhost:4848/

Enter the admin username and password to log in to the Admin Console.
Click Web Services in the left pane of the Admin Console.

Click helloservice.

Click Test.

Under Methods, enter a name as the parameter to the sayHello method.

Click the sayHello button.

A L o

This will take you to the sayHel1lo Method invocation page.
8. Under Method returned, you’ll see the response from the endpoint.

Chapter 16 « Running the Enterprise Bean Examples 297

Using the Timer Service

Using the Timer Service

298

Applications that model business work flows often rely on timed notifications. The timer
service of the enterprise bean container enables you to schedule timed notifications for all types
of enterprise beans except for stateful session beans. You can schedule a timed notification to
occur according to a calendar schedule, at a specific time, after a duration of time, or at timed
intervals. For example, you could set timers to go off at 10:30 AM on May 23, in 30 days, or
every 12 hours.

There are two types of enterprise bean timers: programmatic timers and automatic timers.
Programmatic timers are set by explicitly calling one of the timer creation methods of the
TimerService interface. Automatic timers are created upon the successful deployment of an
enterprise bean that contains a method annotated with the java.ejb.Schedule or
java.ejb.Schedules annotations.

Creating Calendar-Based Timer Expressions

Timers can be set according to a calendar-based schedule, expressed using a syntax similar to
the UNIX cron utility. Both programmatic and automatic timers can use calendar-based timer
expressions.

TABLE 16-1 Calendar-Based Timer Attributes

Attribute Description Allowable Values DefaultValue Examples
second One or more 0to59 0 second="30"
seconds within a
minute.
minute One or more 0to 59 0 minute="15"
minutes within an
hour.
hour One or more 0to23 0 hour="13"
hours within a
day.
dayOfWeek One or moredays 0to7' * dayOfWeek="3"

within a week.) .
Sun, Mon, Tue, Wed, Thu, Fri, Sat dayOfWeek="Mon

! Both @ and 7 refer to Sunday.

The Java EE 6 Tutorial, Volume | « December 2009

Using the Timer Service

TABLE 16-1 Calendar-Based Timer Attributes (Continued)
Attribute Description Allowable Values DefaultValue Examples
dayOfMonth Oneormoredays 1to31 * dayOfMonth="15"
within a month. N .
-7to-1 dayOfMonth="-3
Last dayOfMonth="Last"
[1st, 2nd, 3rd, 4th, 5th, Last] [Sun, Mon, dayOfMonth="2nd
Tue, Wed, Thu, Fri, Sat] Fri"
month One or more 1to 12 * month="7"
months within a . .
car Jan, Feb,Mar, Apr, May, Jun, Jul, Aug, Sep, month="July
year. Oct, Nov, Dec
year A particular A four-digit calendar year. * year="2010"
calendar year.

% A negative number means the xth day or days before the end of the month.

Specifying Multiple Values in Calendar Expressions

You can specify multiple values in calendar expressions in the following ways:

“Using Wildcards in Calendar Expressions” on page 299
“Specifying a List of Values” on page 299

“Specifying a Range of Values” on page 300

“Specifying Intervals” on page 300

Using Wildcards in Calendar Expressions

Setting an attribute to an asterisk symbol (*) represents all allowable values for the attribute.

EXAMPLE 16-9 Calendar Expressions with Wildcards

The following expression represents every minute:
minute="*"

The following expression represents every day of the week:

dayOfWeek="*"

Specifying a List of Values

To specify two or more values for an attribute, use a comma (,) to separate the values. A range
of values are allowed as part of a list. Wildcards and intervals, however, are not allowed.

Duplicates within a list are ignored.

Chapter 16 « Running the Enterprise Bean Examples 299

Using the Timer Service

300

EXAMPLE 16-10 Calendar Expressions with a List of Values
The following expression sets the day of the week to Tuesday and Thursday:
dayOfWeek="Tue, Thu"

The following expression represents 4:00 AM, every hour from 9:00 AM to 5:00 PM using a
range, and 10:00 PM:

hour="4,9-17,20"

Specifying a Range of Values

Use a dash character (-) to specify an inclusive range of values for an attribute. Members of a
range cannot be wildcards, lists, or intervals. If the range is of the form x-x, it is equivalent to the
single-valued expression x. If the range is of the form x-y and x is greater than y, it is equivalent
to the expression x - maximum value, minimum value-y. That is, the expression begins at x,
rolls-over to the beginning of the allowable values, and continues up to y.

EXAMPLE16-11 Calendar Expressions Using Ranges

The following expression represents 9:00 AM to 5:00 PM:
hour="9-17"

The following expression represents Friday through Monday:
dayOfWeek="5-1"

The following expression represents the 25th day of the month to the end of the month, and the
beginning of the month to the 5th day of the month:

dayOfMonth="25-5"

It is equivalent to the following expression:

dayOfMonth="25-Last,1-5"

Specifying Intervals

The forward slash (/) constrains an attribute to a starting point and an interval. It is used to
specify every N seconds, minutes, or hours within the minute, hour or day. For an expression of
the form x/y, x represents the starting point and y represents the interval. The wildcard
character may be used in the x position of an interval, and is equivalent to setting x to 0.

Intervals may only be set for second, minute, and hour attributes.

The Java EE 6 Tutorial, Volume | « December 2009

Using the Timer Service

EXAMPLE 16-12 Calendar Expressions Using Intervals

The following expression represents every 10 minutes within the hour:

minute="*/10"

It is equivalent to:

minute="0,10,20,30,40,50"

The following expression represents every two hours starting at noon:

hour="12/2"

Programmatic Timers

When a programmatic timer expires (goes off), the container calls the method annotated
@Timeout in the bean’s implementation class. The @Timeout method contains the business logic
that handles the timed event.

The Timeout Method

Methods annotated @Timeout in the enterprise bean class must return void and optionally take
a javax.ejb.Timer object as the only parameter. They may not throw application exceptions.

@Timeout
public void timeout(Timer timer) {
System.out.println("TimerBean: timeout occurred");

Creating Programmatic Timers

To create a timer, the bean invokes one of the create methods of the TimerService interface.
The create methods of TimerService allow single-action, interval, or calendar-based timers to
be created.

For single-action or interval timers, the expiration of the timer can be expressed either as a
duration or an absolute time. The duration is expressed as a the number of milliseconds before a
timeout event is triggered. To specify an absolute time, create a java.util.Date object and
pass it to either the TimerService.createSingleActionTimer or TimerService.createTimer
methods.

EXAMPLE 16-13 Setting a Programmatic Timer Based On a Duration

The following code sets a programmatic timer that will expire in one minute (6000
milliseconds):

Chapter 16 « Running the Enterprise Bean Examples 301

Using the Timer Service

302

EXAMPLE 16-13 Setting a Programmatic Timer Based On a Duration (Continued)

long duration = 6000;
Timer timer = timerService.createSingleActionTimer(duration, new TimerConfig());

EXAMPLE 16-14 Setting a Programmatic Timer Based On an Absolute Time

The following code sets a programmatic timer that will expire at 12:05 PM on May Ist, 2010,
specified asa java.util.Date:

SimpleDateFormatter formatter = new SimpleDateFormatter("MM/dd/yyyy ‘at’ HH:mm")
Date date = formatter.parse("05/01/2010 at 12:05")
Timer timer = timerService.createSingleActionTimer(date, new TimerConfig());

For calendar-based timers, the expiration of the timer is expressed as a
javax.ejb.ScheduleExpression object, passed as a parameter to the
TimerService.createCalendarTimer method. The ScheduleExpression class represents
calendar-based timer expressions, and has methods that correspond to the attributes described
in “Creating Calendar-Based Timer Expressions” on page 298.

EXAMPLE 16-15 Using ScheduleExpression to Seta Timer

The following code creates a programmatic timer using the ScheduleExpression helper class:

ScheduleExpression schedule = new ScheduleExpression();
schedule.dayOfWeek("Mon")

schedule.hour("12-17, 23");

Timer timer = timerService.createCalendarTimer(schedule);

For details on the method signatures, see the TimerService API documentation at
http://java.sun.com/javaee/6/docs/api/javax/ejb/TimerService.html.

The bean described in “The timersession Example” on page 305 creates a timer as follows:

Timer timer = timerService.createTimer(intervalDuration,
"Created new programmatic timer");

In the timersession example, createTimer is invoked in a business method, which is called by
aclient.

Timers are persistent by default. If the server is shut down (or even crashes), persistent timers
are saved and will become active again when the server is restarted. If a persistent timer expires
while the server is down, the container will call the @Timeout method when the server is
restarted.

The Java EE 6 Tutorial, Volume | « December 2009

http://java.sun.com/javaee/6/docs/api/javax/ejb/TimerService.html

Using the Timer Service

Non-persistent programmatic timers are created by calling
TimerConfig.setPersistent(false) and passing the TimerConfig object to one of the timer
creation methods.

The Date and long parameters of the createTimer methods represent time with the resolution
of milliseconds. However, because the timer service is not intended for real-time applications, a
callback to the @Timeout method might not occur with millisecond precision. The timer service
is for business applications, which typically measure time in hours, days, or longer durations.

AutomaticTimers

Automatic timers are created by the EJB container when an enterprise bean that contains
methods annotated with the @chedule or @chedules annotations is deployed. An enterprise
bean can have multiple automatic timeout methods, unlike a programmatic timer where there
can only be one method annotated with the @Timeout annotation in the enterprise bean class.

Automatic timers can be configured through annotations or through the ejb-jar.xml
deployment descriptor.

The@Schedule and @Schedules Annotations

Adding a @Schedule annotation on an enterprise bean marks that method as a timeout method
according to the calendar schedule specified in the attributes of @Schedule.

The @Schedule annotation has elements that correspond to the calendar expressions detailed in
“Creating Calendar-Based Timer Expressions” on page 298and the persistent, info, and
timezone elements.

The optional persistent element takes a boolean value, and is used to specify whether the
automatic timer should survive a server restart or crash. By default, all automatic timers are
persistent.

The optional timezone element is used to optionally specify that the automatic timer is
associated with a particular time zone. If set, this element will evaluate all timer expressions in
relation to the specified time zone, regardless of the time zone in which the EJB container is
running. By default, all automatic timers set are in relation to the default time zone of the server.

The optional info element is used to set an informational description of the timer. A timer's
information can be retrieved later using Timer.getInfo.

EXAMPLE 16-16 Setting an Automatic Timer Using @Schedule

The following timeout method uses @Schedule to set a timer that will expire every Sunday at
midnight:

@Schedule(dayOfWeek="Sun", hour="0")
public void cleanupWeekData() { ... }

Chapter 16 « Running the Enterprise Bean Examples 303

Using the Timer Service

304

The @Schedules annotation is used to specify multiple calendar-based timer expressions for a
given timeout method.

EXAMPLE 16-17 Setting Multiple Automatic Timers for a Timeout Method Using @Schedules

The following timeout method uses the @chedules annotation to set multiple calendar-based
timer expressions. The first expression sets a timer to expire on the last day of every month. The
second expression sets a timer to expire every Friday at 11:00 PM.

@Schedules ({
@Schedule(dayOfMonth="Last"),
@Schedule(dayOfWeek="Fri", hour="23")

1)
public void doPeriodicCleanup() { ... }

Canceling and Saving Timers

Timers can be canceled by the following events:

= When a single-event timer expires, the EJB container calls the associated timeout method
and then cancels the timer.

» When the bean invokes the cancel method of the Timer interface, the container cancels the
timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To re-instantiate the
Timer object, retrieve the handle from the database and invoke getTimer on the handle. A
TimerHandle object cannot be passed as an argument of a method defined in a remote or web
service interface. In other words, remote clients and web service clients cannot access a bean’s
TimerHandle object. Local clients, however, do not have this restriction.

Getting Timer Information

In addition to defining the cancel and getHandle methods, the Timer interface defines
methods for obtaining information about timers:

public long getTimeRemaining();
public java.util.Date getNextTimeout();
public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the createTimer
invocation. For example, in the createTimer code snippet of the preceding section, this
information parameter is a String object with the value created timer.

The Java EE 6 Tutorial, Volume | « December 2009

Using the Timer Service

To retrieve all of a bean’s active timers, call the getTimers method of the TimerService
interface. The getTimers method returns a collection of Timer objects.

Transactions and Timers

An enterprise bean usually creates a timer within a transaction. If this transaction is rolled back,
the timer creation is also rolled back. Similarly, if a bean cancels a timer within a transaction
that gets rolled back, the timer cancellation is rolled back. In this case, the timer’s duration is
reset as if the cancellation had never occurred.

In beans that use container-managed transactions, the @ imeout method usually has the
Required or RequiresNew transaction attribute to preserve transaction integrity. With these
attributes, the EJB container begins the new transaction before calling the @imeout method. If
the transaction is rolled back, the container will call the @ imeout method atleast one more
time.

The timersession Example

The source code for this example is in the tut-install/examples/ejb/timersession/src/java/
directory.

TimerSessionBean is a singleton session bean that shows how to set both an automatic timer
and a programmatic timer. In the source code listing of TimerSessionBean that follows, the
setTimer and @Timeout methods are used to set a programmatic timer. A TimerService
instance is injected by the container when the bean is created. Because it’s a business method,
setTimer is exposed to the local, no-interface view of TimerSessionBean and can be invoked by
the client. In this example, the client invokes setTimer with an interval duration of 30,000
milliseconds. The setTimer method creates a new timer by invoking the createTimer method
of TimerService. Now that the timer is set, the EJB container will invoke the
programmaticTimeout method of TimerSessionBean when the timer expires, in about 30
seconds.

public void setTimer(long intervalDuration) {
logger.info("Setting a programmatic timeout for " +
intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,
"Created new programmatic timer");

@Timeout

public void programmaticTimeout(Timer timer) {
this.setlLastProgrammaticTimeout(new Date());
logger.info("Programmatic timeout occurred.");

Chapter 16 « Running the Enterprise Bean Examples 305

Using the Timer Service

TimerSessionBean also has an automatic timer and timeout method, automaticTimeout. The
automatic timer is set to expire every 3 minutes, and is set using a calendar-based timer
expression in the @Schedule annotation.

@Schedule(minute="*/3", hour="*")

public void automaticTimeout() {
this.setLastAutomaticTimeout(new Date());
logger.info("Automatic timeout occured");

TimerSessoinBean also has two business methods, getLastProgrammaticTimeout and
getLastAutomaticTimeout. Clients call these methods to get the date and time of the last
timeout for the programmatic timer and automatic timer, respectively.

Here’s the source code for the TimerSessionBean class:

package timersession.ejb;

import java.util.Date;

import java.util.logging.Logger;
import javax.annotation.Resource;
import javax.ejb.Schedule;

import javax.ejb.Stateless;
import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Singleton

public class TimerSessionBean {
@Resource
TimerService timerService;

private Date lastProgrammaticTimeout;
private Date lastAutomaticTimeout;

private Logger logger = Logger
.getLogger("com.sun.tutorial.javaee.ejb.timersession.TimerSessionBean");

public void setTimer(long intervalDuration) {
logger.info("Setting a programmatic timeout for " +
intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,

306 The Java EE 6 Tutorial, Volume | « December 2009

Using the Timer Service

"Created new programmatic timer");

@Timeout

public void programmaticTimeout(Timer timer) {
this.setlLastProgrammaticTimeout(new Date());
logger.info("Programmatic timeout occurred.");

@Schedule(minute="*/3", hour="*")

public void automaticTimeout() {
this.setlLastAutomaticTimeout(new Date());
logger.info("Automatic timeout occured");

}
public String getLastProgrammaticTimeout() {
if (lastProgrammaticTimeout != null) {
return lastProgrammaticTimeout.toString();
} else {

return "never";

public void setlLastProgrammaticTimeout(Date lastTimeout) {
this.lastProgrammaticTimeout = lastTimeout;

public String getlLastAutomaticTimeout() {
if (lastAutomaticTimeout != null) {
return lastAutomaticTimeout.toString();
} else {
return "never";

public void setlLastAutomaticTimeout(Date lastAutomaticTimeout) {
this.lastAutomaticTimeout = lastAutomaticTimeout;

Note - Enterprise Server has a default minimum timeout value of 1000 milliseconds, or 1 second.
If you need to set the timeout value lower than 1000 milliseconds, change the value of the
minimum-delivery-interval-in-millis element in domain-dir/config/domain.xml. Due to
virtual machine constraints, the lowest practical value for
minimum-delivery-interval-in-millis isaround 10 milliseconds.

Chapter 16 « Running the Enterprise Bean Examples 307

Using the Timer Service

308

Building, Packaging, Deploying, and Running the
timersession Example

You can build, package, deploy, and run the timersession example using either NetBeans IDE
or Ant.

Building, Packaging, Deploying, and Running the timersession
Example Using NetBeans IDE

Follow these instructions to build, package, and deploy the timersession example to your
Enterprise Server instance using the NetBeans IDE IDE.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.
Select the timersession folder.

Select the Open as Main Project check box.

Click Open Project Folder.

Select Run—Run Main Project.

This builds and packages the application into timersession.war,located in
tut-install/examples/ejb/timersession/dist/, deploys this WAR file to your Enterprise
Server instance, and then runs the web client.

Building, Packaging, and Deploying the timersession Example Using
Ant

Follow these instructions to build, package, and deploy the timersession example to your
Application Server instance using Ant.

In a terminal window, go to the tut-install/examples/ejb/timersession/ directory.

To build timersession, type the following command:
ant build

This runs the default task, which compiles the source files and packages the application into a
WAR filelocated at tut-install/examples/ejb/timersession/dist/timersession.war.

To deploy the application, type the following command:
ant deploy

The Java EE 6 Tutorial, Volume | « December 2009

Handling Exceptions

¥ Running the Web Client
1 Openawebbrowsertohttp://localhost:8080/timersession.
2 Clickthe Set Timer button to set a programmatic timer.

3 Waitfor a while and click the browser's Refresh button.

You will see the date and time of the last programmatic and automatic timeouts.

You can also see the messages that are logged when a timeout occurs by opening the
server.log file located in domain-dir/server/logs/.

Handling Exceptions

The exceptions thrown by enterprise beans fall into two categories: system and application.

A system exception indicates a problem with the services that support an application. Examples
of these problems include the following: a connection to an external resource cannot be
obtained or an injected resource cannot be found. If your enterprise bean encounters a
system-level problem, it should throw a javax.ejb.EJBException. Because the EJBException
is a subclass of the RuntimeException, you do not have to specify it in the throws clause of the
method declaration. If a system exception is thrown, the E]JB container might destroy the bean
instance. Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise bean. Application
exceptions are typically exceptions that you've coded yourself, such as the BookException
thrown by the business methods of the CartBean example. When an enterprise bean throws an
application exception, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back the transaction.
However, if an application exception is thrown within a transaction, the container does not roll
back the transaction.

Chapter 16 « Running the Enterprise Bean Examples 309

310

PART V

Contexts and Dependency Injection for the
Java™ EE Platform

Part Five explores Contexts and Dependency Injection for the Java EE Platform.

311

312

CHAPTER 17

Introduction to Contexts and Dependency
Injection for the Java™ EE Platform

Contexts and Dependency Injection for the Java EE Platform (CDI) is one of several Java EE 6
features that help to knit together the web tier and the transactional tier of the Java EE platform.
Itis a set of services that, used together, makes it easy for developers to use enterprise beans
along with JavaServer™ Faces technology in web applications. Designed for use with stateful
objects, it also has many broader uses, allowing developers a great deal of flexibility to integrate
different kinds of components in a loosely coupled but type-safe way.

CDI is specified by JSR-299, which was formerly known as Web Beans. Related specifications
that CDI uses include the following:

= JSR-330, Dependency Injection for Java

= The Managed Beans specification that is an offshoot of the Java EE 6 platform specification
(JSR-316)

This chapter covers the following topics.

“Overview of Contexts and Dependency Injection for the Java EE Platform” on page 314
“About Beans” on page 315

“Beans as Injectable Objects” on page 316

“Using Qualifiers” on page 317

“Injecting Beans” on page 318

“Using Scopes” on page 318

“Giving Beans EL Names” on page 320

“Adding Setter and Getter Methods” on page 320

“Using a Managed Bean in a Facelets Page” on page 321
“Injecting Objects by Using Producer Methods” on page 322
“Configuring a CDI Application” on page 323

“Further Information” on page 323

313

Overview of Contexts and Dependency Injection for the Java EE Platform

Overview of Contexts and Dependency Injection for the Java

EE Platform

314

The two most fundamental services provided by CDI are as follows:

Contexts: The ability to bind the lifecycle and interactions of stateful components to
well-defined but extensible lifecycle contexts

Dependency injection: The ability to inject components into an application in a type-safe
way, including the ability to choose at deployment time which implementation of a
particular interface to inject

In addition, CDI provides the following services:

Integration with the Unified Expression Language (EL), which allows any component to be
used directly within a JavaServer Faces page (or a JavaServer Pages™ page)

The ability to decorate injected components
The ability to associate interceptors with components using type-safe interceptor bindings
An event notification model

A web conversation scope in addition to the three standard scopes (request, session, and
application) defined by the Java Servlet specification

A complete Service Provider Interface (SPI) that allows third-party frameworks to integrate
cleanly in the Java EE 6 environment

A major theme of CDI is loose coupling. CDI does the following:

It decouples the server and the client by means of well-defined types and qualifiers, so that
the server implementation may vary.

It decouples the lifecycles of collaborating components by doing the following:

= Making components contextual, with automatic lifecycle management

= Allowing stateful components to interact like services, purely by message passing
It completely decouples message producers from consumers, by means of events.

It decouples orthogonal concerns