
The Java EE 6 Tutorial, Volume I

Basic Concepts

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7627–10
December 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091209@23031

Contents

Preface ...19

Part I Introduction ...27

1 Overview ...29
Java EE 6 Highlights .. 30
Java EE Application Model ... 30
Distributed Multitiered Applications ... 31

Security .. 32
Java EE Components ... 33
Java EE Clients .. 33
Web Components .. 35
Business Components ... 36
Enterprise Information System Tier .. 37

Java EE Containers .. 37
Container Services ... 38
Container Types ... 38

Web Services Support ... 40
XML ... 40
SOAP Transport Protocol ... 41
WSDL Standard Format .. 41

Java EE Application Assembly and Deployment ... 41
Packaging Applications .. 42
Development Roles ... 43

Java EE Product Provider .. 44
Tool Provider .. 44
Application Component Provider ... 44

3

Application Assembler .. 45
Application Deployer and Administrator ... 45

Java EE 6 APIs .. 46
Enterprise JavaBeans Technology .. 46
Java Servlet Technology .. 46
JavaServer Faces Technology .. 47
JavaServer Pages Technology ... 47
JavaServer Pages Standard Tag Library ... 47
Java Persistence API ... 48
Java Transaction API ... 48
Java API for RESTful Web Services (JAX-RS) .. 48
Java Message Service API .. 48
Java EE Connector Architecture .. 49
JavaMail API ... 49
Java Authorization Service Provider Contract for Containers (Java ACC) 49
Java Authentication Service Provider Interface for Containers (JASPIC) 49
Java API for XML Registries ... 50
Simplified Systems Integration ... 50

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6) 51
Java Database Connectivity API ... 51
Java Naming and Directory Interface .. 51
JavaBeans Activation Framework .. 52
Java API for XML Processing ... 52
Java Architecture for XML Binding (JAXB) ... 52
SOAP with Attachments API for Java .. 52
Java API for XML Web Services (JAX-WS) .. 53
Java Authentication and Authorization Service ... 53

Sun GlassFish Enterprise Server v3 ... 53
Tools .. 53

2 Using the Tutorial Examples ..55
Required Software ... 55

Java Platform, Standard Edition ... 55
Java EE 6 Software Development Kit (SDK) ... 56
Apache Ant ... 56

Contents

The Java EE 6 Tutorial, Volume I • December 20094

Java EE 6 Tutorial Component ... 57
NetBeans IDE ... 58

Starting and Stopping the Enterprise Server .. 58
Starting the Administration Console .. 59

▼ To Start the Administration Console in NetBeans IDE .. 60
Starting and Stopping the Java DB Database Server .. 60
Building the Examples .. 60
Tutorial Example Directory Structure .. 61
Getting the Latest Updates to the Tutorial ... 61

▼ To Update the Tutorial through the Update Center .. 61
Debugging Java EE Applications ... 62

Using the Server Log .. 62
Using a Debugger ... 62

Part II The Web Tier ... 65

3 Getting Started with Web Applications ... 67
Web Applications .. 67
Web Application Life Cycle .. 69
Web Modules ... 71

Packaging Web Modules ... 72
Deploying a WAR File ... 73
Testing Deployed Web Modules .. 75
Listing Deployed Web Modules ... 75
Updating Web Modules .. 75
Undeploying Web Modules .. 76

Configuring Web Applications .. 77
Mapping URLs to Web Components .. 77
Declaring Welcome Files .. 79
Setting Initialization Parameters .. 79
Mapping Errors to Error Screens ... 81
Declaring Resource References .. 82

Further Information about Web Applications ... 84

Contents

5

4 JavaServer Faces Technology ..85
What Is a JavaServer Faces Application? ... 86
JavaServer Faces Technology Benefits .. 87
Creating a Simple JavaServer Faces Application .. 88

Developing Backing Beans ... 88
Creating the Web Page .. 89
Mapping the Faces Servlet Instance ... 90
The Lifecycle of the helloWorld Application ... 90

▼ Running the Application in NetBeans IDE ... 91
Further Information about JavaServer Faces Technology .. 92

5 Introduction to Facelets ...93
Advantages of Facelets .. 93
What's Facelets ? .. 94

Web Pages ... 94
Tag Library Support ... 94
Unified Expression Language Support .. 95

Developing a Simple Facelets Application ... 95
Creating a Facelets Application .. 96
Configuring the Application ... 99
Building, Packaging, Deploying and Running the Application ... 101

Templating ... 103
Composite Components .. 105
Resources .. 108

6 Unified Expression Language ..109
Overview of EL ... 109

Immediate and Deferred Evaluation Syntax ... 110
Value and Method Expressions .. 112
Defining a Tag Attribute Type .. 118
Literal Expressions ... 119
Operators .. 120
Reserved Words ... 121
Examples of EL Expressions ... 121

Contents

The Java EE 6 Tutorial, Volume I • December 20096

7 Using JavaServer Faces Technology in Web Pages .. 123
Setting Up a Page ... 123
Adding Components to a Page Using HTML Tags ... 124

Common Component Tag Attributes ... 127
Adding HTML Head and Body Tags ... 129
Adding a Form Component ... 129
Using Text Components ... 130
Using Command Components for Performing Actions and Navigation 135
Adding Graphics and Images With the h:graphicImage Tag ... 137
Laying Out Components With the Panel Component ... 137
Displaying Components for Selecting One Value ... 139
Rendering Components for Selecting Multiple Values ... 141
Using The SelectItem and SelectItems Components ... 143
Using Data-Bound Table Components .. 144
Displaying Error Messages With the h:message and h:messages Tags 148
Creating Bookmarkable URLs with h:button and h:link Tags ... 149
Resource Relocation using h:output Tags ... 150

Using Core Tags .. 153

8 Using Converters, Listeners and Validators .. 155
Using the Standard Converters .. 155

Converting a Component’s Value .. 156
Using DateTimeConverter ... 157
Using NumberConverter ... 159

Registering Listeners on Components .. 160
Registering a Value-Change Listener on a Component .. 161
Registering an Action Listener on a Component ... 162

Using the Standard Validators ... 162
Validating a Component’s Value ... 163
Using the LongRangeValidator .. 163

Referencing a Backing Bean Method .. 164
Referencing a Method That Performs Navigation ... 165
Referencing a Method That Handles an Action Event .. 165
Referencing a Method That Performs Validation .. 165
Referencing a Method That Handles a Value-Change Event ... 166

Contents

7

9 Developing With JavaServer Faces Technology ... 167
Backing Beans .. 167

Creating a Backing Bean ... 167
Writing Bean Properties ... 170

Writing Properties Bound to Component Values ... 171
Writing Properties Bound to Component Instances ... 177
Writing Properties Bound to Converters, Listeners, or Validators 178

Writing Backing Bean Methods .. 179
Writing a Method to Handle Navigation .. 179
Writing a Method to Handle an Action Event .. 181
Writing a Method to Perform Validation ... 181
Writing a Method to Handle a Value-Change Event ... 182

Bean Validation ... 183

10 Java Servlet Technology ...185
What Is a Servlet? ... 185
Servlet Life Cycle .. 186

Handling Servlet Life-Cycle Events ... 186
Handling Servlet Errors ... 187

Sharing Information ... 188
Using Scope Objects .. 188
Controlling Concurrent Access to Shared Resources ... 188

Initializing a Servlet ... 189
Writing Service Methods .. 189

Getting Information from Requests .. 190
Constructing Responses .. 191

Filtering Requests and Responses .. 192
Programming Filters .. 192
Programming Customized Requests and Responses .. 193
Specifying Filter Mappings ... 194

Invoking Other Web Resources ... 196
Including Other Resources in the Response ... 197
Transferring Control to Another Web Component .. 197

Accessing the Web Context .. 198
Maintaining Client State ... 198

Contents

The Java EE 6 Tutorial, Volume I • December 20098

Accessing a Session .. 198
Associating Objects with a Session .. 198
Session Management ... 199
Session Tracking .. 199

Finalizing a Servlet ... 200
Tracking Service Requests .. 200
Notifying Methods to Shut Down .. 201
Creating Polite Long-Running Methods ... 202

Further Information about Java Servlet Technology .. 202

Part III Web Services ..203

11 Introduction to Web Services ..205
What Are Web Services? ... 205
Types of Web Services ... 205
Deciding Which Type of Web Service to Use .. 208

When Should I Use JAX-WS? ... 208
When Should I Use JAX-RS? .. 208

12 Building Web Services with JAX-WS ... 209
Setting the Port ... 210
Creating a Simple Web Service and Client with JAX-WS .. 210

Requirements of a JAX-WS Endpoint ... 211
Coding the Service Endpoint Implementation Class .. 212
Building, Packaging, and Deploying the Service .. 212
Testing the Service without a Client .. 214
A Simple JAX-WS Client ... 214

Types Supported by JAX-WS ... 216
Web Services Interoperability and JAX-WS .. 217
Further Information about JAX-WS ... 217

13 Building RESTful Web Services with JAX-RS and Jersey ... 219
What are RESTful Web Services? .. 219

Where Does Jersey Fit In? ... 220

Contents

9

Creating a RESTful Root Resource Class .. 220
Developing RESTful Web Services with JAX-RS and Jersey ... 221
Overview of a Jersey-Annotated Application ... 222
The @Path Annotation and URI Path Templates .. 223
Responding to HTTP Resources .. 226
Using @Consumes and @Produces to Customize Requests and Responses 229
Extracting Request Parameters .. 231
Overview of JAX-RS and Jersey: Further Information .. 234

Example Applications for JAX-RS and Jersey .. 235
Creating a RESTful Web Service .. 235
Example: Creating a Simple Hello World Application Using JAX-RS and Jersey 242
Example: Adding on to the Simple Hello World RESTful Web Service 245
JAX-RS in the First Cup Example .. 247
Real World Examples .. 247

Further Information .. 247

Part IV Enterprise Beans ..249

14 Enterprise Beans ..251
What Is an Enterprise Bean? .. 251

Benefits of Enterprise Beans ... 251
When to Use Enterprise Beans ... 252
Types of Enterprise Beans ... 252

What Is a Session Bean? .. 253
Types of Session Beans .. 253
When to Use Session Beans .. 254

What Is a Message-Driven Bean? .. 255
What Makes Message-Driven Beans Different from Session Beans? 255
When to Use Message-Driven Beans ... 256

Accessing Enterprise Beans .. 256
Using Enterprise Beans in Clients .. 257
Deciding on Remote or Local Access ... 258
Local Clients ... 259
Remote Clients ... 261
Web Service Clients ... 262

Contents

The Java EE 6 Tutorial, Volume I • December 200910

Method Parameters and Access .. 263
The Contents of an Enterprise Bean ... 264

Packaging Enterprise Beans In EJB JAR Modules .. 264
Packaging Enterprise Beans in WAR Modules .. 265

Naming Conventions for Enterprise Beans ... 266
The Life Cycles of Enterprise Beans .. 267

The Life Cycle of a Stateful Session Bean .. 267
The Lifecycle of a Stateless Session Bean ... 268
The Lifecycle of a Singleton Session Bean ... 268
The Lifecycle of a Message-Driven Bean ... 269

Further Information about Enterprise Beans .. 270

15 Getting Started with Enterprise Beans .. 271
Creating the Enterprise Bean ... 271

Coding the Enterprise Bean .. 272
Creating the converter Web Client .. 272
Compiling, Packaging, and Running the converter Example .. 273

Modifying the Java EE Application ... 275
Modifying a Class File .. 275

16 Running the Enterprise Bean Examples .. 277
The cart Example ... 277

The Business Interface ... 278
Session Bean Class ... 278
The Remove Method ... 282
Helper Classes ... 282
Building, Packaging, Deploying, and Running the cart Example 282
Undeploying the cart Example ... 285

A Singleton Session Bean Example: counter ... 285
Creating a Singleton Session Bean ... 285
The Architecture of the counter Example .. 290
Building, Deploying, and Running the counter Example .. 293

A Web Service Example: helloservice ... 294
The Web Service Endpoint Implementation Class .. 295
Stateless Session Bean Implementation Class .. 295

Contents

11

Building, Packaging, Deploying, and Testing the helloservice Example 296
Using the Timer Service .. 298

Creating Calendar-Based Timer Expressions .. 298
Programmatic Timers ... 301
Automatic Timers .. 303
Canceling and Saving Timers ... 304
Getting Timer Information .. 304
Transactions and Timers .. 305
The timersession Example ... 305
Building, Packaging, Deploying, and Running the timersession Example 308

Handling Exceptions ... 309

Part V Contexts and Dependency Injection for the Java EE Platform ...311

17 Introduction to Contexts and Dependency Injection for the Java EE Platform313
Overview of Contexts and Dependency Injection for the Java EE Platform 314
About Beans ... 315
About Managed Beans .. 315
Beans as Injectable Objects ... 316
Using Qualifiers ... 317
Injecting Beans ... 318
Using Scopes .. 318
Giving Beans EL Names .. 320
Adding Setter and Getter Methods .. 320
Using a Managed Bean in a Facelets Page ... 321
Injecting Objects by Using Producer Methods .. 322
Configuring a CDI Application ... 323
Further Information .. 323

18 Running the Basic Contexts and Dependency Injection Examples .. 325
The simplegreeting Example .. 325

The simplegreeting Source Files ... 326
The Facelets Template and Page ... 326
Configuration Files .. 328

Contents

The Java EE 6 Tutorial, Volume I • December 200912

Building, Packaging, Deploying, and Running the simplegreeting Example 328
The guessnumber Example .. 330

The guessnumber Source Files ... 331
The Facelets Page ... 335
Building, Packaging, Deploying, and Running the guessnumber Example 337

Part VI Persistence ..341

19 Introduction to the Java Persistence API .. 343
Entities .. 343

Requirements for Entity Classes .. 343
Persistent Fields and Properties in Entity Classes .. 344
Primary Keys in Entities .. 347
Multiplicity in Entity Relationships ... 349
Direction in Entity Relationships ... 350
Embeddable Classes in Entities .. 352
Entity Inheritance .. 353

Managing Entities .. 357
The Persistence Context .. 358
The EntityManager Interface .. 358
Persistence Units .. 362

Querying Entities ... 363

20 Running the Persistence Examples ..365
The order Application .. 365

Entity Relationships in the order Application ... 365
Primary Keys in the order Application ... 368
Entity Mapped to More Than One Database Table ... 371
Cascade Operations in the order Application ... 372
BLOB and CLOB Database Types in the order Application .. 372
Temporal Types in the order Application .. 373
Managing the order Application’s Entities ... 373
Building and Running the order Application .. 376

The roster Application .. 377

Contents

13

Relationships in the roster Application ... 377
Entity Inheritance in the roster Application ... 378
Criteria Queries in the roster Application .. 380
Automatic Table Generation in the roster Application .. 382
Building and Running the roster Application .. 382

21 The Java Persistence Query Language .. 385
Query Language Terminology ... 385
Creating Queries Using the Java Persistence Query Language .. 386

Named Parameters in Queries .. 386
Positional Parameters in Queries ... 387

Simplified Query Language Syntax ... 387
Select Statements .. 387
Update and Delete Statements ... 388

Example Queries .. 388
Simple Queries ... 388
Queries That Navigate to Related Entities .. 390
Queries with Other Conditional Expressions .. 391
Bulk Updates and Deletes ... 393

Full Query Language Syntax .. 394
BNF Symbols .. 394
BNF Grammar of the Java Persistence Query Language ... 394
FROM Clause ... 399
Path Expressions .. 403
WHERE Clause ... 404
SELECT Clause ... 414
ORDER BY Clause ... 416
The GROUP BY Clause ... 416

22 Creating Queries Using the Criteria API ... 419
Overview of the Criteria and Metamodel APIs .. 419
Modeling Entity Classes with the Metamodel API .. 421

Using Metamodel Classes ... 422
Basic Type-Safe Queries Using the Criteria API and Metamodel API 423

Creating a Criteria Query .. 423

Contents

The Java EE 6 Tutorial, Volume I • December 200914

Query Roots .. 424
Querying Relationships Using Joins .. 425
Path Navigation in Criteria Queries .. 425
Restricting Criteria Query Results ... 426
Managing Criteria Query Results .. 429
Executing Queries .. 430

Part VII Security ...433

23 Introduction to Security in the Java EE Platform ... 435
Overview of Java EE Security ... 436

A Simple Security Example ... 436
Security Functions ... 439
Characteristics of Application Security ... 440

Security Implementation Mechanisms ... 441
Java SE Security Implementation Mechanisms .. 441
Java EE Security Implementation Mechanisms .. 442

Securing Containers .. 444
Using Deployment Descriptors for Declarative Security .. 444
Using Annotations ... 445
Using Programmatic Security .. 446

Securing the Enterprise Server ... 446
Working with Realms, Users, Groups, and Roles .. 448

What Are Realms, Users, Groups, and Roles? .. 448
Managing Users and Groups on the Enterprise Server ... 451
Setting Up Security Roles .. 453
Mapping Roles to Users and Groups ... 455

Establishing a Secure Connection Using SSL ... 456
Installing and Configuring SSL Support ... 456
Specifying a Secure Connection in Your Application Deployment Descriptor 457
Verifying SSL Support ... 458
Working with Digital Certificates .. 459

Further Information about Security .. 462

Contents

15

24 Getting Started Securing Enterprise Applications .. 465
Responsibility for Administering Security ... 465
Securing Enterprise Beans .. 466

Securing an Enterprise Bean Using Declarative Security and Annotations 469
Securing an Enterprise Bean Programmatically .. 477
Propagating a Security Identity (Run-As) ... 480
Deploying Secure Enterprise Beans ... 482

Securing Application Clients ... 483
Using Login Modules .. 483
Using Programmatic Login .. 484

Securing Enterprise Information Systems (EIS) Applications ... 485
Container-Managed Sign-On .. 485
Component-Managed Sign-On ... 485
Configuring Resource Adapter Security ... 486
Mapping an Application Principal to EIS Principals ... 488

25 Getting Started Securing Web Applications ... 489
Overview of Web Application Security .. 490
Using Deployment Descriptors to Secure Web Applications .. 492

Introduction to Web Application Deployment Descriptors .. 492
Specifying Security Constraints ... 495
Specifying an Authentication Mechanism .. 499
Working with Security Roles .. 506

Using Programmatic Security with Web Applications ... 510
Authenticating Users Programmatically ... 511
Checking Caller Identity Programmatically ... 513
Example Code for Programmatic Security ... 513
Declaring and Linking Role References .. 515

Using Message Security with Web Applications .. 517
Examples: Securing Web Applications ... 517

Setting Up Your System for Running the Security Examples ... 518
Example: Basic Authentication with a Servlet .. 518
Example: Basic Authentication with JAX-WS .. 524
Example: Form-Based Authentication with a Servlet .. 528

Contents

The Java EE 6 Tutorial, Volume I • December 200916

Part VIII Java EE Supporting Technologies ... 535

26 Introduction to Java EE Supporting Technologies ... 537
Transactions ... 537
Resources .. 538

The Java EE Connector Architecture and Resource Adapters ... 538
Java Message Service .. 539
Java DataBase Connectivity (JDBC) Software .. 539

27 Transactions .. 541
What Is a Transaction? ... 541
Container-Managed Transactions .. 542

Transaction Attributes .. 543
Rolling Back a Container-Managed Transaction .. 546
Synchronizing a Session Bean’s Instance Variables ... 547
Methods Not Allowed in Container-Managed Transactions ... 547

Bean-Managed Transactions ... 547
JTA Transactions ... 548
Returning without Committing ... 549
Methods Not Allowed in Bean-Managed Transactions .. 549

Transaction Timeouts ... 549
Updating Multiple Databases .. 550
Transactions in Web Components ... 551

28 Resource Connections ..553
Resources and JNDI Naming ... 553
DataSource Objects and Connection Pools ... 554
Resource Injection ... 555

Field-Based Injection ... 556
Method-Based Injection .. 557
Class-Based Injection .. 558

Resource Adapters ... 558
Resource Adapter Contracts ... 559

Metadata Annotations .. 563

Contents

17

Replacing Deployment Descriptors With Metadata Annotations .. 564
Example 1: @Connector Annotation .. 564
Example 2: @ConnectionDefinition Annotation .. 566
Example 3: @Activation Annotation ... 567

Common Client Interface .. 568
Further Information about Resources .. 569

Index ... 571

Contents

The Java EE 6 Tutorial, Volume I • December 200918

Preface

This tutorial is a guide to developing enterprise applications for the JavaTM Platform, Enterprise
Edition 6 (Java EE 6).

This preface contains information about and conventions for the entire Sun GlassFishTM

Enterprise Server (Enterprise Server) documentation set.

Enterprise Server v3 is developed through the GlassFish project open-source community at
https://glassfish.dev.java.net/. The GlassFish project provides a structured process for
developing the Enterprise Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the Enterprise Server source code and to contribute to the
development of the Enterprise Server. The GlassFish project is designed to encourage
communication between Sun engineers and the community.

The following topics are addressed here:

■ “Before You Read This Book” on page 19
■ “Enterprise Server Documentation Set” on page 20
■ “Related Documentation” on page 21
■ “Symbol Conventions” on page 22
■ “Typographic Conventions” on page 23
■ “Default Paths and File Names” on page 23
■ “Documentation, Support, and Training” on page 24
■ “Searching Sun Product Documentation” on page 24
■ “Third-Party Web Site References” on page 25
■ “Sun Welcomes Your Comments” on page 25

Before You Read This Book
Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java Tutorial,
Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006). You should also be familiar with
the Java DataBase Connectivity (JDBCTM) and relational database features described in JDBC
API Tutorial and Reference, Third Edition, Maydene Fisher et al. (Addison-Wesley, 2003).

19

https://glassfish.dev.java.net/

Enterprise Server Documentation Set
The Enterprise Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Enterprise Server documentation is
http://docs.sun.com/coll/1343.9. For an introduction to Enterprise Server, refer to the
books in the order in which they are listed in the following table.

TABLE P–1 Books in the Enterprise Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDKTM), and
database drivers.

Quick Start Guide Explains how to get started with the Enterprise Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Enterprise Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Administration Guide Explains how to configure, monitor, and manage Enterprise Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Application Deployment Guide Explains how to assemble and deploy applications to the Enterprise Server
and provides information about deployment descriptors.

Your First Cup: An Introduction
to the Java EE Platform

Provides a short tutorial for beginning Java EE programmers that explains
the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on
the Enterprise JavaBeansTM specification, a JAX-RS web service, and a
JavaServerTM Faces component for the web front end.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Enterprise
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Enterprise Server to develop
add-on components for Enterprise Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for Enterprise Server.

Preface

The Java EE 6 Tutorial, Volume I • December 200920

http://docs.sun.com/coll/1343.9
http://docs.sun.com/doc/820-7688
http://docs.sun.com/doc/820-7689
http://docs.sun.com/doc/820-7690
http://docs.sun.com/doc/820-7698
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7701/asadmin-1m?a=view
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7727
http://docs.sun.com/doc/820-7727

TABLE P–1 Books in the Enterprise Server Documentation Set (Continued)
Book Title Description

Embedded Server Guide Explains how to run applications in embedded Enterprise Server and to
develop applications in which Enterprise Server is embedded.

Scripting Framework Guide Explains how to develop scripting applications in languages such as Ruby on
Rails and Groovy on Grails for deployment to Enterprise Server.

Troubleshooting Guide Describes common problems that you might encounter when using
Enterprise Server and how to solve them.

Error Message Reference Describes error messages that you might encounter when using Enterprise
Server.

Reference Manual Provides reference information in man page format for Enterprise Server
administration commands, utility commands, and related concepts.

Domain File Format Reference Describes the format of the Enterprise Server configuration file, domain.xml.

Java EE 6 Tutorial, Volume I Explains how to use Java EE 6 platform technologies and APIs to develop
Java EE applications.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for Sun
GlassFish Message Queue.

Message Queue Administration
Guide

Explains how to set up and manage a Sun GlassFish Message Queue
messaging system.

Message Queue Developer's
Guide for JMX Clients

Describes the application programming interface in Sun GlassFish Message
Queue for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions (JMX).

System Virtualization Support
in Sun Java System Products

Summarizes Sun support for Sun Java System products when used in
conjunction with system virtualization products and features.

Related Documentation
The Java EE 6 Tutorial, Volume II (https://www.sun.com/offers/details/
java_ee6_tutorial.xml) contains all the topics in Java EE 6 Tutorial, Volume I and adds
advanced topics, additional technologies, and case studies. The document is available to
registered users of Enterprise Server.

JavadocTM tool reference documentation for packages that are provided with Enterprise Server is
available as follows:

■ The API specification for version 6 of Java EE is located at http://java.sun.com/javaee/
6/docs/api/.

■ API documentation for packages that are specific to the Enterprise Server product is located
at: http://javadoc.glassfish.org/v3/apidoc/.

Preface

21

http://docs.sun.com/doc/821-1208
http://docs.sun.com/doc/820-7697
http://docs.sun.com/doc/820-7699
http://docs.sun.com/doc/820-7700
http://docs.sun.com/doc/820-7701
http://docs.sun.com/doc/820-7694
http://docs.sun.com/doc/820-7627
http://docs.sun.com/doc/821-0025
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/820-4651
http://docs.sun.com/doc/820-4651
https://www.sun.com/offers/details/java_ee6_tutorial.xml
https://www.sun.com/offers/details/java_ee6_tutorial.xml
http://docs.sun.com/doc/820-7627
http://java.sun.com/javaee/6/docs/api/
http://java.sun.com/javaee/6/docs/api/
http://javadoc.glassfish.org/v3/apidoc/

Additionally, the following resources might be useful:

■ The Java EE Specifications (http://java.sun.com/javaee/technologies/index.jsp)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeansTM Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB for use with the Enterprise Server, see
http://developers.sun.com/javadb/.

The sample applications demonstrate a broad range of Java EE technologies. The samples are
bundled with the Java EE Software Development Kit (SDK).

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

The Java EE 6 Tutorial, Volume I • December 200922

http://java.sun.com/javaee/technologies/index.jsp
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
the Enterprise Server or the Software
Development Kit (SDK) of which the
Enterprise Server is a part.

Installations on the SolarisTM operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3/glassfish

Windows, all installations:

SystemDrive:\glassfishv3\glassfish

as-install-parent Represents the parent of the base installation
directory for Enterprise Server.

Installations on the SolarisTM operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3

Windows, all installations:

SystemDrive:\glassfishv3

Preface

23

TABLE P–4 Default Paths and File Names (Continued)
Placeholder Description Default Value

tut-install Represents the base installation directory for
the Java EE Tutorial after you install the
Enterprise Server or the SDK and run the
Update Tool.

as-install/docs/javaee-tutorial

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Preface

The Java EE 6 Tutorial, Volume I • December 200924

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-7627.

Preface

25

http://docs.sun.com

26

Introduction
Part One introduces the platform, the tutorial, and the examples.

P A R T I

27

28

Overview

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology. In the
world of information technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources.

With the JavaTM Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to provide
developers with a powerful set of APIs while reducing development time, reducing application
complexity, and improving application performance.

The Java EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Java EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would
otherwise be furnished in a deployment descriptor. With annotations, the specification
information is put directly in your code next to the program element that it affects.

In the Java EE platform, dependency injection can be applied to all resources that a component
needs, effectively hiding the creation and lookup of resources from application code.
Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources using annotations.

This tutorial uses examples to describe the features and functionalities available in the Java EE
platform for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable and
accessible knowledge base for creating your own solutions.

If you are new to Java EE enterprise application development, this chapter is a good place to
start. Here you will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach Java EE
application programming, assembly, and deployment.

1C H A P T E R 1

29

The following topics are addressed here:

■ “Java EE 6 Highlights” on page 30
■ “Java EE Application Model” on page 30
■ “Distributed Multitiered Applications” on page 31
■ “Java EE Containers” on page 37
■ “Web Services Support” on page 40
■ “Java EE Application Assembly and Deployment” on page 41
■ “Packaging Applications” on page 42
■ “Development Roles” on page 43
■ “Java EE 6 APIs” on page 46
■ “Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)” on page 51
■ “Sun GlassFish Enterprise Server v3” on page 53

Java EE 6 Highlights
The Java EE 6 platform includes the following new features:

■ Profiles, configurations of the Java EE platform targeted at specific classes of applications.
Specifically, the Java EE 6 platform introduces a Web Profile targeted at web applications, as
well as a Full Profile that contains all Java EE technologies.

■ New technologies, including the following:
■ Java API for RESTful Web Services (JAX-RS)
■ Contexts and Dependency Injection for the Java EE Platform (JSR-299), informally

known as Web Beans
■ Java Authentication Service Provider Interface for Containers (JASPIC)

■ New features for Enterprise JavaBeansTM (EJBTM) components (see “Enterprise JavaBeans
Technology” on page 46 for details)

■ New features for servlets (see “Java Servlet Technology” on page 46 for details)
■ New features for JavaServerTM Faces components (see “JavaServer Faces Technology” on

page 47 for details)

Java EE Application Model
The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

Java EE 6 Highlights

The Java EE 6 Tutorial, Volume I • December 200930

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into two parts: the business and presentation logic to be implemented by the developer,
and the standard system services provided by the Java EE platform. The developer can rely on
the platform to provide solutions for the hard systems-level problems of developing a multitier
service.

Distributed Multitiered Applications
The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
various application components that make up a Java EE application are installed on different
machines depending on the tier in the multitiered Java EE environment to which the
application component belongs.

Figure 1–1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1–1 are presented in “Java EE
Components” on page 33.

■ Client-tier components run on the client machine.
■ Web-tier components run on the Java EE server.
■ Business-tier components run on the Java EE server.
■ Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in Figure 1–1, Java
EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. Three-tiered applications that run in this way
extend the standard two-tiered client and server model by placing a multithreaded application
server between the client application and back-end storage.

Distributed Multitiered Applications

Chapter 1 • Overview 31

Security
While other enterprise application models require platform-specific security measures in each
application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of different security
environments without changing the source code.

Application
Client

Java EE Application 1 Java EE Application 2

Dynamic
HTML Pages

Web Tier

Business TierEnterprise BeansEnterprise Beans

Database Database

JSP Pages

EIS Tier

Client Tier
Client
Machine

Java EE
Server

Database
Server

FIGURE 1–1 Multitiered Applications

Distributed Multitiered Applications

The Java EE 6 Tutorial, Volume I • December 200932

Java EE Components
Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

■ Application clients and applets are components that run on the client.
■ Java Servlet, JavaServer Faces, and JavaServer PagesTM (JSPTM) technology components are

web components that run on the server.
■ Enterprise JavaBeans (EJB) components (enterprise beans) are business components that

run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The difference between Java EE components and
“standard” Java classes is that Java EE components are assembled into a Java EE application, are
verified to be well formed and in compliance with the Java EE specification, and are deployed to
production, where they are run and managed by the Java EE server.

Java EE Clients
A Java EE client can be a web client or an application client.

Web Clients
A web client consists of two parts: (1) dynamic web pages containing various types of markup
language (HTML, XML, and so on), which are generated by web components running in the
web tier, and (2) a web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are off-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Applets
A web page received from the web tier can include an embedded applet. An applet is a small
client application written in the Java programming language that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Distributed Multitiered Applications

Chapter 1 • Overview 33

Web components are the preferred API for creating a web client program because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

Application Clients
An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. It typically has a
graphical user interface (GUI) created from the Swing or the Abstract Window Toolkit (AWT)
API, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE servers, enabling the Java EE platform to
interoperate with legacy systems, clients, and non-Java languages.

The JavaBeansTM Component Architecture
The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between an application client or
applet and components running on the Java EE server, or between server components and a
database. JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications
Figure 1–2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through web pages or servlets running in the web
tier.

Distributed Multitiered Applications

The Java EE 6 Tutorial, Volume I • December 200934

Web Components
Java EE web components are either servlets or web pages created using JavaServer Faces
technology and/or JSP technology (JSP pages). Servlets are Java programming language classes
that dynamically process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static content. JavaServer
Faces technology builds on servlets and JSP technology and provides a user interface
component framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1–3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

FIGURE 1–2 Server Communication

Distributed Multitiered Applications

Chapter 1 • Overview 35

Business Components
Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in either the business tier
or the web tier. Figure 1–4 shows how an enterprise bean receives data from client programs,
processes it (if necessary), and sends it to the enterprise information system tier for storage. An
enterprise bean also retrieves data from storage, processes it (if necessary), and sends it back to
the client program.

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

JavaBeans
Components

(Optional)
JSP Pages

Servlets

FIGURE 1–3 Web Tier and Java EE Applications

Distributed Multitiered Applications

The Java EE 6 Tutorial, Volume I • December 200936

Enterprise Information System Tier
The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

Java EE Containers
Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

JavaBeans
Components

(Optional)
JSP Pages

Servlets

Database
and Legacy

Systems
EIS Tier

Java Persistence Entities
Session Beans

Message-Driven
Beans

FIGURE 1–4 Business and EIS Tiers

Java EE Containers

Chapter 1 • Overview 37

services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services
Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before a web, enterprise bean, or application client
component can be executed, it must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including services such as security, transaction
management, Java Naming and Directory InterfaceTM (JNDI) lookups, and remote connectivity.
Here are some of the highlights:

■ The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

■ The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

■ JNDI lookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

■ The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services such as enterprise bean and servlet life
cycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 6 APIs” on page 46).

Container Types
The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1–5.

Java EE Containers

The Java EE 6 Tutorial, Volume I • December 200938

■ Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

■ Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

■ Web container: Manages the execution of web pages, servlets, and some EJB components
for Java EE applications. Web components and their container run on the Java EE server.

■ Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

■ Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Web Browser

Web
Container

EJB
Container

Enterprise
Bean

Database

Client
Machine

Java EE
Server

Application
Client

Application Client
Container

Servlet
JSP
Page

Enterprise
Bean

FIGURE 1–5 Java EE Server and Containers

Java EE Containers

Chapter 1 • Overview 39

Web Services Support
Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; or for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags because the transported data can itself
be plain text, XML data, or any kind of binary data such as audio, video, maps, program files,
computer-aided design (CAD) documents and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange data in a
meaningful way.

XML
XML is a cross-platform, extensible, text-based standard for representing data. When XML data
is exchanged between parties, the parties are free to create their own tags to describe the data, set
up schemas to specify which tags can be used in a particular kind of XML document, and use
XML stylesheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own stylesheets to handle the data in a way
that best suits their needs. Here are examples:

■ One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

■ A partner company might put the XML pricing information through a tool to create a
marketing presentation.

■ Another company might read the XML pricing information into an application for
processing.

Web Services Support

The Java EE 6 Tutorial, Volume I • December 200940

SOAP Transport Protocol
Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

■ Defines an XML-based envelope to describe what is in the message and how to process the
message

■ Includes XML-based encoding rules to express instances of application-defined data types
within the message

■ Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format
The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be published on the
Web. The Sun GlassFishTM Enterprise Server provides a tool for generating the WSDL
specification of a web service that uses remote procedure calls to communicate with clients.

Java EE Application Assembly and Deployment
A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains:

■ A functional component or components (such as an enterprise bean, web page, servlet, or
applet)

■ An optional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such as a
list of local users that can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

Java EE Application Assembly and Deployment

Chapter 1 • Overview 41

Packaging Applications
A Java EE application is delivered in either a Java Archive (JAR) file, a Web Archive (WAR) file,
or an Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar) file with a .war
or .ear extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding
is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
JAR, WAR, or EAR files.

An EAR file (see Figure 1–6) contains Java EE modules and, optionally, deployment descriptors.
A deployment descriptor is an XML document with an .xml extension that describes the
deployment settings of an application, a module, or a component. Because deployment
descriptor information is declarative, it can be changed without the need to modify the source
code. At runtime, the Java EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

There are two types of deployment descriptors: Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to
configure Java EE implementation-specific parameters. For example, the Sun GlassFish
Enterprise Server runtime deployment descriptor contains information such as the context root
of a web application, and Enterprise Server implementation-specific parameters, such as

application.xml
sun-application.xml

Assembly
Root

META-INF
Web

Module
EJB

Module

Application
Client Module

Resource
Adapter Module

FIGURE 1–6 EAR File Structure

Packaging Applications

The Java EE 6 Tutorial, Volume I • December 200942

caching directives. The Enterprise Server runtime deployment descriptors are named
sun-moduleType.xml and are located in the same META-INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and,
optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. A Java EE module can be deployed as a stand-alone module.

The four types of Java EE modules are as follows:
■ EJB modules, which contain class files for enterprise beans and an EJB deployment

descriptor. EJB modules are packaged as JAR files with a .jar extension.
■ Web modules, which contain servlet class files, web files, supporting class files, GIF and

HTML files, and a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (Web ARchive) extension.

■ Application client modules, which contain class files and an application client deployment
descriptor. Application client modules are packaged as JAR files with a .jar extension.

■ Resource adapter modules, which contain all Java interfaces, classes, native libraries, and
other documentation, along with the resource adapter deployment descriptor. Together,
these implement the Connector architecture (see “Java EE Connector Architecture” on
page 49) for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

Development Roles
Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform different parts of
the process.

The first two roles involve purchasing and installing the Java EE product and tools. After
software is purchased and installed, Java EE components can be developed by application
component providers, assembled by application assemblers, and deployed by application
deployers. In a large organization, each of these roles might be executed by different individuals
or teams. This division of labor works because each of the earlier roles outputs a portable file
that is the input for a subsequent role. For example, in the application component development
phase, an enterprise bean software developer delivers EJB JAR files. In the application assembly
role, another developer may combine these EJB JAR files into a Java EE application and save it
in an EAR file. In the application deployment role, a system administrator at the customer site
uses the EAR file to install the Java EE application into a Java EE server.

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform the tasks in
every phase.

Development Roles

Chapter 1 • Overview 43

Java EE Product Provider
The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs, and other features defined in the Java EE specification. Product
providers are typically application server vendors who implement the Java EE platform
according to the Java EE 6 Platform specification.

Tool Provider
The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider
The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer
An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:
■ Writes and compiles the source code
■ Specifies the deployment descriptor (optional)
■ Packages the .class files and deployment descriptor into the EJB JAR file

Web Component Developer
A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

■ Writes and compiles servlet source code
■ Writes JavaServer Faces, JSP, and HTML files
■ Specifies the deployment descriptor (optional)
■ Packages the .class, .jsp, and.html files and deployment descriptor into the WAR file

Application Client Developer
An application client developer performs the following tasks to deliver a JAR file containing the
application client:

■ Writes and compiles the source code
■ Specifies the deployment descriptor for the client (optional)

Development Roles

The Java EE 6 Tutorial, Volume I • December 200944

■ Packages the .class files and deployment descriptor into the JAR file

Application Assembler
The application assembler is the company or person who receives application modules from
component providers and may assemble them into a Java EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or can use tools that correctly
add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

■ Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file

■ Specifies the deployment descriptor for the Java EE application (optional)
■ Verifies that the contents of the EAR file are well formed and comply with the Java EE

specification

Application Deployer and Administrator
The application deployer and administrator is the company or person who configures and
deploys the Java EE application, administers the computing and networking infrastructure
where Java EE applications run, and oversees the runtime environment. Duties include such
things as setting transaction controls and security attributes and specifying connections to
databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure a Java
EE application:

■ Configures the Java EE application for the operational environment
■ Verifies that the contents of the EAR file are well formed and comply with the Java EE

specification
■ Deploys (installs) the Java EE application EAR file into the Java EE server

Development Roles

Chapter 1 • Overview 45

Java EE 6 APIs
The following sections give a brief summary of the technologies required by the Java EE
platform, and the APIs used in Java EE applications.

Enterprise JavaBeans Technology
An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having fields
and methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven beans.

A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

A message-driven bean combines features of a session bean and a message listener, allowing a
business component to receive messages asynchronously. Commonly, these are Java Message
Service (JMS) messages.

In the Java EE 6 platform, new enterprise bean features include the following:

■ The ability to package local enterprise beans in a WAR file
■ Singleton session beans, which provide easy access to shared state
■ A lightweight subset of Enterprise JavaBeans functionality that can be provided within Java

EE Profiles such as the Java EE Web Profile.

Java Servlet Technology
Java servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications that are accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java servlet technology features include the following:

■ Asynchronous support
■ Ease of configuration
■ Pluggability
■ Enhancements to existing APIs
■ Annotation support

Java EE 6 APIs

The Java EE 6 Tutorial, Volume I • December 200946

JavaServer Faces Technology
JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

■ A GUI component framework.
■ A flexible model for rendering components in different kinds of HTML or different markup

languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
in a view.

■ A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

■ Input validation
■ Event handling
■ Data conversion between model objects and components
■ Managed model object creation
■ Page navigation configuration

All this functionality is available using standard Java APIs and XML-based configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

■ The ability to use annotations instead of a configuration file to specify managed beans
■ Facelets, a display technology that replaces JavaServer Pages (JSP) technology using

XHTML files
■ Ajax support
■ Composite components
■ Implicit navigation

JavaServer PagesTM Technology
JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a text-based
document. A JSP page is a text-based document that contains two types of text: static data
(which can be expressed in any text-based format such as HTML, WML, and XML) and JSP
elements, which determine how the page constructs dynamic content.

JavaServer Pages Standard Tag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,

Java EE 6 APIs

Chapter 1 • Overview 47

you employ a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

Java Persistence API
The Java Persistence API is a Java standards-based solution for persistence. Persistence uses an
object-relational mapping approach to bridge the gap between an object oriented model and a
relational database. The Java Persistence API can also be used in Java SE applications, outside of
the Java EE environment. Java Persistence consists of three areas:

■ The Java Persistence API
■ The query language
■ Object/relational mapping metadata

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

Java API for RESTful Web Services (JAX-RS)
The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of Web
services built according to the Representational State Transfer (REST) architectural style. A
JAX-RS application is a web application that consists of classes that are packaged as a servlet in a
WAR file along with required libraries.

The JAX-RS API is new to the Java EE 6 platform.

Java Message Service API
The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

Java EE 6 APIs

The Java EE 6 Tutorial, Volume I • December 200948

Java EE Connector Architecture
The Java EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, typically there is a different
resource adapter for each type of database or enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE-based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the Java EE Connector architecture into the Java EE platform can be exposed as XML-based web
services by using JAX-WS and Java EE component models. Thus JAX-WS and the Java EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

JavaMailTM API
Java EE applications use the JavaMail API to send email notifications. The JavaMail API has two
parts: an application-level interface used by the application components to send mail, and a
service provider interface. The Java EE platform includes the JavaMail API with a service
provider that allows application components to send Internet mail.

Java Authorization Service Provider Contract for
Containers (Java ACC)
The Java ACC specification defines a contract between a Java EE application server and an
authorization policy provider. All Java EE containers support this contract.

The Java ACC specification defines java.security.Permission classes that satisfy the Java EE
authorization model. The specification defines the binding of container access decisions to
operations on instances of these permission classes. It defines the semantics of policy providers
that employ the new permission classes to address the authorization requirements of the Java
EE platform, including the definition and use of roles.

Java Authentication Service Provider Interface for
Containers (JASPIC)
The Java Authentication Service Provider Interface for Containers (JASPIC) specification
defines a service provider interface (SPI) by which authentication providers that implement
message authentication mechanisms may be integrated in client or server message processing

Java EE 6 APIs

Chapter 1 • Overview 49

containers or runtimes. Authentication providers integrated through this interface operate on
network messages provided to them by their calling container. They transform outgoing
messages so that the source of the message may be authenticated by the receiving container, and
the recipient of the message may be authenticated by the message sender. They authenticate
incoming messages and return to their calling container the identity established as a result of
the message authentication.

Java API for XML Registries
The Java API for XML Registries (JAXR) lets you access business and general-purpose registries
over the web. JAXR supports the ebXML Registry and Repository standards and the emerging
UDDI specifications. By using JAXR, developers can learn a single API and gain access to both
of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that others
have submitted. Standards groups have developed schemas for particular kinds of XML
documents; two businesses might, for example, agree to use the schema for their industry’s
standard purchase order form. Because the schema is stored in a standard business registry,
both parties can use JAXR to access it.

Simplified Systems Integration
The Java EE platform is a platform-independent, full systems integration solution that creates
an open marketplace in which every vendor can sell to every customer. Such a marketplace
encourages vendors to compete, not by trying to lock customers into their technologies but
instead by trying to outdo each other in providing products and services that benefit customers,
such as better performance, better tools, or better customer support.

The Java EE 6 APIs enable systems and applications integration through the following:

■ Unified application model across tiers with enterprise beans
■ Simplified request-and-response mechanism with web pages and servlets
■ Reliable security model with JAAS
■ XML-based data interchange integration with JAXP, SAAJ, and JAX-WS
■ Simplified interoperability with the Java EE Connector architecture
■ Easy database connectivity with the Java DataBase Connectivity (JDBCTM) API
■ Enterprise application integration with message-driven beans and JMS, JTA, and JNDI

Java EE 6 APIs

The Java EE 6 Tutorial, Volume I • December 200950

Java EE 6 APIs Included in the Java Platform, Standard Edition
6.0 (Java SE 6)

Several APIs that are required by the Java EE 6 platform are included in the Java SE 6 platform
and are thus available to Java EE applications.

Java Database Connectivity API
The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application components
to access a database, and a service provider interface to attach a JDBC driver to the Java EE
platform.

Java Naming and Directory InterfaceTM

The Java Naming and Directory Interface (JNDI) provides naming and directory functionality,
enabling applications to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. It provides applications with
methods for performing standard directory operations, such as associating attributes with
objects and searching for objects using their attributes. Using JNDI, a Java EE application can
store and retrieve any type of named Java object, allowing Java EE applications to coexist with
many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a JNDI naming
context.

A Java EE component can locate its environment naming context using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context, java:comp/env. The Java EE platform allows a component to

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)

Chapter 1 • Overview 51

name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource

objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java:comp/env/ejb, and JDBC DataSource references in the
subcontext java:comp/env/jdbc.

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides standard
services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the
operations available on it, and create the appropriate JavaBeans component to perform those
operations.

Java API for XML Processing
The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and
Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independent of a particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the W3C schema. You can find
information on the W3C schema at this URL: http://www.w3.org/XML/Schema.

Java Architecture for XML Binding (JAXB)
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
API.

SOAP with Attachments API for Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS and
JAXR depend. SAAJ enables the production and consumption of messages that conform to the
SOAP 1.1 and 1.2 specifications and SOAP with Attachments note. Most developers do not use
the SAAJ API, instead using the higher-level JAX-WS API.

Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)

The Java EE 6 Tutorial, Volume I • December 200952

http://www.w3.org/XML/Schema

Java API for XML Web Services (JAX-WS)
The JAX-WS specification provides support for web services that use the JAXB API for binding
XML data to Java objects. The JAX-WS specification defines client APIs for accessing web
services as well as techniques for implementing web service endpoints. The Implementing
Enterprise Web Services specification describes the deployment of JAX-WS-based services and
clients. The EJB and Java Servlet specifications also describe aspects of such deployment. It must
be possible to deploy JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

Sun GlassFish Enterprise Server v3
Sun GlassFish Enterprise Server v3 is a compliant implementation of the Java EE 6 platform. In
addition to supporting all the APIs described in the previous sections, the Enterprise Server
includes a number of Java EE tools that are not part of the Java EE 6 platform but are provided
as a convenience to the developer.

This section briefly summarizes the tools that make up the Enterprise Server. Instructions for
starting and stopping the Enterprise Server, starting the Admin Console, and starting and
stopping the Java DB database server are in Chapter 2, “Using the Tutorial Examples.”

Tools
The Enterprise Server contains the tools listed in Table 1–1. Basic usage information for many
of the tools appears throughout the tutorial. For detailed information, see the online help in the
GUI tools.

Sun GlassFish Enterprise Server v3

Chapter 1 • Overview 53

TABLE 1–1 Enterprise Server Tools

Tool Description

Admin Console A web-based GUI Enterprise Server administration utility. Used to stop the
Enterprise Server and manage users, resources, and applications.

asadmin A command-line Enterprise Serveradministration utility. Used to start and stop
the Enterprise Server and manage users, resources, and applications.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the Enterprise Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB database server.

xjc A command-line tool to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace referenced in
your Java classes.

wsimport A command-line tool to generate JAX-WS portable artifacts for a given WSDL
file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents along with the endpoint implementation and
then deployed.

wsgen A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

Sun GlassFish Enterprise Server v3

The Java EE 6 Tutorial, Volume I • December 200954

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the examples. It
covers the following topics:
■ “Required Software” on page 55
■ “Starting and Stopping the Enterprise Server” on page 58
■ “Starting the Administration Console” on page 59
■ “Starting and Stopping the Java DB Database Server” on page 60
■ “Building the Examples” on page 60
■ “Tutorial Example Directory Structure” on page 61
■ “Getting the Latest Updates to the Tutorial” on page 61
■ “Debugging Java EE Applications” on page 62

Required Software
The following software is required to run the examples.
■ “Java Platform, Standard Edition” on page 55
■ “Java EE 6 Software Development Kit (SDK)” on page 56
■ “Apache Ant” on page 56
■ “Java EE 6 Tutorial Component” on page 57
■ “NetBeans IDE” on page 58

JavaTM Platform, Standard Edition
To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
6.0 Software Development Kit (JDK 6). You can download the JDK 6 software from
http://java.sun.com/javase/downloads/index.jsp.

Download the current JDK update that does not include any other software (such as NetBeans
or Java EE).

2C H A P T E R 2

55

http://java.sun.com/javase/downloads/index.jsp

Java EE 6 Software Development Kit (SDK)
Sun GlassFishTM Enterprise Server v3 is targeted as the build and runtime environment for the
tutorial examples. To build, deploy, and run the examples, you need a copy of the Enterprise
Server and, optionally, NetBeans IDE. To obtain the Enterprise Server, you must install the Java
EE 6 Software Development Kit (SDK), which you can download from http://java.sun.com/

javaee/downloads/. Make sure you download the Java EE 6 SDK, not the Java EE 6 Web Profile
SDK.

SDK Installation Tips
During the installation of the SDK:

■ Configure the Enterprise Server administration username and password as anonymous.
This is the default setting.

■ Accept the default port values for the Admin Port (4848) and the HTTP Port (8080).
■ Allow the installer to download and configure the Update Tool. If you access the Internet

through a firewall, provide the proxy host and port.

This tutorial refers to the directory where you install the Enterprise Server as as-install-parent.
For example, the default installation directory on Microsoft Windows is C:\glassfishv3, so
as-install-parent is C:\glassfishv3. The Enterprise Server itself is installed in as-install, the
glassfish directory under as-install-parent. So on Microsoft Windows, as-install is
C:\glassfishv3\glassfish.

After you install the Enterprise Server, add the following directories to your PATH to avoid
having to specify the full path when you use commands:

as-install-parent/bin
as-install/bin

Apache Ant
Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/), and is used to build, package, and deploy the tutorial examples. To
run the tutorial examples, you need Ant 1.7.1. If you do not already have Ant 1.7.1, you can
install it from the Update Tool that is part of the Enterprise Server.

▼ To Obtain Apache Ant

Start the Update Tool.

■ From the command line, type the command updatetool.

1

Required Software

The Java EE 6 Tutorial, Volume I • December 200956

http://java.sun.com/javaee/downloads/
http://java.sun.com/javaee/downloads/
http://ant.apache.org/

■ On a Windows system, select the following:

Start → All Programs → Java EE 6 SDK → Start Update Tool

Expand the GlassFish v3 node.

Select the Available Add-ons node.

From the list, select the Apache Ant Build Tool checkbox.

Click Install.

Accept the license agreement.

After installation, Apache Ant appears in the list of installed components. The tool is installed
in the as-install-parent/ant directory.

To use the ant command, add as-install/ant/bin to your PATH environment variable.

Java EE 6 Tutorial Component
The tutorial example source is contained in the tutorial component. To obtain the tutorial
component, use the Update Tool.

▼ To Obtain the Tutorial Component

Start the Update Tool.

■ From the command line, type the command updatetool.

■ On a Windows system, select the following:

Start → All Programs → Java EE 6 SDK → Start Update Tool

Expand the GlassFish v3 node.

Select the Available Add-ons node.

From the list, select the Java EE 6 Tutorial checkbox.

Click Install.

2

3

4

5

6

Next Steps

1

2

3

4

5

Required Software

Chapter 2 • Using the Tutorial Examples 57

Accept the license agreement.
After installation, the Java EE 6 Tutorial appears in the list of installed components. The tool is
installed in the as-install/docs/javaee-tutorial directory. This directory contains two
subdirectories, docs and examples. The examples directory contains subdirectories for each of
the technologies discussed in the tutorial.

NetBeans IDE
The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from http://www.netbeans.org/downloads/index.html.

▼ To Add Enterprise Server as a Server in NetBeans IDE
To run the tutorial examples in NetBeans IDE, you must register your Enterprise Server
installation as a NetBeans Server Instance. Follow these instructions to register the Enterprise
Server in NetBeans IDE.

Select Tools → Servers to open the Servers dialog.

Click Add Server.

Under Server, select GlassFish v3 and click Next.

Under Server Location, enter the location of your Enterprise Server installation and click Next.

Select Register Local Default Domain.

Click Finish.

Starting and Stopping the Enterprise Server
To start the Enterprise Server, open a terminal window or command prompt and execute the
following:

asadmin start-domain --verbose

6

1

2

3

4

5

6

Starting and Stopping the Enterprise Server

The Java EE 6 Tutorial, Volume I • December 200958

http://www.netbeans.org/downloads/index.html

A domain is a set of one or more Enterprise Server instances managed by one administration
server. Associated with a domain are the following:

■ The Enterprise Server’s port number. The default is 8080.
■ The administration server’s port number. The default is 4848.
■ An administration user name and password.

You specify these values when you install the Enterprise Server. The examples in this tutorial
assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which is
domain1. The --verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt (it will also go into the server log, which is located in
domain-dir/logs/server.log).

Or, on Windows, choose the following:

Start → All Programs → Java EE 6 SDK → Start Application Server

After the server has completed its startup sequence, you will see the following output:

Domain domain1 started.

To stop the Enterprise Server, open a terminal window or command prompt and execute:

asadmin stop-domain domain1

Or, on Windows, choose the following:

Start → All Programs → Java EE 6 SDK → Stop Application Server

When the server has stopped you will see the following output:

Domain domain1 stopped.

Starting the Administration Console
To administer the Enterprise Server and manage users, resources, and Java EE applications, use
the Administration Console tool. The Enterprise Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848/.

Or, on Windows, choose the following:

Start → All Programs → Java EE 6 SDK → Administration Console

Starting the Administration Console

Chapter 2 • Using the Tutorial Examples 59

▼ To Start the Administration Console in NetBeans IDE
Click the Services tab.

Expand the Servers node.

Right-click the Enterprise Server instance and select View Admin Console

Note – You must configure a web browser with NetBeans IDE in order for the Administration
Console to be started from within NetBeans IDE.

Starting and Stopping the Java DB Database Server
The Enterprise Server includes the Java DB database.

To start the Java DB database server, open a terminal window or command prompt and
execute:

asadmin start-database

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database

For information about the Java DB database included with the Enterprise Server, see
http://developers.sun.com/javadb/.

To start the database server using NetBeans IDE, follow these steps:

1. Click the Services tab.
2. Expand the Databases node.
3. Right-click Java DB and choose Start Server.

To stop the database using NetBeans IDE, choose Stop Server.

Building the Examples
The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

1

2

3

Starting and Stopping the Java DB Database Server

The Java EE 6 Tutorial, Volume I • December 200960

http://developers.sun.com/javadb/

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:
■ build.xml: Ant build file
■ src/java: Java source files for the module
■ src/conf: configuration files for the module, with the exception of web applications
■ web: web pages, style sheets, tag files, and images
■ web/WEB-INF: configuration files for web applications
■ nbproject: NetBeans project files

Examples that have multiple application modules packaged into an enterprise application
archive (or EAR) have submodule directories that use the following naming conventions:
■ example-name-app-client: Application clients
■ example-name-ejb: Enterprise bean JAR files
■ example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client-jar directory, which holds the retrieved application
client JAR.

Getting the Latest Updates to the Tutorial
Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

▼ To Update the Tutorial through the Update Center
Open the Services tab in NetBeans IDE and expand Servers.

Right-click the GlassFish v3 instance and select View Update Center to display the Update Tool.

Select Available Updates in the tree to display a list of updated packages.

Look for updates to the Java EE 6 Tutorial (javaee-tutorial) package.

If there is an updated version of the Tutorial , select Java EE 6 Tutorial (javaee-tutorial) and click
Install.

1

2

3

4

5

Getting the Latest Updates to the Tutorial

Chapter 2 • Using the Tutorial Examples 61

Debugging Java EE Applications
This section describes how to determine what is causing an error in your application
deployment or execution.

Using the Server Log
One way to debug applications is to look at the server log in domain-dir/logs/server.log. The
log contains output from the Enterprise Server and your applications. You can log messages
from any Java class in your application with System.out.println and the Java Logging APIs
(documented at http://java.sun.com/javase/6/docs/technotes/guides/logging/
index.html) and from web components with the ServletContext.log method.

If you start the Enterprise Server with the --verbose flag, all logging and debugging output will
appear on the terminal window or command prompt and the server log. If you start the
Enterprise Server in the background, debugging information is only available in the log. You
can view the server log with a text editor or with the Administration Console log viewer.

To use the log viewer:

1. Select the Enterprise Server node.
2. Click the View Log Files button. The log viewer will open and display the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the top of the log viewer.

Using a Debugger
The Enterprise Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the Enterprise Server to communicate debugging information using a socket.

To debug an application using a debugger:

1. Enable debugging in the Enterprise Server using the Administration Console:
a. Expand the Configuration node.
b. Select the JVM Settings node. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not
in use by the Enterprise Server or another service.

Debugging Java EE Applications

The Java EE 6 Tutorial, Volume I • December 200962

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

c. Select the Debug Enabled check box.
d. Click the Save button.

2. Stop the Enterprise Server and then restart it.

Debugging Java EE Applications

Chapter 2 • Using the Tutorial Examples 63

64

The Web Tier
Part Two explores the technologies in the web tier.

P A R T I I

65

66

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. There are two types of
web applications:
■ Presentation-oriented: A presentation-oriented web application generates interactive web

pages containing various types of markup language (HTML, XHTML, XML, and so on) and
dynamic content in response to requests. Chapter 4, “JavaServer Faces Technology,”
through Chapter 9, “Developing With JavaServer Faces Technology,” cover how to develop
presentation-oriented web applications.

■ Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Chapter 12, “Building Web Services with JAX-WS”and Chapter 13, “Building
RESTful Web Services with JAX-RS and Jersey”cover how to develop service-oriented web
applications.

The following topics are addressed here:

■ “Web Applications” on page 67
■ “Web Application Life Cycle” on page 69
■ “Web Modules” on page 71
■ “Configuring Web Applications” on page 77
■ “Further Information about Web Applications” on page 84

Web Applications
In the JavaTM EE platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, web pages, web service endpoints, or JSP
pages. The interaction between a web client and a web application is illustrated in Figure 3–1.
The client sends an HTTP request to the web server. A web server that implements Java Servlet
and JavaServer PagesTM technology converts the request into an HTTPServletRequest object.
This object is delivered to a web component, which can interact with JavaBeans components or
a database to generate dynamic content. The web component can then generate an

3C H A P T E R 3

67

HTTPServletResponse or it can pass the request to another web component. Eventually a web
component generates a HTTPServletResponse object. The web server converts this object to an
HTTP response and returns it to the client.

Servlets are Java programming language classes that dynamically process requests and construct
responses. Java technologies, such as JavaServerTM Faces and Facelets, and frameworks are used
for building interactive web applications. Although servlets and Java Server Faces and Facelets
pages can be used to accomplish similar things, each has its own strengths. Servlets are best
suited for service-oriented applications (web service endpoints are implemented as servlets)
and the control functions of a presentation-oriented application, such as dispatching requests
and handling nontextual data. Java Server Faces and Facelets pages are more appropriate for
generating text-based markup, such as XHTML, and are generally used for
presentation–oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. It also gives web components access to APIs such as naming,
transactions, and email.

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
ComponentsWeb
ComponentsWeb
Components

Web
ComponentsWeb
ComponentsJavaBeans
Components

2

3

4

5

4

6

FIGURE 3–1 Java Web Application Request Handling

Web Applications

The Java EE 6 Tutorial, Volume I • December 200968

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information is maintained in a text file in
XML format called a web application deployment descriptor (DD). A DD must conform to the
schema described in the Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web applications.
First it summarizes the web application life cycle. Then it describes how to package and deploy
very simple web applications on the Sun GlassFish Enterprise Server. It moves on to configuring
web applications and discusses how to specify the most commonly used configuration
parameters.

Web Application Life Cycle
A web application consists of web components, static resource files such as images, and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

1. Develop the web component code.

2. Develop the web application deployment descriptor.

3. Compile the web application components and helper classes referenced by the components.

4. Optionally package the application into a deployable unit.

5. Deploy the application into a web container.

6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form (Figure 3–2) and then displays a greeting after the name is submitted (Figure 3–3).

Web Application Life Cycle

Chapter 3 • Getting Started with Web Applications 69

http://java.sun.com/products/servlet/download.html#specs

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses hello2, a servlet-based web application in which the
components are implemented by two servlet classes
(tut-install/examples/web/hello2/src/servlets/GreetingServlet.java and
tut-install/examples/web/hello2/src/servlets/ResponseServlet.java). The application is
used to illustrate tasks involved in packaging, deploying, configuring, and running an
application that contains web components. The section Chapter 2, “Using the Tutorial

FIGURE 3–2 Greeting Form

FIGURE 3–3 Response

Web Application Life Cycle

The Java EE 6 Tutorial, Volume I • December 200970

Examples,” explains how to get the code for the example. The source code for the example is in
the tut-install/examples/web/hello2/ directory.

Web Modules
In the Java EE architecture, web components and static web content files such as images are
called web resources. A web module is the smallest deployable and usable unit of web resources.
A Java EE web module corresponds to a web application as defined in the Java Servlet
specification.

In addition to web components and web resources, a web module can contain other files:

■ Server-side utility classes (database beans, shopping carts, and so on). Often these classes
conform to the JavaBeans component architecture.

■ Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and
archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which contains the following files
and directories:

■ web.xml: The web application deployment descriptor
■ Tag library descriptor files
■ classes: A directory that contains server-side classes: servlets, utility classes, and JavaBeans

components
■ tags: A directory that contains tag files, which are implementations of tag libraries
■ lib: A directory that contains JAR archives of libraries called by server-side classes

If your web module does not contain any servlets, filter, or listener components then it does not
need a web application deployment descriptor. In other words, if your web module only
contains XHTML pages and static files, you are not required to include a web.xml file.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a web archive (WAR) file. Because the contents and use of WAR files differ from those
of JAR files, WAR file names use a .war extension. The web module just described is portable;
you can deploy it into any web container that conforms to the Java Servlet Specification.

To deploy a WAR on the Enterprise Server, the file must also contain a runtime deployment
descriptor. The runtime deployment descriptor is an XML file that contains information such
as the context root of the web application and the mapping of the portable names of an

Web Modules

Chapter 3 • Getting Started with Web Applications 71

application’s resources to the Enterprise Server’s resources. The Enterprise Server web
application runtime DD is named sun-web.xml and is located in the WEB-INF directory along
with the web application DD. The structure of a web module that can be deployed on the
Enterprise Server is shown in Figure 3–4.

Packaging Web Modules
A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the sample applications.

web.xml
sun-web.xml

*.tld

JSP pages,
static HTML pages,
applet classes, etc.

Library
archive files

lib

Assembly
Root

WEB-INF

All server-side
.class files for

this web module

classes

All .tag files
for this

web module

tags

FIGURE 3–4 Web Module Structure

Web Modules

The Java EE 6 Tutorial, Volume I • December 200972

To build the hello2 application with NetBeans IDE, follow these instructions:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/examples/web/

3. Select the hello2 folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the hello2 project and select Build.

To build the hello2 application using the Ant utility, follow these steps:

1. In a terminal window, go to tut-install/examples/web/hello2/.
2. Type ant. This command will spawn any necessary compilations, copy files to the

tut-install/examples/web/hello2/build/ directory, create the WAR file, and copy it to the
tut-install/examples/web/hello2/dist/ directory.

Deploying a WAR File
You can deploy a WAR file to the Enterprise Server in a few ways:
■ Copying the WAR into the domain-dir/autodeploy/ directory.
■ Using the Admin Console.
■ By running asadmin or ant to deploy the WAR.
■ Using NetBeans IDE.

All these methods are described briefly in this chapter; however, throughout the tutorial, you
will use ant and NetBeans IDE for packaging and deploying.

Setting the Context Root
A context root identifies a web application in a Java EE server. You specify the context root when
you deploy a web module. A context root must start with a forward slash (/) and end with a
string.

In a packaged web module for deployment on the Enterprise Server, the context root is stored in
sun-web.xml.

To edit the context root, do the following:

1. Expand your project tree in the Projects pane of NetBeans IDE.
2. Expand the Web Pages and WEB-INF nodes of your project.
3. Double-click sun-web.xml.
4. In the editor pane, click Edit As XML.

Web Modules

Chapter 3 • Getting Started with Web Applications 73

5. Edit the context root, which is enclosed by the context-root element.

Deploying a Packaged Web Module
If you have deployed the hello2 application, before proceeding with this section, undeploy the
application by following one of the procedures described in “Undeploying Web Modules” on
page 76.

Deploying with the Admin Console

1. Expand the Applications node.
2. Click the Deploy button.
3. Select the radio button labeled “Package file to be uploaded to the Application Server.”
4. Type the full path to the WAR file (or click on Browse to find it), and then click the OK

button.
5. Click Next.
6. Type the application name.
7. Type the context root.
8. Select the Enabled box.
9. Click the Finish button.

Deploying with asadmin

To deploy a WAR with asadmin, open a terminal window or command prompt and execute

asadmin deploy full-path-to-war-file

Deploying with Ant

To deploy a WAR with the Ant tool, open a terminal window or command prompt in the
directory where you built and packaged the WAR, and execute

ant deploy

Deploying with NetBeans IDE

To deploy a WAR with NetBeans IDE, do the following:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to your project and open it.
3. In the Projects tab, right-click the project and select Deploy.

Web Modules

The Java EE 6 Tutorial, Volume I • December 200974

Testing Deployed Web Modules
Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host localhost on port 8080. The context
root of the web application is hello2.

To test the application, follow these steps:

1. Open a web browser.
2. Enter the following URL in the web address box:

http://localhost:8080/hello2

3. Enter your name, and click Submit.

The application should display the name you submitted.

Listing Deployed Web Modules
The Enterprise Server provides two ways to view the deployed web modules: the Admin
Console and the asadmin command.

To use the Admin Console:

1. Open the URL http://localhost:4848/ in a browser.
2. Expand the Applications node.

Use the asadmin command as follows:

asadmin list-components

Updating Web Modules
A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, you must do the
following:

1. Recompile any modified classes.
2. If you have deployed a packaged web module, update any modified components in the

WAR.
3. Redeploy the module.
4. Reload the URL in the client.

Web Modules

Chapter 3 • Getting Started with Web Applications 75

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed pages or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is domain-dir/applications/context-root. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This capability is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid and the client must restart the session.

To enable dynamic reloading, use the Admin Console:

1. Select the Applications Server node.
2. Select the Advanced tab.
3. Check the Reload Enabled box to enable dynamic reloading.
4. Enter a number of seconds in the Reload Poll Interval field to set the interval at which

applications and modules are checked for code changes and dynamically reloaded.
5. Click the Save button.

In addition, to load new servlet files, do the following:

1. Create an empty file named .reload at the root of the module:

domain-dir/applications/context-root/.reload

2. Explicitly update the .reload file’s time stamp each time you make these changes. On
UNIX, execute

touch .reload

Undeploying Web Modules
You can undeploy web modules in four ways: you can use NetBeans IDE, the Admin Console,
the asadmin command, or the Ant tool.

To use NetBeans IDE:

1. Ensure the Enterprise Server is running.
2. In the Services window, expand the Servers node, Enterprise Server instance and the

Applications node.
3. Right-click the application or module and choose Undeploy.

Web Modules

The Java EE 6 Tutorial, Volume I • December 200976

To use the Admin Console:

1. Open the URL http://localhost:4848/ in a browser.
2. Expand the Applications node.
3. Select the check box next to the module you wish to undeploy.
4. Click the Undeploy button.

Use the asadmin command as follows:

asadmin undeploy context-root

To use the Ant tool, execute the following command in the directory where you built and
packaged the WAR:

ant undeploy

Configuring Web Applications
Web applications are configured by means of elements contained in the web application
deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure.

In the following sections, examples demonstrate procedures for configuring the Hello, World
application. If Hello, World does not use a specific configuration feature, the section gives
references to other examples that illustrate how to specify the deployment descriptor element.

Mapping URLs to Web Components
When a request is received by the web container it must determine which web component
should handle the request. It does so by mapping the URL path contained in the request to a
web application and a web component. A URL path contains the context root and an alias:

http://host:port/context-root/alias

Setting the Component Alias
The alias identifies the web component that should handle a request. The alias path must start
with a forward slash (/) and end with a string or a wildcard expression with an extension (for
example, *.jsp).

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 77

The hello2 application has two servlets that need to be mapped in the web.xml file. You can
edit a web application’s web.xml file in NetBeans IDE by doing the following:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/examples/web/

3. Select the hello2 folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Expand the project tree in the Projects pane.
7. Expand the Web pages node and then the WEB-INF node in the project tree.
8. Double-click the web.xml file inside the WEB-INF node.

The following steps describe how to make the necessary edits to the web.xml file, including how
to set the display name and how to map the servlet components. Because the edits are already in
the file, you can just use the steps to view the settings.

To set the display name:

1. Click General at the top of the editor to open the general view.
2. Enter hello2 in the Display Name field.

To perform the servlet mappings:

1. Click Servlets at the top of the editor to open the servlets view.
2. Click Add Servlet.
3. In the Add Servlet dialog, enter GreetingServlet in the Servlet Name field.
4. Enter servlets.GreetingServlet in the Servlet Class field.
5. Enter /greeting in the URL Pattern field.
6. Click OK.
7. Repeat the preceding steps, except enter ResponseServlet as the servlet name,

servlets.ResponseServlet as the servlet class, and /response as the URL pattern.

If you are not using NetBeans IDE, you can add these settings using a text editor.

To package the example with NetBeans IDE, do the following:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/examples/web/

3. Select the hello2 folder.
4. Select the Open as Main Project check box.

Configuring Web Applications

The Java EE 6 Tutorial, Volume I • December 200978

5. Click Open Project.
6. In the Projects tab, right-click the hello2 project and select Build.

To package the example with the Ant utility, do the following:

1. In a terminal window, go to tut-install/examples/web/hello2/.
2. Type ant. This target will build the WAR file and copy it to the

tut-install/examples/web/hello2/dist/ directory.

To deploy the example using NetBeans IDE, right-click on the project in the Projects pane and
select Deploy.

To deploy the example using Ant, type ant deploy. The deploy target in this case gives you an
incorrect URL to run the application. To run the application, please use the URL shown at the
end of this section.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting in a browser.

Declaring Welcome Files
The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component.

For example, suppose you define a welcome file welcome.html. When a client requests a URL
such as host:port/webapp/directory, where directory is not mapped to a servlet or XHTML
page, the file host:port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource in the WAR that matches.

If no welcome file is specified, the Enterprise Server will use a file named index.xhtml as the
default welcome file. If there is no welcome file and no file named index.xhtml, the Enterprise
Server returns a directory listing.

Setting Initialization Parameters
The web components in a web module share an object that represents their application context.
You can pass initialization parameters to the context or to a web component.

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 79

To add a context parameter using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.
3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Click General at the top of the editor pane.
6. Select the Context Parameters node.
7. Click Add.
8. In the Add Context Parameter dialog, do the following:

a. Enter the name that specifies the context object in the Param Name field.
b. Enter the parameter to pass to the context object in the Param Value field.
c. Click OK.

Alternatively, you can edit the XML of the web.xml file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

■ A param-name element that specifies the context object
■ A param-value element that specifies the parameter to pass to the context object
■ A context-param element that encloses the previous two elements

To add a web component initialization parameter using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.
3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Click Servlets at the top of the editor pane.
6. After entering the servlet’s name, class, and URL pattern, click the Add button under the

Initialization Parameters table.
7. In the Add Initialization Parameter dialog:

a. Enter the name of the parameter in the Param Name field.
b. Enter the parameter’s value in the Param Value Field.
c. Click OK.

Alternatively, you can edit the XML of the web.xml file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

■ A param-name element that specifies the name of the initialization parameter
■ A param-value element that specifies the value of the initialization parameter
■ An init-param element that encloses the previous two elements

Configuring Web Applications

The Java EE 6 Tutorial, Volume I • December 200980

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component and any type of error screen.

To set up error mappings using NetBeans IDE, do the following:

1. Open the project if you haven’t already.

2. Expand the project’s node in the Projects pane.

3. Expand the Web Pages node and then the WEB-INF node.

4. Double-click web.xml.

5. Click Pages at the top of the editor pane.

6. Expand the Error Pages node.

7. Click Add.

8. In the Add Error Page dialog:

a. Click Browse to locate the page that you want to act as the error page.

b. Enter the HTTP status code that will cause the error page to be opened in the Error Code
field.

c. Enter the exception that will cause the error page to load in the Exception Type field.

d. Click OK.

Alternatively, you can click XML at the top of the editor pane and enter the error page mapping
by hand using the following elements:

■ An exception-type element specifying either the exception or the HTTP status code that
will cause the error page to be opened.

■ A location element that specifies the name of a web resource to be invoked when the status
code or exception is returned. The name should have a leading forward slash (/).

■ An error-page element that encloses the previous two elements.

You can have multiple error-page elements in your deployment descriptor. Each one of the
elements identifies a different error that causes an error page to open. This error page can be the
same for any number of error-page elements.

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 81

Declaring Resource References
If your web component uses objects such as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions from using it in web applications. First, you can only inject resources into
container-managed objects. This is because a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into objects such as simple JavaBeans components. However, JavaServer Faces
managed beans are managed by the container; therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 3–1.

This section describes how to use a couple of the annotations supported by a servlet container to
inject resources. Chapter 20, “Running the Persistence Examples,” describes how web
applications use annotations supported by the Java Persistence API. Chapter 25, “Getting
Started Securing Web Applications,” describes how to use annotations to specify information
about securing web applications.

TABLE 3–1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet Filters javax.servlet.ServletFilter

Event Listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributeListener

javax.servlet.http.HttpSessionBindingListener

Taglib Listeners Same as above

Taglib Tag Handlers javax.servlet.jsp.tagext.JspTag

Managed Beans Plain Old Java Objects

Configuring Web Applications

The Java EE 6 Tutorial, Volume I • December 200982

Declaring a Reference to a Resource
The @Resource annotation is used to declare a reference to a resource such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, method or field. The container is responsible
for injecting references to resources declared by the @Resource annotation and mapping it to
the proper JNDI resources. In the following example, the @Resource annotation is used to inject
a data source into a component that needs to make a connection to the data source, as is done
when using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {

// get a connection and execute the query

Connection conn = catalogDS.getConnection();

..

}

The container injects this data source prior to the component being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

@Resources ({

@Resource (name="myDB" type=java.sql.DataSource),

@Resource(name="myMQ" type=javax.jms.ConnectionFactory)

})

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 20, “Running the
Persistence Examples,” describes these annotations and the use of the Java Persistence API in
web applications.

Declaring a Reference to a Web Service
The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file:

...

import javax.xml.ws.WebServiceRef;

...

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 83

public class ResponseServlet extends HTTPServlet {

@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Further Information about Web Applications
For more information on web applications, see:

■ The JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

■ The JavaServer Faces web site:
http://java.sun.com/javaee/javaserverfaces/

■ The Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ The Java Servlet web site:
http://java.sun.com/products/servlet

Further Information about Web Applications

The Java EE 6 Tutorial, Volume I • December 200984

http://jcp.org/en/jsr/detail?id=314
http://java.sun.com/javaee/javaserverfaces/
http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/products/servlet

JavaServerTM Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:
■ An API for representing components and managing their state; handling events, server-side

validation, and data conversion; defining page navigation; supporting internationalization
and accessibility; and providing extensibility for all these features

■ Tag libraries for adding components to web pages and for connecting components to
server-side objects

JavaServer Faces technology provides a well-defined programming model and various tag
libraries. These features significantly ease the burden of building and maintaining web
applications with server-side UIs. With minimal effort, you can complete the following tasks:
■ Create a web page
■ Drop components onto a web page by adding component tags
■ Bind components on a page to server-side data
■ Wire component-generated events to server-side application code
■ Save and restore application state beyond the life of server requests
■ Reuse and extend components through customization

This chapter provides an overview of JavaServer Faces technology. After explaining what a
JavaServer Faces application is and going over some of the primary benefits of using JavaServer
Faces technology, it describes the process of creating a simple JavaServer Faces application. This
chapter also introduces the JavaServer Faces lifecycle by describing the example JavaServer
Faces application progressing through the lifecycle stages.

The following topics are addressed here:
■ “What Is a JavaServer Faces Application?” on page 86
■ “JavaServer Faces Technology Benefits” on page 87
■ “Creating a Simple JavaServer Faces Application” on page 88

4C H A P T E R 4

85

http://java.sun.com/javaee/javaserverfaces/2.0/docs/api/index.html

■ “Further Information about JavaServer Faces Technology” on page 92

What Is a JavaServer Faces Application?
The functionality provided by a JavaServer Faces application is similar to that of any other Java
web application. A typical JavaServer Faces application includes the following parts:
■ A set of web pages in which components are laid out.
■ A set of tags to add components to the web page.
■ A set of backing beans which are JavaBeansTM components that define properties and

functions for components on a page.
■ A web deployment descriptor (web.xml file).
■ Optionally, one or more application configuration resource files such as a

faces-config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects such as custom components.

■ Optionally, a set of custom objects created by the application developer. These objects can
include custom components, validators, converters, or listeners.

■ A set of custom tags for representing custom objects on the page.

Figure 4–1 describes the interaction between client and server in a typical JavaServer Faces
application. In response to a client request, a web page is rendered by the web container that
implements JavaServer Faces technology.

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags. Component
tags are used to add components to the view (represented by myUI in the diagram), which is the
server-side representation of the page. In addition to components, the web page can also
reference objects such as the following:
■ Any event listeners, validators, and converters that are registered on the components
■ The JavaBeans components that capture the data and process the application-specific

functionality of the components

Browser

Web Container

myfacelet.xhtml

myUI

Access page
HTTP Request

Renders HTML
HTTP Response

FIGURE 4–1 Responding to a Client Request for a JavaServer Faces Page

What Is a JavaServer Faces Application?

The Java EE 6 Tutorial, Volume I • December 200986

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output such as HTML or
XHTML that can be read by the browser.

JavaServer Faces Technology Benefits
One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation for web applications.

A JavaServer Faces application can map HTTP requests to component-specific event handling
and manage components as stateful objects on the server. JavaServer Faces technology allows
you to build web applications that implement the finer-grained separation of behavior and
presentation that is traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process, and it provides a
simple programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology tags in a web page to link to server-side objects
without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar component and
web-tier concepts without limiting you to a particular scripting technology or markup
language. JavaServer Faces technology APIs are layered directly on top of the Servlet API, as
shown in the following diagram.

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

JavaServer Pages
Standard Tag Library

JavaServer Faces

JavaServer Pages

JavaServlet

FIGURE 4–2 Java Web Application Technologies

JavaServer Faces Technology Benefits

Chapter 4 • JavaServerTM Faces Technology 87

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred presentation
technology for building JavaServer Faces based web applications and offers several advantages.

Facelets technology offers the advantages of code reuse and extensibility for components
through Templating and Composite Components features.

When you use the JavaServer Faces Annotations feature, you can automatically register the
backing bean as a resource available for JavaServer Faces applications. In addition, implicit
navigation rules allow the developers to quickly configure page navigation. These features
reduce the manual configuration process for applications.

For more information on Facelets technology features, see Chapter 5, “Introduction to
Facelets.”

Most importantly, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

Creating a Simple JavaServer Faces Application
JavaServer Faces technology provides an easy and user-friendly process for creating web
applications.

Developing a simple JavaServer Faces application typically requires the following tasks:
■ Developing backing beans
■ Adding managed bean declarations
■ Creating web pages using component tags
■ Mapping the FacesServlet instance

In this section, the above tasks are described through the process of creating a simple JavaServer
Faces Facelets application.

The example is a Hello application which includes a backing bean and a web page. When
accessed by a client, the web page prints out a Hello World message. The example application is
located in tut-install/examples/web/hello directory.

The tasks involved in developing this application can be examined by looking at the application
in detail.

Developing Backing Beans
As mentioned earlier in this chapter, a backing bean (a type of managed bean) is a JavaBean that
is managed by JavaServer Faces. Components in a page are associated with backing beans which
provide application logic. The example backing bean, helloWorld.java, contains the following
code:

Creating a Simple JavaServer Faces Application

The Java EE 6 Tutorial, Volume I • December 200988

package Hello;

import javax.faces.bean.ManagedBean;

@ManagedBean

public class Hello{

final String world = "Hello World!";

public String getWorld()

{ return world; }

}

The example backing bean sets the value of the world variable with the string Hello World!.
The @ManagedBean annotation registers the backing bean as a resource with the JavaServer
Faces implementation. For more information on managed beans and annotations, see
Developing With JavaServer Faces Technology.

Creating the Web Page
In a typical Facelets application, web pages are created in XHTML. The example web page,
beanhello.xhtml, is a simple XHTML page. It contains the following content:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>JavaServer Faces Hello World Application</title>

</head>

<body>

#{hello.world}

</body>

</html>

A Facelets XHTML web page can also contain several other elements which are covered later in
this tutorial.

The web page connects to the backing bean through the Unified Expression Language (EL)
value expression #{hello.world}, which retrieves the value of the world property from the
backing bean Hello. Note the use of hello to reference the backing bean Hello. If no name is
specified in the @ManagedBean annotation, the backing bean is always accessed with the first
letter of the class name in lowercase.

For more information on using EL expressions, see Chapter 6, “Unified Expression Language.”
For more information about Facelets technology, see Introduction to Facelets. For more
information about JavaServer Faces programming model and building web pages using
JavaServer Faces technology, see Chapter 7, “Using JavaServer Faces Technology in Web Pages.”

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServerTM Faces Technology 89

Mapping the Faces Servlet Instance
The final task requires mapping the Faces Servlet which is done through the web deployment
descriptor (web.xml). A typical mapping of Faces Servlet is as follows:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The above file segment represents part of a typical JavaServer Faces web deployment descriptor.
The web deployment descriptor can also contain other content relevant to a JavaServer Faces
application configuration but that information is not covered here.

Mapping the Faces Servlet is automatically done for you when using a Java EE 6server such as
Sun GlassFishTM Enterprise Server v3.

The Lifecycle of the helloWorldApplication
Every web application has a lifecycle. Common tasks such as handling incoming requests,
decoding parameters, modifying and saving state, and rendering web pages to the browser are
all performed during a web application lifecycle. Some web application frameworks hide the
details of the lifecycle from you while others require you to manage them manually.

By default, JavaServer Faces handles most of the lifecycle actions for you automatically. But it
does expose the different parts of the request lifecycle, so that you can modify or perform
different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer Faces
application, but the information can be useful for creating more complex applications.

The lifecycle of a JavaServer Faces application starts and ends with the following activity: The
client makes a request for the web page, and the server responds with the page. The lifecycle
consists of two main phases: execute and render.

During the execute phase, several actions can take place: The application view is built or
restored, the request parameter values are applied, conversions and validations are performed
for component values, backing beans are updated with component values, and application logic
is invoked. For a first (initial) request, only the view is built. For subsequent (postback)
requests, some or all of the other actions can take place.

Creating a Simple JavaServer Faces Application

The Java EE 6 Tutorial, Volume I • December 200990

In the render phase, the requested view is rendered as response to the client. Rendering,
typically is the process of generating output such as HTML or XHTML that can be read by the
client (usually a browser).

The following short description of the example JavaServer Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The helloWorld example application goes through the following stages when it is deployed on
the Enterprise Server:

1. When the helloWorld application is built and deployed on the Enterprise Server, the
application is at an uninitiated state.

2. When a client makes a first (initial) request for the beanhello.xhtml web page, the
helloWorld Facelets application is compiled.

3. The compiled Facelets application is executed and a new component tree (UIViewRoot) is
constructed for the helloWorld application and is placed in the Faces Context.

4. The component tree is populated with the component and the backing bean property
associated with it (represented by the EL expression hello.world).

5. A new view is built based on the component tree.
6. The view is rendered to the requesting client as a response.
7. The component tree is destroyed automatically.
8. On subsequent (postback) requests, the component tree is rebuilt and the saved state is

applied.

For more detailed information on the JavaServer Faces lifecycle, see the JavaServer Faces
Specification, Version 2.0 document.

▼ Running the Application in NetBeans IDE
To build, package, deploy, and run the JavaServer Faces helloWorld example using NetBeans
IDE, follow these steps:

In NetBeans IDE, select File→Open Project.

In the Open Project dialog box, navigate to the example directory:
tut-install/examples/web

Select the helloWorld folder.

Select the Open as Main Project check box.

Click Open Project.

1

2

3

4

5

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServerTM Faces Technology 91

In the Projects tab, right-click the helloWorldproject and select Run.
This step compiles, assembles, and deploys the application, then brings up a web browser
window displaying the following URL:
http://localhost:8080/helloWorld

Example Output of the helloWorldApplication

Hello World!

Further Information about JavaServer Faces Technology
For more information on JavaServer Faces technology, see:

■ The JavaServer Faces Technology web site:
http://java.sun.com/javaee/javaserverfaces/index.jsp

■ The JavaServer Faces 2.0 Technology download web site:
http://java.sun.com/javaee/javaserverfaces/download.html

■ Mojarra (JavaServer Faces 2.0) Release Notes:
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

■ The JavaServer Faces 2.0 API and PDL documentation:
http://java.sun.com/javaee/javaserverfaces/reference/api/index.html

6

Example 4–1

Further Information about JavaServer Faces Technology

The Java EE 6 Tutorial, Volume I • December 200992

http://java.sun.com/javaee/javaserverfaces/index.jsp
http://java.sun.com/javaee/javaserverfaces/download.html
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html
http://java.sun.com/javaee/javaserverfaces/reference/api/index.html

Introduction to Facelets

The term Facelets is used to refer to the JavaServerTM Faces View Definition Framework, which
is a page declaration language that was developed for use with JavaServer Faces technology. As
of JavaServer Faces 2.0, Facelets is a part of JavaServer Faces specification and also the preferred
presentation technology for building JavaServer Faces based applications.

JavaServer PagesTM (JSPTM) technology, previously used as the presentation technology for
JavaServer Faces, does not support all of the new features available in JavaServer Faces 2.0. JSP is
considered as a deprecated presentation technology for JavaServer Faces 2.0.

The following topics are addressed here:

■ “Advantages of Facelets” on page 93
■ “What's Facelets ?” on page 94
■ “Developing a Simple Facelets Application” on page 95
■ “Templating” on page 103
■ “Composite Components” on page 105
■ “Resources” on page 108

Advantages of Facelets
Reuse of code and ease of development are important considerations for developers to adopt
JavaServer Faces as the platform for large scale projects. By supporting these features, Facelets
reduces the time and effort on development and deployment.

Facelets advantages include the following:

■ Support for code reuse through templating and composite components
■ Functional extensibility of components and other server-side objects through customization
■ Faster compilation time
■ Compile time EL validation

5C H A P T E R 5

93

■ High performance rendering

What's Facelets ?
Facelets is a powerful but lightweight page declaration language that is used to build JavaServer
Faces views using HTML style templates and to build component trees.

Facelets features include the following:

■ Use of XHTML for creating web pages
■ Support for Facelets Tag libraries in addition to JavaServer Faces and JSTL tag libraries
■ Support for unified expression language
■ Templating for components and pages

Web Pages
Facelets views are usually created as XHTML pages. JavaServer Faces implementations support
XHTML pages created in conformance with the XHTML Transitional DTD, as listed at
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional.

By convention, web pages built with XHTML have an .xhtml extension.

Tag Library Support
JavaServer Faces technology supports different tag libraries to add components to a web page.
To support the JavaServer Faces tag library mechanism, Facelets uses XML namespace
declarations.

The following table Table 5–1 lists the tag libraries supported by Facelets.

TABLE 5–1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents

JavaServer
Faces
Facelets Tag
Library

http://java.sun.com/jsf/facelets ui: ui:component

ui:insert

Tags for templating

What's Facelets ?

The Java EE 6 Tutorial, Volume I • December 200994

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

TABLE 5–1 Tag Libraries Supported by Facelets (Continued)
Tag Library URI Prefix Example Contents

JavaServer
Faces HTML
Tag Library

http://java.sun.com/jsf/html h: h:head

h:body

h:outputText

h:inputText

JavaServer Faces
component tags for all
UIComponents.

JavaServer
Faces Core
Tag Library

http://java.sun.com/jsf/core f: f:actionListener

f:attribute

Tags for JavaServer Faces
custom actions that are
independent of any
particular RenderKit.

JSTL Core
Tag Library

http://java.sun.com/jsp/jstl/core c: c:forEach

c:catch

JSTL 1.1 Core Tags

JSTL
Functions
Tag Library

http://java.sun.com/jsp/jstl/functions fn: fn:toUpperCase

fn:toLowerCase

JSTL 1.1 Functions Tags

In addition, Facelets also supports tags for composite components for which you can declare
custom prefixes. For more information on composite components, see “Composite
Components” on page 105.

Unified Expression Language Support
Based on the JavaServer Faces support for unified expression language (EL) syntax defined by
JSP 2.1, Facelets uses EL expressions to reference properties and methods of backing beans. EL
expressions can be used to bind component objects or values to managed-bean methods or
managed-bean properties. For more information on using EL expressions, see “Using the EL to
Reference Backing Beans” on page 169.

Developing a Simple Facelets Application
This section describes the general steps involved in developing a JavaServer Faces application.

Developing a simple JavaServer Faces application, using Facelets technology usually requires
these tasks:

■ Developing the backing beans
■ Creating the pages using the component tags
■ Defining page navigation
■ Mapping the FacesServlet instance

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 95

■ Adding managed bean declarations

In the next section some of the above tasks are described in more detail.

Creating a Facelets Application
The example used in this tutorial is the guessnumber application. The application presents you
with a page that asks you to guess a number between 0 and 10, validates your input against a
random number, and responds with another page that informs you, if you guessed the number
correctly or incorrectly.

Developing a Backing Bean
In a typical JavaServer Faces application each page in the application connects to a backing bean
(a type of managed bean). The backing bean defines the methods and properties that are
associated with the components.

The following managed bean class, UserNumberBean.java, generates a random number
between 0 and 10:

package guessNumber;

import java.util.Random;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

@SessionScoped

public class UserNumberBean {

Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {

Random randomGR = new Random();

randomInt = new Integer(randomGR.nextInt(10));

System.out.println("Duke’s number: " + randomInt);

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

Developing a Simple Facelets Application

The Java EE 6 Tutorial, Volume I • December 200996

}

public String getResponse() {

if ((userNumber != null) && (userNumber.compareTo(randomInt) == 0))

{

return "Yay! You got it!";
}

else

{

return "Sorry, " + userNumber + " is incorrect.";
}

}

public long getMaximum() {

return (this.maximum);

}

public void setMaximum(long maximum) {

this.maximum = maximum;

}

public long getMinimum() {

return (this.minimum);

}

public void setMinimum(long minimum) {

this.minimum = minimum;

}

}

Note the use of the @ManagedBean annotation which registers the backing bean as a resource
with JavaServer Faces implementation. The @SessionScoped annotation registers the bean
scope as session.

Creating Facelets Views
Creating a page or view is the responsibility of a page author. This task involves adding
components on the pages, wiring the components to backing bean values and properties, and
registering converters, validators, or listeners onto the components.

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this
web page provides more information.

The first section of the web page declares the content type for the page, which is XHTML:

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 97

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The next section declares the XML namespace for the tag libraries that are used in the web page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

The next section uses various tags to insert components into the web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>

<title>Facelets Guess Number Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

Hi,

<p>My name is Duke. I am thinking of a number between

#{userNumberBean.minimum} and #{userNumberBean.maximum}.

 Can you guess it ?</p>

<h:inputText

id="userNo"
value="#{userNumberBean.userNumber}">
<f:validateLongRange

minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>

</h:inputText>

<h:commandButton id="submit" value="Submit" action="response.xhtml"/>
<h:message showSummary="true" showDetail="false"

style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline"
id="errors1"
for="userNo"/>

Developing a Simple Facelets Application

The Java EE 6 Tutorial, Volume I • December 200998

</h2>

</h:form>

</h:body>

</html>

Note the use of the Facelets HTML tags to add components, and the Facelets core tag to validate
the user input. An inputText component accepts user input and sets the value of the backing
bean property userNumber through the EL expression #{userNumberBean.userNumber}. The
input value is validated for value range by the JavaServer Faces standard validator
f:validateLongRange.

The image file wave.med.gif, is added to the page as a resource. For more details about the
resources facility, see “Resources” on page 108.

The submit command button starts validation of the input data. Using implicit navigation,
it redirects the client to another page response.xhtml, which shows the response to your input.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Guess Number Facelets Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

<h:outputText id="result" value="#{userNumberBean.response}"/>

</h2>

<h:commandButton id="back" value="Back" action="greeting.xhtml"/>

</h:form>

</h:body>

</html>

Configuring the Application
Configuring a JavaServer Faces application involves various configuration tasks which include
adding managed-bean declarations, navigation rules and resources bundle declarations in the

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 99

application configuration resource files such as faces-config.xml, and mapping the Faces
Servlet in the web deployment descriptor file such as a web.xml file. Application configuration is
an advanced topic covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

If you are using an IDE such as NetBeans IDE, a web deployment descriptor is automatically
created for you. In such IDE created web.xml files, change the default greeting page which is
index.xhtml, to greeting.xhtml. Here is an example web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>

30

</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>faces/greeting.xhtml</welcome-file>

</welcome-file-list>

</web-app>

Note the use of parameter PROJECT_STAGE. ProjectStage is a context parameter identifying the
status of a JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user.
If not defined by the user, the default project stage is considered as Production. Project Stage is
covered in more detail in Java EE 6 Tutorial, Volume II: Advanced Topics.

Developing a Simple Facelets Application

The Java EE 6 Tutorial, Volume I • December 2009100

Building, Packaging, Deploying and Running the
Application
The example Facelets application described in this chapter can be built, packaged, and deployed
using the Java EE 6 SDK with NetBeans IDE. For details on how to obtain this software and
configure your environment to run the examples, see Chapter 2, “Using the Tutorial Examples.”
The source code for this example is also available in the tut-install/examples/web/guessnumber
directory.

▼ To Create the Example Facelets Application with NetBeans IDE
To create the example Facelets project, use the following procedure.

In NetBeans IDE, from the File menu, choose New Project.
The New Project wizard opens.

In the wizard, select Java Web as the category and Web Application as the project type and click
Next.
The New Web Application wizard opens.

In the Project Name field, type guessNumber, and click Next.

In the Server and Settings page, select Server as GlassFish v3 from the Server menu, select Java
EE version as Java EE 6 Web from the Java EE version menu, and then click Next.

In the Frameworks page, select the JavaServer Faces checkbox and click Finish.
A new Project is created and is available in the Projects window. A default file, index.xhtml, is
created and opened in the Editor.

▼ To Create the Application

Right-click the Project node, and select New→Java package.

In the Package Name field, type guessNumber and click Finish.
A new package is created and placed under Source Packages node of the Project.

Right-click the Source Packages node and select New→Java Class.

Type the name of the class file as UserNumberBean, select the name of package as guessNumber
and click Finish.
A new Java class file is created and opened in the IDE.

1

2

3

4

5

1

2

3

4

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 101

Replace the content of the Java class file with the example code from the UserNumberBean.java
file listed in “Developing a Backing Bean”on page 96, and save the file.

Create two new XHTML pages and name them greeting.xhtml and response.xhtml

respectively:

a. Right-click the project node and choose New→Other.
The New File wizard opens.

b. Choose Category as Web and then File Type as XHTML and click Next.

c. Enter greeting.xhtml in the XHTML File name field and click Finish.
A new XHTML web page is created and placed under Web Pages node.

d. Repeat the above steps but enter the name of file as response.xhtml to create a second web
page.

Edit the XHTML files and add Facelets content to them:

a. Replace the content of greeting.xhtmlwith the example greeting.xhtml code listed in
“Creating Facelets Views”on page 97 and save the file.

b. Similarly replace the content of response.xhtmlwith the example response.xhtml code
and save the file.

Add Duke's image as part of the application by copying the wave.med.gif image file from the
tutorial example and saving it as a resource.

a. Create a folder named resourcesunder Web Pages.

b. Create a subfolder, imagesunder resources folder.

c. Save the wave.med.gif image in resources/images folder.

Edit the web.xmlfile to modify the welcome page to greeting.html.

Right-click the Project Node and select Build from the menu, to compile and build the
application.

Right-click the Project Node and select Deploy, to deploy the application to Sun GlassFishTM

Enterprise Server v3.

Access the application by typing the following URL in the browser:
http://localhost:8080/guessNumber

5

6

7

8

9

10

11

12

Developing a Simple Facelets Application

The Java EE 6 Tutorial, Volume I • December 2009102

Templating
JavaServer Faces 2.0 provides the tools to implement user interfaces that are easy to extend and
reuse. Templating is a useful feature available with Facelets that allows you to create a page that
will act as the base or template for the other pages in a application. By using templates, you can
reuse code and avoid recreating similarly constructed pages. Templating also helps in
maintaining a standard look and feel in an application with a large number of pages.

The following table lists Facelets tags that are used for templating and their respective
functionality:

TABLE 5–2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component
tree.

ui:composition Defines a page composition that optionally uses a template.
Content outside of this tag is ignored.

ui:debug Defines a debug component that is created and added to the
component tree.

ui:define Defines content that is inserted into a page by a template

ui:decorate Similar to composition tag but does not disregard content outside
this tag.

ui:fragment Similar to component tag but does not disregard content outside
this tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags such as c:forEach or
h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the PDL athttp://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

The Facelets tag library includes the main templating tag <ui:insert>. Atemplate page is
created with this tag, it allows defining a default structure for a page. A template page can be
reused as a template for other pages, usually referred to as a client pages.

Here is an example of a template saved as template.xhtml:

Templating

Chapter 5 • Introduction to Facelets 103

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<link href="./resources/css/default.css" rel="stylesheet" type="text/css" />

<link href="./resources/css/cssLayout.css" rel="stylesheet" type="text/css" />

<title>Facelets Template</title>

</h:head>

<h:body>

<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>

</div>

<div>

<div id="left">
<ui:insert name="left">Left Section</ui:insert>

</div>

<div id="content" class="left_content">
<ui:insert name="content">Main Content</ui:insert>

</div>

</div>

</h:body>

</html>

The example page defines a HTML page that is divided into 3 sections, a top section, a left
section and a main section. The sections have stylesheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using <ui:composition> tag. In the following example,
a client page named templateclient.xhtml, invokes the template page from the preceding
example named template.xhtml. A client page allows content to be inserted with the help of
the <ui:define> tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>

<ui:composition template="./template.xhtml">
<ui:define name="top">

Templating

The Java EE 6 Tutorial, Volume I • December 2009104

Welcome to Template Client Page

</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>

</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h:outputText value="You are in the Main Content Section"/>

</ui:define>

</ui:composition>

</h:body>

</html>

You can use the NetBeans IDE to create Facelets template and client pages. For more
information on creating these pages, see http://netbeans.org/kb/docs/web/
jsf20-intro.html.

Composite Components
The JavaServer Faces offers the concept of composite components with Facelets. A composite
component can be considered a a special type of template that acts as a component.

Any component essentially is a piece of reusable code that is capable of a certain functionality.
For example, an inputText component is capable of accepting user input. A component also
has validators, converters, and listeners attached to it to perform certain defined actions.

A composite component is a component that consists of a collection of markups and other
existing components. It is a reusable, user-created component that is capable of a customized,
defined functionality and can have validators, converters and listeners attached to it like a any
other JavaServer Faces component.

With Facelets, any XHTML page that is inserted with markups and other components, can be
converted into a composite component. Using the resources facility, the composite
component can be stored in a library that is available to the application from the defined
resources location.

The following table lists the most commonly used composite tags and their functions:

Composite Components

Chapter 5 • Introduction to Facelets 105

http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/web/jsf20-intro.html

TABLE 5–3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component whose
feature set is the union of the features declared in the usage
contract.

composite:implementation Defines the implementation of the composite component. If a
<composite:interface> element appears, there must be a
corresponding <composite:implementation>.

composite:attribute Declares an attribute that may be given to an instance of the
composite component, in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be re-parented into the
composite component at the point indicated by this tag's
placement within the composite:implementation section.

composite:valueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of ValueHolder suitable for
use as the target of attached objects in the using page.

composite:editableValueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of EditableValueHolder
suitable for use as the target of attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is
declared by the composite:interface in which this element is
nested exposes an implementation of ActionSource2 suitable for
use as the target of attached objects in the using page.

For more information and a complete list of Facelets composite tags, see the PDL
athttp://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>This content will not be displayed

</title>

Composite Components

The Java EE 6 Tutorial, Volume I • December 2009106

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

</h:head>

<h:body>

<composite:interface>

<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>

<h:outputLabel value="Email id: ">
</h:outputLabel>

<h:inputText value="#{cc.attrs.value}">
</h:inputText>

</composite:implementation>

</h:body>

</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The
word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.ATTRIBUTE_NAME} expression is used to access the attributes defined for the
composite component's interface which in this case happens to be value.

The preceding example content is stored as a file named email.xhtml, in a folder named
resources/emcomp under the application web root directory. This directory is considered a
library by the JavaServer Faces, and a UIcomponent can be accessed from such library. For more
information on resources, see “Resources” on page 108.

The web page that uses this composite component is generally called a using page. The using
page includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>

<title>Using a sample composite component</title>

</h:head>

<body>

<h:form>

<em:email value="Enter your email id" />

</h:form>

</body>

</html>

Composite Components

Chapter 5 • Introduction to Facelets 107

The local composite component library is defined in the xml namespace with the declaration
xmlns:em="http://java.sun.com/jsf/composite/emcomp/". the component it self is
accessed through the use of the tag em:email. The preceding example content can be stored as a
web page named emuserpage.xhtml under web root directory. When compiled and deployed
on a server it can be accessed with the following URL:

http://localhost:8080/<application_name>/faces/emuserpage.xhtml

Resources
Resources refers to any software artifacts that the application requires for proper rendering.
They include images, script files and any user-created component libraries. As of JavaServer
Faces 2.0, resources must be collected in a standard location, which can be one of the following:

■ A resource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/<resource-identifier>.

■ A resource packaged in the web application's classpath must be in a subdirectory of the
META-INF/resources directory within a web application:
META-INF/resources/<resource-identifier>.

The JavaServer Faces runtime will look for the resources in the above listed locations, in that
order.

Resource identifiers are unique strings that conform to the following format:

[localePrefix/][libraryName/][libraryVersion/]resource name[/resourceVersion]

Elements of the resource identifier in brackets ([]) are optional. This indicates that only a
resource name is a required element, which is usually a file name.

Resources can be considered as a library location. Any artifacts, like a composite component or
template that is stored under resources directory, becomes accessible to the other components
of the application which can use them to create a resource instance.

Resources

The Java EE 6 Tutorial, Volume I • December 2009108

Unified Expression Language

This chapter introduces the Unified Expression Language (also referred to as EL) which
provides an important mechanism for enabling the presentation layer (web pages) to
communicate with the application logic (backing beans). EL is used by JavaServer PagesTM

(JSPTM) as well as JavaServerTM Faces technologies.

Introduced as a primary feature of JSP 2.1, the EL represents a union of the expression language
offered by JSP 2.0 and the expression language created for JavaServer Faces technology.

Overview of EL
The unified expression language allows page authors to use simple expressions to dynamically
access data from JavaBeansTM components. For example, the test attribute of the following
conditional tag is supplied with an EL expression that compares the number of items in the
session-scoped bean named cart with 0.

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

JavaServer Faces technology uses EL for the following functions:

■ Deferred and immediate evaluation of expressions
■ The ability to set as well as get data
■ The ability to invoke methods

See “Using the EL to Reference Backing Beans” on page 169 for more information on how to use
the EL in JavaServer Faces applications.

6C H A P T E R 6

109

To summarize, the unified expression language provides a way to use simple expressions to
perform the following tasks:

■ Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

■ Dynamically write data, such as user input into forms, to JavaBeans components
■ Invoke arbitrary static and public methods
■ Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag attribute will
accept:

■ Immediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated immediately by the underlying technology such as
JavaServer Faces. A deferred evaluation expression can be evaluated later by the underlying
technology using the expression language.

■ Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

■ Rvalue expression or lvalue expression. An rvalue expression can only read a value, whereas
an lvalue expression can both read and write that value to an external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers that can
handle expressions not already supported by the EL can be implemented.

This section gives an overview of the unified expression language features by explaining the
following topics:

■ “Immediate and Deferred Evaluation Syntax” on page 110
■ “Value and Method Expressions” on page 112
■ “Defining a Tag Attribute Type” on page 118
■ “Literal Expressions” on page 119
■ “Operators” on page 120
■ “Reserved Words” on page 121
■ “Examples of EL Expressions” on page 121

In addition to the above, JSP technology-related topics such as implicit objects and functions
are also relevant to EL users but they are not covered in this tutorial.

Immediate and Deferred Evaluation Syntax
The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result is returned immediately when the page is
first rendered. Deferred evaluation means that the technology using the expression language can
employ its own machinery to evaluate the expression sometime later during the page’s lifecycle,
whenever it is appropriate to do so.

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009110

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology mostly uses deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other
tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must
defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

Immediate Evaluation
All expressions using the ${} syntax are evaluated immediately. These expressions can only be
used within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression, ${sessionScope.cart.total},
converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The example
expression shown above can only get the total price from the cart bean; it cannot set the total
price.

Deferred Evaluation
Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page lifecycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
lifecycle depending on how the expression is being used in the page.

The following example shows a JavaServer Faces inputText tag, which represents a text field
component into which a user enters a value. The inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean.

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render response phase of the lifecycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at
different phases of the lifecycle, during which the value is retrieved from the request, validated,
and propagated to the customer bean.

Overview of EL

Chapter 6 • Unified Expression Language 111

As shown in this example, deferred evaluation expressions can be value expressions that can be
used to both read and write data. They can also be method expressions. Value expressions (both
immediate and deferred) and method expressions are explained in the next section.

Value and Method Expressions
The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can either yield a value or set a value. Method expressions reference methods that
can be invoked and can return a value.

Value Expressions
Value expressions can be further categorized into rvalue and lvalue expressions. Rvalue
expressions are those that can read data, but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and lvalue expressions. Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, adds the value to the
response, and gets rendered on the page. The same can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback request, this expression can be used to set the value of the name property with
user input. In this case, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions

Both rvalue and lvalue expressions can refer to the following objects and their properties or
attributes:

■ JavaBeans components
■ Collections
■ JavaTM SE enumerated types
■ Implicit objects

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009112

To refer to these objects, you write an expression using a variable which is the name of the
object. The following expression references a backing bean (a JavaBeans component) called
customer.

${customer}

The web container evaluates the variable that appears in an expression by looking up its value
according to the behavior of PageContext.findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, null is returned.

You can alter the way variables are resolved with a custom EL resolver. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer}
returns a value in the EL resolver instead. Creation of custom EL resolvers is an advanced topic
covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

To reference an enum constant with an expression, use a String literal. For example, consider
this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant, Suit.hearts with an expression, you use the String literal,
"hearts". Depending on the context, the String literal is converted to the enum constant
automatically. For example, in the following expression in which mySuit is an instance of Suit,
"hearts" is first converted to Suit.hearts before it is compared to the instance.

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an Enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation, which is similar to the notation used by
ECMAScript language. For more information on ECMAScript, see http://
www.ecmascript.org.

If you want to reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the square
brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .

notations, as shown here:

${customer.address["street"]}

Properties of an enum can also be referenced in this way. However, as with JavaBeans
component properties, the properties of an Enum class must follow JavaBeans component

Overview of EL

Chapter 6 • Unified Expression Language 113

http://www.ecmascript.org
http://www.ecmascript.org

conventions. This means that a property must at least have an accessor method called
get<Property> where <Property> is the name of the property which can be referenced by an
expression.

For example, consider an Enum class that encapsulates the names of the planets of our galaxy and
includes a method to get the mass of a planet. You can use the following expression to reference
the method getMass of the Planet Enum class:

${myPlanet.mass}

If you are accessing an item in an array or list, you must use either a literal value that can be
converted to int or the [] notation with an int and without quotes. The following examples
could all resolve to the same item in a list or array, assuming that socks can be converted to int:

■ ${customer.orders[1]}

■ ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

■ ${"literal"}
■ ${customer.age + 20}

■ ${true}

■ ${57}

The unified expression language defines the following literals:

■ Boolean: true and false

■ Integer: as in Java
■ Floating point: as in Java
■ String: with single and double quotes; " is escaped as \", ’ is escaped as \’, and \ is escaped as

\\

■ Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade }

After declaring an enum constant called mySuit, you can write the following expression to test if
mySuit is spade:

${mySuit == "spade"}

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009114

When the EL resolving mechanism resolves this expression, it will invoke the valueOf method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

Where Value Expressions Can Be Used

Value expressions using the ${} delimiters can be used in the following places:
■ In static text
■ In any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>

some text ${expr} some text

</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent.

Lvalue expressions can only be used in tag attributes that can accept lvalue expressions.

There are three ways to set a tag attribute value using either an rvalue or lvalue expression:
■ With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated and the result is converted to the attribute’s expected type.
■ With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression are called composite expressions. They are evaluated from left to
right. Each expression embedded in the composite expression is converted to a String and
then concatenated with any intervening text. The resulting String is then converted to the
attribute’s expected type.

■ With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String value is
converted to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 119 for more information. When a tag attribute has an

Overview of EL

Chapter 6 • Unified Expression Language 115

enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
converted to Suit and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.1 Expression Language Specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions
Another feature of the unified expression language is its support of deferred method
expressions. A method expression is used to invoke an arbitrary public method of a bean, which
can return a result.

In JavaServer Faces technology, a component tag represents a component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and validating component data, as shown in this example:

<h:form>

<h:inputText

id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>

<h:commandButton

id="submit"
action="#{customer.submit}" />

</h:form>

The inputText tag displays as a text field. The validator attribute of this inputText tag
references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions
must always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is converted
to String and is used to find the name of the method that matches it. Once the method is found,
it is invoked or information about the method is returned.

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009116

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Method expressions can be used only in tag attributes and only in the following ways:

■ With a single expression construct, where bean refers to a JavaBeans component and method

refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

■ With text only:

<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, it
returns the String literal, which is then converted to the expected return type, as defined in
the tag’s TLD.

Parameterized Method Calls
The updated EL version 2.1.2 included in Java EE 6 offers support for parameters to method
calls. Method calls can now use parameters (or arguments) without having to use static EL
functions.

Both the . and [] operators can be used for invoking method calls with parameters as shown in
expression syntax below:

■ expr-a[expr-b](parameters)

■ expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression
expr-b is evaluated and cast to a string which represents a method in the bean represented by
expr-a. In the second expression syntax, expr-a is evaluated to represent a bean object and
identifier-b is a string that represents a method in the bean object. The parameters in
parentheses are the arguments for the method invocation. Parameters can be 0 or more values
or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from guessNumber application, a random number is provided
as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber(’5’)}">

The above example uses a value expression.

Consider the following example of a JavaServer Faces component tag which uses a method
expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

Overview of EL

Chapter 6 • Unified Expression Language 117

where EL expression trader.buy is calling the trader bean's buy method. You can modify the
tag to pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’JAVA’)}" value="buy"/>

In the above example you are passing the string 'JAVA' (a stock symbol) as a parameter to the
buy method.

For more information on the updated EL, see https://uel.dev.java.net.

Defining a Tag Attribute Type
As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how that expression is evaluated (whether immediately or
deferred) is determined by the type attribute of the tag’s definition in the Page Description
Language (PDL) that defines the tag.

If you plan to create custom tags, for each tag in the PDL, you need to specify what kind of
expression to accept. Table 6–1 shows the three different kinds of tag attributes that accept EL
expressions, gives examples of expressions they accept, and the type definitions of the attributes
that must be added to the PDL. You cannot use #{} syntax for a dynamic attribute, meaning an
attribute that accepts dynamically-calculated values at runtime. Similarly, you also cannot use
the ${} syntax for a deferred attribute.

TABLE 6–1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition

dynamic "literal" <rtexprvalue>true</rtexprvalue>

${literal} <rtexprvalue>true</rtexprvalue>

deferred value "literal" <deferred-value>

<type>java.lang.String</type>

</deferred-value>

#{customer.age} <deferred-value>

<type>int</type>

</deferred-value>

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009118

https://uel.dev.java.net

TABLE 6–1 Definitions of Tag Attributes That Accept EL Expressions (Continued)
Attribute Type Example Expression Type Attribute Definition

deferred method "literal" <deferred-method>

<method-signature>

java.lang.String submit()

</method-signature>

<deferred-method>

#{customer.calcTotal} <deferred-method>

<method-signature>

double calcTotal(int, double)

</method-signature>

</deferred-method>

In addition to the tag attribute types shown in Table 6–1, you can also define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition contains
both an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

Literal Expressions
A literal expression is evaluated to the text of the expression, which is of type String. It does not
use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows.

■ By creating a composite expression as shown here:

${’${’}exprA}

#{’#{’}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.
■ By using the escape characters \$ and \# to escape what would otherwise be treated as an

eval-expression:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6–2 shows
examples of various literal expressions and their expected types and resulting values.

Overview of EL

Chapter 6 • Unified Expression Language 119

TABLE 6–2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE

42 int 42

Literal expressions can be evaluated immediately or deferred, and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined to accept a deferred value expression,
then when the literal expression references a value, it is evaluated at a point in the lifecycle that
is determined by other factors. The other factors include where the expression is being used and
to what it is referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. For example, the commandButton tag of the guessNumber application
uses a literal method expression as a logical outcome to tell the JavaServer Faces navigation
system which page to display next.

Operators
In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 112, the unified expression language provides the following operators, which can be used
in rvalue expressions only:

■ Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
■ Logical: and, &&, or, ||, not, !
■ Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made against other

values, or against boolean, string, integer, or floating point literals.
■ Empty: The empty operator is a prefix operation that can be used to determine whether a

value is null or empty.
■ Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

■ [] .

■ () (used to change the precedence of operators)
■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)
■ < > <= >= lt gt le ge

■ == != eq ne

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009120

■ && and

■ || or

■ ? :

Reserved Words
The following words are reserved for the unified expression language and should not be used as
identifiers.

and or not eq

ne lt gt le

ge true false null

instanceof empty div mod

Examples of EL Expressions
Table 6–3 contains example EL expressions and the result of evaluating them.

TABLE 6–3 Example Expressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true

${(10*10) ne 100} false

${’a’ < ’b’} true

${’hip’ gt ’hit’} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${!empty param.Add} False if the request parameter named Add is null or an empty
string

Overview of EL

Chapter 6 • Unified Expression Language 121

TABLE 6–3 Example Expressions (Continued)
EL Expression Result

${pageContext.request.contextPath} The context path.

${sessionScope.cart.numberOfItems} The value of the numberOfItems property of the
session-scoped attribute named cart.

${param[’mycom.productId’]} The value of the request parameter named mycom.productId.

${header["host"]} The host.

${departments[deptName]} The value of the entry named deptName in the departments
map.

${requestScope[’javax.servlet.forward.
servlet_path’]}

The value of the request-scoped attribute named
javax.servlet.forward.servlet_path.

#{customer.lName} Gets the value of the property lName from the customer bean
during an initial request. Sets the value of lName during a
postback.

#{customer.calcTotal} The return value of the method calcTotal of the customer
bean.

Overview of EL

The Java EE 6 Tutorial, Volume I • December 2009122

Using JavaServerTM Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of creating web
pages of a JavaServer Faces application includes tasks such as adding components to the page
and wiring them to backing beans, validators, converters, and other server-side objects that are
associated with the page.

This chapter explains how to create web pages using different types of component and core tags.
In the next chapter you will learn about adding converters, validators and listeners to
component tags that will provide additional functionality to components.

The following topics are addressed here:

■ “Setting Up a Page” on page 123
■ “Adding Components to a Page Using HTML Tags” on page 124
■ “Using Core Tags” on page 153

Setting Up a Page
A typical JavaServer Faces web page includes the following elements:

■ A set of namespace declarations that declare the JavaServer Faces tag libraries
■ Optionally, the new HTML head (h:head) and body (h:body) tags
■ A form tag (h:form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the page access
to the two standard tag libraries: The JavaServer Faces HTML tag library, and the JavaServer
Faces core tag library. The JavaServer Faces standard HTML tag library defines tags that
represent common HTML user interface components. It is linked to HTML render kit. The
JavaServer Faces core tag library defines tags that perform core actions.

Each JavaServer Faces tag must be described by the PDL (Page Declaration Language). For a
complete list of JavaServer Faces Facelets tags and their attributes, refer to the PDL

7C H A P T E R 7

123

http://java.sun.com/javaee/javaserverfaces/2.0/docs/renderkitdocs/index.html

documentation at http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

To use any of the JavaServer Faces tags, you need to include appropriate directives at the top of
each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library uri
and the tag prefix.

For example, when creating a Facelets XHML page, include namespace directives as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace uri identifies the tag library location and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead
of the standard h or f. However, when including the tag in the page, you must use the prefix that
you have chosen for the tag library. For example, in the following web page, the form tag must
be referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in HTML tag library:

<h:form ...>

The following sections, “Adding Components to a Page Using HTML Tags” on page 124 and
“Using Core Tags” on page 153, describe how to use the component tags from the JavaServer
Faces standard HTML tag library and the core tags from the JavaServer Faces core tag library.

Adding Components to a Page Using HTML Tags
The tags defined by the JavaServer Faces standard HTML tag library represent HTML form
components and other basic HTML elements. These components display data or accept data
from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 7–1.

TABLE 7–1 The Component Tags

Tag Functions Rendered As Appearance

column Represents a column of data in
a Data component

A column of data in an
HTML table

A column in a table

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009124

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

TABLE 7–1 The Component Tags (Continued)
Tag Functions Rendered As Appearance

commandButton Submits a form to the
application

An HTML <input

type=type> element,
where the type value can
be submit, reset, or
image

A button

commandLink Links to another page or
location on a page

An HTML <a href>

element
A hyperlink

dataTable Represents a data wrapper An HTML <table>

element
A table that can be
updated dynamically

form Represents an input form
(inner tags of the form receive
the data that will be submitted
with the form)

An HTML <form>

element
No appearance

graphicImage Displays an image An HTML element An image

inputHidden Allows a page author to
include a hidden variable in a
page

An HTML <input

type=hidden> element
No appearance

inputSecret Allows a user to input a string
without the actual string
appearing in the field

An HTML <input

type=password> element
A text field, which
displays a row of
characters instead of
the actual string
entered

inputText Allows a user to input a string An HTML <input

type=text> element
A text field

inputTextarea Allows a user to enter a
multiline string

An HTML <textarea>

element
A multi-row text field

message Displays a localized message An HTML tag if
styles are used

A text string

messages Displays localized messages A set of HTML

tags if styles are used
A text string

outputFormat Displays a localized message Plain text Plain text

outputLabel Displays a nested component
as a label for a specified input
field

An HTML <label>

element
Plain text

outputLink Links to another page or
location on a page without
generating an action event

An HTML <a> element A hyperlink

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 125

TABLE 7–1 The Component Tags (Continued)
Tag Functions Rendered As Appearance

outputText Displays a line of text Plain text Plain text

panelGrid Displays a table An HTML <table>

element with <tr> and
<td> elements

A table

panelGroup Groups a set of components
under one parent

A HTML <div> or
element

A row in a table

selectBooleanCheckbox Allows a user to change the
value of a Boolean choice

An HTML <input

type=checkbox> element.
A check box

selectItem Represents one item in a list of
items in a SelectOne
component

An HTML <option>

element
No appearance

selectItems Represents a list of items in a
SelectOne component

A list of HTML <option>

elements
No appearance

selectManyCheckbox Displays a set of check boxes
from which the user can select
multiple values

A set of HTML <input>

elements of type checkbox
A set of check boxes

selectManyListbox Allows a user to select multiple
items from a set of items, all
displayed at once

An HTML <select>

element
A list box

selectManyMenu Allows a user to select multiple
items from a set of items

An HTML <select>

element
A scrollable combo
box

selectOneListbox Allows a user to select one
item from a set of items, all
displayed at once

An HTML <select>

element
A list box

selectOneMenu Allows a user to select one
item from a set of items

An HTML <select>

element
A scrollable combo
box

selectOneRadio Allows a user to select one
item from a set of items

An HTML <input

type=radio> element
A set of radio buttons

The next section explains the important tag attributes that are common to most component
tags. For each of the components discussed in the following sections, “Writing Bean Properties”
on page 170 explains how to write a bean property bound to a particular component or its value.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009126

Common Component Tag Attributes
In general, most of the component tags support the following attributes:
■ id: Uniquely identifies the component.
■ immediate: If set to true, indicates that any events, validation, and conversion associated

with the component should happen in the apply request values phase rather than a later
phase.

■ rendered: Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

■ style: Specifies a Cascading Style Sheet (CSS) style for the tag.
■ styleClass: Specifies a CSS stylesheet class that contains definitions of the styles.
■ value: Identifies an external data source and binds the component’s value to it.
■ binding: Identifies a bean property and binds the component instance to it.

All of the tag attributes (except id) can accept expressions, as defined by the EL, described in
Chapter 6, “Unified Expression Language.”

The idAttribute
The id attribute is not usually required for a component tag. It is used when another
component or a server-side class must refer to the component. If you don’t include an id

attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute only takes expressions using the
evaluation syntax described in The immediate Attribute, which uses the ${} delimiters. For
more information on expression syntax, see “Value Expressions” on page 112.

The immediateAttribute
Input components and command components (those that implement ActionSource, such as
buttons and hyperlinks) can set the immediate attribute to true to force events, validations, and
conversions to be processed during the apply request values phase of the life cycle (a sub phase
in the request phase of the JavaServer Faces lifecycle).

You need to carefully consider how the combination of an input component’s immediate value
and a command component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If both the button’s and the field’s immediate attributes are set to true, the new
value entered in the field will be available for any processing associated with the event that is
generated, when the button is clicked. The event associated with the button and the event,
validation, and conversion associated with the field are all handled during the apply request
values phase.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 127

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. This is because any events, conversion, or validation associated with the field
occurs during its usual phases of the life cycle, which come after the apply request values phase.

For a complete description of JavaServer Faces lifecycle phases, see the JavaServer Faces 2.0
Specification.

The renderedAttribute
A component tag uses a Boolean EL expression, along with the rendered attribute, to
determine whether or not the component will be rendered. For example, the commandLink
component in the following section of a page is not rendered if the cart contains no items:

<h:commandLink id="check"
...

rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Value and Method Expressions” on page 112, these
rvalue expressions can only read data; they cannot write the data back to the data source.
Therefore, expressions used with rendered attributes can use the arithmetic operators and
literals that rvalue expressions can use but lvalue expressions cannot use. For example, the
expression in the preceding example uses the > operator.

The style and styleClassAttributes
The style and styleClass attributes allow you to specify Cascading Style Sheets (CSS) styles
for the rendered output of your tags. “Displaying Error Messages With the h:message and
h:messages Tags” on page 148 describes an example of using the style attribute to specify
styles directly in the attribute. A component tag can instead refer to a CSS stylesheet class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="books"
...

styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The stylesheet that defines this class is stylesheet.css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets Specification at
http://www.w3.org/Style/CSS/.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009128

http://www.w3.org/Style/CSS/

The value and bindingAttributes
A tag representing a Output component or a subclass of Output component class uses value
and binding attributes to bind its component’s value or instance respectively to an external data
source.

Adding HTML Head and Body Tags
The new HTML head (h:head) and body (h:body) tags add HTML type page structure to
JavaServer Faces web pages.
■ The h:head tag represents the head element of a HTML page
■ The h:body tag represents the body element of a HTML page

The following is an example of a XHTML page using the usual head and body markups:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Add a title</title>

</head>

<body>

Add Content

</body>

The following is an example of a XHTML page using h:head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

Add a title

</h:head>

<h:body>

Add Content

</h:body>

Both of the above example code segments render the same HTML elements. The head and body
tags are mainly useful for resource relocation. For more information on resource relocation see,
“Resource Relocation using h:output Tags” on page 150.

Adding a Form Component
A h:form tag represents an input form, which includes child components that can contain data,
that is either presented to the user or submitted with the form.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 129

Figure 7–1 shows a typical login form in which a user enters a user name and password, then
submits the form by clicking the Login button.

The h:form tag represents the Form component on the page and encloses all the components
that display or collect data from the user, as shown here:

<h:form>

... other JavaServer Faces tags and other content...

</h:form>

The h:form tag can also include HTML markup to lay out the components on the page. Note
that the h:form tag itself does not perform any layout; its purpose is to collect data and to
declare attributes that can be used by other components in the form.

A page can include multiple h:form tags, but only the values from the form submitted by user
will be included in the postback request.

Using Text Components
Text components allow users to view and edit text in web applications. The basic types of text
components are as follows:

■ Label, which displays read-only text.
■ Text field, which allows users to enter text, often to be submitted as part of a form.
■ Text area, which is a type of text field that allows users to enter multiple lines of text.
■ Password field, which is a type of text field that displays a set of characters, such as asterisks,

instead of the password text that the user enters.

Figure 7–2 shows examples of these text components.

FIGURE 7–1 A Typical Form

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009130

Text components can be categorized into two types; Input and Output. A JavaServer Faces
Output component is rendered as a read-only text. An example is a label. A JavaServer Faces
Input component is rendered as an editable text. An example is a text field.

The Input and Output components can each be rendered in one of four ways to display more
specialized text. Table 7–2 and Table 7–3 list the Input and Output components and the tags
that represent the component.

Note – The name of a tag is composed of the name of the component and the name of the
renderer. For example, the h:inputText tag refers to a Input component that is rendered with
the Text renderer.

TABLE 7–2 InputTags

Component Tag Function

Input h:inputHidden Allows a page author to include a hidden variable in a page

h:inputSecret The standard password field: Accepts one line of text with no spaces
and displays it as a set of asterisks as it is typed

h:inputText The standard text field: Accepts a text string of one line

h:inputTextarea The standard text area: Accepts multiple lines of text

The Input tags support the following tag attributes in addition to those described in “Common
Component Tag Attributes” on page 127. Note that this list does not include all the attributes
supported by the Input tags, but just those that are used most often. For the complete list of
attributes, refer to the PDL Documents at http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

■ converter: Identifies a converter that will be used to convert the component’s local data. See
“Using the Standard Converters” on page 155 for more information on how to use this
attribute.

■ converterMessage: Specifies an error message to display when the converter registered on
the component fails.

FIGURE 7–2 Example Text Components

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 131

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

■ dir: Specifies the direction of the text displayed by this component. Acceptable values are
LTR, meaning left-to-right, and RTL, meaning right-to-left.

■ label: Specifies a name that can be used to identify this component in error messages.
■ lang: Specifies the code for the language used in the rendered markup, such as en_US.
■ required: Takes a boolean value that indicates whether or not the user must enter a value in

this component.
■ requiredMessage: Specifies an error message to display when the user does not enter a value

into the component.
■ validator: Identifies a method expression pointing to a backing bean method that

performs validation on the component’s data. See “Referencing a Method That Performs
Validation” on page 165 for an example of using the f:validator tag.

■ f:validatorMessage: Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

■ valueChangeListener: Identifies a method expression that points to a backing bean
method that handles the event of entering a value in this component. See “Referencing a
Method That Handles a Value-Change Event” on page 166 for an example of using
valueChangeListener.

TABLE 7–3 OutputTags

Component Tag Function

Output h:outputLabel The standard read-only label: Displays a component as a label for a
specified input field

h:outputLink Displays an <a href> tag that links to another page without
generating an action event

h:outputFormat Displays a localized message

h:outputText Displays a text string of one line

The Output tags support the converter tag attribute in addition to those listed in “Common
Component Tag Attributes” on page 127.

The rest of this section explains how to use selected tags listed in Table 7–2 and Table 7–3. The
other tags are written in a similar way.

Rendering a Text Field With the inputText Tag
The h:inputText tag is used to display a text field. A similar tag, the h:outputText tag, displays
a read-only, single-line string. This section shows you how to use the h:inputText tag. The
h:outputText tag is written in a similar way.

Here is an example of an h:inputText tag :

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009132

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">
<f:valueChangeListener

type="com.sun.bookstore6.listeners.NameChanged" />

</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a backing bean named CashierBean. This
property holds the data for the name component. After the user submits the form, the value of
the name property in CashierBean will be set to the text entered in the field corresponding to
this tag.

The required attribute causes the page to reload with errors (displayed on the screen) if the
user does not enter a value in the name text field. The JavaServer Faces implementation checks
whether the value of the component is null or is an empty string.

If your component must have a not null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a
required attribute that is set to true and the value is null or a zero-length string, no other
validators that are registered on the tag are called. If your tag does not have a required attribute
set to true, other validators that are registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string.

Rendering a Password Field With the inputSecret Tag
The h:inputSecret tag renders an <input type="password"> HTML tag. When the user types
a string into this field, a row of asterisks is displayed instead of the text typed by the user. Here is
an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label With the outputLabel Tag
The h:outputLabel tag is used to attach a label to a specified input field for the purpose of
making it accessible. The following page uses an h:outputLabel tag to render the label of a
check box:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 133

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

The for attribute of the h:outputLabel tag maps to the id of the input field to which the label is
attached. The h:outputText tag nested inside the h:outputLabel tag represents the actual label
component. The value attribute on the h:outputText tag indicates the text that is displayed
next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the
h:outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h:outputLabel tag to specify the text
of the label. Here is an example:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"

value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

Rendering a Hyperlink With the h:outputLink Tag
The h:outputLink tag is used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the h:commandLink tag if
you always want the URL (specified by the h:outputLink tag’s value attribute) to open and do
not want any processing to performed when the user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo

</h:outputLink>

The text in the body of the outputLink tag identifies the text that the user clicks to get to the
next page.

Displaying a Formatted Message With the h:outputFormat Tag
The h:outputFormat tag allows display of concatenated messages as a MessageFormat pattern,
as described in the API documentation for java.text.MessageFormat (see
http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html). Here is an
example of an outputFormat tag:

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009134

http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html

<h:outputFormat value="Hello, {0} !">
<f:param value="Bill"
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0} in the
sentence. The message displayed in the page is as follows:

Hello, Bill!

This is an example of hard-coding the data to be substituted in the message by using a literal
value with the value attribute on the param tag.

A h:outputFormat tag can include more than one param tag for those messages that have more
than one parameter that must be concatenated into the message. If you have more than one
parameter for one message, make sure that you put the param tags in the proper order so that
the data is inserted in the correct place in the message. Here is the preceding example modified
with an additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="Bill"
<f:param value="#{bean.numVisitor}">
</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression
bean.numVisitor, where the property numVisistor of backing bean bean, keeps track of
visitors to the page. This is an example of a value-expression-enabled tag attribute accepting an
EL expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Components for Performing Actions
and Navigation
In JavaServer Faces applications, the button and hyperlink component tags are used to perform
actions, such as submitting a form, and for navigating to another page. They are called
command components as they perform an action when activated.

The h:commandButton tag is rendered as a button. The h:commandLink tag is rendered as a
hyperlink.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 135

In addition to the tag attributes listed in “Common Component Tag Attributes” on page 127,
the h:commandButton and h:commandLink tags can use the following attributes:
■ action, which is either a logical outcome String or a method expression pointing to a bean

method that returns a logical outcome String. In either case, the logical outcome String is
used to determine what page to access when the Command component is activated.

■ actionListener, which is a method expression pointing to a bean method that processes an
action event fired by the Command component.

See “Referencing a Method That Performs Navigation” on page 165 for more information on
using the action attribute. See “Referencing a Method That Handles an Action Event” on
page 165 for details on using the actionListener attribute.

Rendering a Button With the h:commandButton Tag
If you are using a commandButton component, when a user clicks the button, the data from the
current page is processed, and the next page is opened. Here is a h:commandButton tag example:

<h:commandButton value="Submit"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references this method. The submit method performs some processing and
returns a logical outcome.

The value attribute of the example commandButton tag references the button’s label. For
information on how to use the action attribute, see “Referencing a Method That Performs
Navigation” on page 165 .

Rendering a Hyperlink With the h:commandLink Tag
The h:commandLink tag represents an HTML hyperlink and is rendered as an HTML <a>

element. It acts like a form submit button and is used to submit an action event to the
application.

A h:commandLink tag must include a nested h:outputText tag, which represents the text that
the user clicks to generate the event. Here is an example:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms[’_id3’][’_id3:NAmerica’].

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009136

value=’_id3:NAmerica’;
document.forms[’_id3’].submit();
return false;">English

Note – The h:commandLink tag will render JavaScript. If you use this tag, make sure your browser
is enabled for JavaScript.

Adding Graphics and Images With the
h:graphicImage Tag
In a JavaServer Faces application, the Graphic component represents an image. The
h:graphicImage tag is used to render a Graphic component on a page.

<h:graphicImage id="mapImage" url="/template/world.jpg"/>

The url attribute specifies the path to the image. The URL of the example tag begins with a /,
which adds the relative context path of the web application to the beginning of the path to the
image.

Alternately, you can also use the “Resources” on page 108 facility to point to the image location.
Here is an example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

Laying Out Components With the PanelComponent
In a JavaServer Faces application, you use the Panel component as a layout container for a set of
other components. The Panel component is rendered as an HTML table. Table 7–4 lists the tags
corresponding to the Panel component.

TABLE 7–4 PanelComponent Tags

Tag Attributes Function

h:panelGrid columns,columnClasses, footerClass,
headerClass, panelClass, rowClasses

Displays a table

h:panelGroup layout Groups a set of components under one
parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used to
represent rows in a table. Other tags are used to represent individual cells in the rows.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 137

The columns attribute is required if you want your table to have more than one column as the
attribute defines how to group the data in the table. The h:panelGrid tag also has a set of
attributes that specify CSS stylesheet classes: columnClasses, footerClass, headerClass,
panelClass, and rowClasses. These stylesheet attributes are optional.

If the headerClass attribute value is specified, the panelGrid must have a header as its first
child. Similarly, if a footerClass attribute value is specified, the panelGrid must have a footer
as its last child.

Here is an example:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputText value="#{bundle.Name}" />

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />

</h:inputText>

<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"

converter="CreditCardConverter" required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>

<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

The above h:panelGrid tag is rendered as a table that contains components in which the
bookstore customer inputs personal information. This h:panelGrid tag uses stylesheet classes
to format the table. The following code shows the list-header definition:

.list-header {

background-color: #ffffff;

color: #000000;

text-align: center;

}

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009138

Because the h:panelGrid tag specifies a headerClass, the panelGrid must contain a header.
The example panelGrid tag uses a facet tag for the header. Facets can have only one child, so a
h:panelGroup tag is needed if you want to group more than one component within a facet.
The example h:panelGrid tag has only one cell of data, therefore a h:panelGroup tag is not
needed.

The h:panelGroup tag has an attribute, layout, in addition to those listed in “Common
Component Tag Attributes” on page 127. If the layout attribute has the value block, then an
HTML div element is rendered to enclose the row; otherwise, an HTML span element is
rendered to enclose the row. If you are specifying styles for the h:panelGroup tag, you should
set the layout attribute to block in order for the styles to be applied to the components within
the h:panelGroup tag. You should do this because styles such as those that set width and height
are not applied to inline elements, which is how content enclosed by the span element is
defined.

A h:panelGroup tag can also be used to encapsulate a nested tree of components so that the tree
of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 3, and therefore
the table will have three columns. The column in which each component is displayed is
determined by the order in which the component is listed on the page modulo 3. So, if a
component is the fifth one in the list of components, that component will be in the 5 modulo 3
column, or column 2.

Displaying Components for Selecting One Value
Another commonly used component is one that allows a user to select one value, whether it be
the only value available or one of a set of choices. The most common examples of this
selectOnecomponent are as follows:

■ A h:selectBooleanCheckbox tag, displayed as check box, which represents boolean state
■ A h:selectOneRadio tag, displayed as a set of radio buttons
■ A h:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list
■ A h:selectOneListbox tag, displayed as a list box, with an unscrollable list

Figure 7–3 shows examples of these components.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 139

Displaying a Check Box Using the h:selectBooleanCheckbox Tag
The SelectBoolean component defines tags that have a boolean value. The
h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides for
representing boolean state.

Here is an example that shows how to use the selectBooleanCheckbox tag:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel

for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the outputLabel tag. The actual text
is represented by the nested outputText tag.

Displaying a Menu Using the h:selectOneMenu Tag
A SelectOne component allows the user to select one value from a set of values. This
component can be rendered as a list box, a set of radio buttons, or a menu. This section explains
the h:selectOneMenu tag. The h:selectOneRadio and h:selectOneListbox tags are used in a
similar way. The h:selectOneListbox tag is similar to the h:selectOneMenu tag except that
h:selectOneListbox defines a size attribute that determines how many of the items are
displayed at once.

FIGURE 7–3 Example Select One Components

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009140

The h:selectOneMenu tag represents a component that contains a list of items from which a
user can choose one item. This menu component is also commonly known as a drop-down list
or a combo box. The following code snippet shows how the h:selectOneMenu tag is used, to
allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the h:selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
you don’t provide a value, the first item in the list is selected by default.

Like the h:selectOneRadio tag, the selectOneMenu tag must contain either a f:selectItems
tag or a set of f:selectItem tags for representing the items in the list. “Using The SelectItem
and SelectItems Components” on page 143 explains these tags.

The other selectOne components are used in the same way.

Rendering Components for Selecting Multiple Values
In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. The SelectMany components are used for this purpose. You can do this
using one of the following component tags:

■ A h:selectManyCheckbox tag, displayed as a set of check boxes
■ A h:selectManyMenu tag, displayed as a drop-down menu
■ A h:selectManyListbox tag, displayed as a list box

Figure 7–4 shows examples of these components.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 141

The SelectMany component allows the user to select zero or more values from a set of values.
This section explains the h:selectManyCheckbox tag. The h:selectManyListbox tag and
h:selectManyMenu tag are used in a similar way.

A list box differs from a menu in that it displays a subset of items in a box, whereas a menu
displays only one item at a time when the user is not selecting the menu. The size attribute of
the h:selectManyListbox tag determines the number of items displayed at one time. The list
box includes a scroll bar for scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected.

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the h:selectManyCheckbox tag identifies the newsletters property of
the Cashier backing bean. This property holds the values of the currently selected items from
the set of check boxes. You are not required to provide a value for the currently selected items. If
you don’t provide a value, the first item in the list is selected by default.

The layout attribute indicates how the set of check boxes are arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of
check boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use a f:selectItem tag. The following subsection explains these tags in more
detail.

FIGURE 7–4 Example SelectMany Components

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009142

Using The SelectItem and SelectItemsComponents
The f:selectItem and f:selectItems tags represent components that can be nested inside a
SelectOne or a SelectMany component. A f:selectItem tag is associated with a SelectItem
instance, which contains the value, label, and description of a single item in a SelectOne or
SelectMany component. The SelectItems instance represents a set of SelectItem instances,
containing the values, labels, and descriptions of the entire list of items

You can use either a set of f:selectItem tags or a single f:selectItems tag within your
SelectOne or SelectMany component tag.

The advantages of using the f:selectItems tag are as follows:

■ An item can be represented by using different data structures, including Array, Map and
Collection. The data structure is composed of SelectItem instances.
The value of f:selectItems tag can even represent a generic collection of POJOs.

■ Different lists can be concatenated together into a single SelectMany or SelectOne
component and group the lists within the component.

■ Values can be generated dynamically at runtime.

The advantages of using f:selectItem are as follows:

■ Items in the list can be defined from the page.
■ Less code is needed in the bean for the selectItem properties.

For more information on writing component properties for the SelectItems components, see
“Writing Bean Properties” on page 170. The rest of this section shows you how to use the
f:selectItems and f:selectItem tags.

Using the f:selectItems Tag
The following example from “Rendering Components for Selecting Multiple Values” on
page 141 shows how to use the h:selectManyCheckbox tag:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the backing bean newsletters ,
which is configured in the application configuration resource file.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 143

You can also create the list corresponding to a SelectMany or SelectOne component
programmatically in the backing bean. See “Writing Bean Properties” on page 170 for
information on how to write a backing bean property corresponding to a SelectMany or
SelectOne component.

The arguments to the SelectItem constructor are as follows:
■ An Object representing the value of the item
■ A String representing the label that displays in the SelectMany component on the page
■ A String representing the description of the item

“SelectItems Properties” on page 175 describes in more detail how to write a backing bean
property for a SelectItems component.

Using the f:selectItem Tag
The f:selectItem tag represents a single item in a list of items. Here is the example from
“Displaying a Menu Using the h:selectOneMenu Tag” on page 140 once again:

<h:selectOneMenu

id="shippingOption" required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value of the SelectItem instance. The
itemLabel attribute represents the String that appears in the drop-down menu component on
the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. They can also define literal
values, as shown in the example h:selectOneMenu tag.

Using Data-Bound Table Components
Data-bound table components display relational data in a tabular format. Figure 7–5 shows an
example of this kind of table.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009144

In a JavaServer Faces application, the h:dataTable component tag supports binding to a
collection of data objects. It displays the data as an HTML table. The h:column tag represents a
column of data within the table. It iterates over each record in the data source which is displayed
as a row. Here is an example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"

<h:column headerClass="list-header-left">
<f:facet name="header">

<h:outputText value=Quantity"" />

</f:facet>

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

...

</h:inputText>

...

</h:column>

<h:column>

<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>

<h:outputText value="#{item.title}"/>
</h:commandLink>

</h:column>

...

<f:facet name="footer"
<h:panelGroup>

FIGURE 7–5 Table on a Web Page

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 145

<h:outputText value="Total}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />

</h:outputText>

</h:panelGroup>

</f:facet>

<

</h:dataTable>

Figure 7–5 shows a data grid that this h:dataTable tag can display.

The example h:dataTable tag displays the books in the shopping cart as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons, which the user can click to
remove books from the shopping cart.

The column tags represent columns of data in a Data component. While the Data component is
iterating over the rows of data, it processes the Column component associated with each
h:column tag for each row in the table.

The Data component shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time Data
iterates through the list of books, it renders one cell in each column.

The h:dataTable and h:column tags use facets to represent parts of the table that are not
repeated or updated. These include headers, footers, and captions.

In the preceding example, h:column tags include f:facet tags for representing column headers
or footers. The h:column tag allows you to control the styles of these headers and footers by
supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS style classes, which will be applied to the header and footer cells of
the corresponding column in the rendered table.

Facets can have only one child, and so a h:panelGroup tag is needed if you want to group more
than one component within a f:facet. Because the facet tag representing the footer includes
more than one tag, the panelGroup is needed to group those tags. Finally, this h:dataTable tag
includes a f:facet tag with its name attribute set to caption, causing a table caption to be
rendered below the table.

This table is a classic use case for a Data component because the number of books might not be
known to the application developer or the page author at the time that application is developed.
The Data component can dynamically adjust the number of rows of the table to accommodate
the underlying data.

The value attribute of a h:dataTable tag references the data to be included in the table. This
data can take the form of any of the following:
■ A list of beans
■ An array of beans

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009146

■ A single bean
■ A javax.faces.model.DataModel

■ A java.sql.ResultSet

■ A javax.servlet.jsp.jstl.sql.ResultSet

■ A javax.sql.RowSet

All data sources for Data components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one around
data of any of the other acceptable types. See “Writing Bean Properties” on page 170 for more
information on how to write properties for use with a Data component.

The var attribute specifies a name that is used by the components within the h:dataTable tag
as an alias to the data referenced in the value attribute of dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute
points to a single book in that list. As the Data component iterates through the list, each
reference to item points to the current book in the list.

The Data component also has the ability to display only a subset of the underlying data. This is
not shown in the preceding example. To display a subset of the data, you use the optional first
and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

The h:dataTable tag also has a set of optional attributes for adding styles to the table:

■ captionClass: Defines styles for the table caption
■ columnClasses: Defines styles for all the columns
■ footerClass: Defines styles for the footer
■ headerClass: Defines styles for the header
■ rowClasses: Defines styles for the rows
■ styleClass: Defines styles for the entire table

Each of these attributes can specify more than one style. If columnClasses or rowClasses
specifies more than one style, the styles are applied to the columns or rows in the order that the
styles are listed in the attribute. For example, if columnClasses specifies styles
list-column-center and list-column-right and if there are two columns in the table, the
first column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 147

attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Displaying Error Messages With the h:message and
h:messages Tags
The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input
component, whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessNumber application:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

<h:commandButton id="submit"
action="success" value="Submit" /><p>

<h:message

style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this
case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other
attributes for defining styles. For more information on these attributes, refer to the PDL
documentation at http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

Another attribute supported by h:messages tag is the layout attribute. Its default value is list,
which indicates that the messages are displayed in a bullet list using the HTML ul and li

elements. If you set the attribute value to table, the messages will be rendered in a table using
the HTML table element.

The preceding example shows a standard validator that is registered on the input component.
The message tag displays the error message that is associated with this validator when the
validator cannot validate the input component’s value. In general, when you register a converter
or validator on a component, you are queueing the error messages associated with the converter
or validator on the component. The h:message and h:messages tags display the appropriate
error messages that are queued on the component when the validators or converters registered
on that component fail to convert or validate the component’s value.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009148

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for
custom converters and validators by registering custom error messages with the application
through the message-bundle. Creating and using custom error messages is an advanced topic
covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

Creating Bookmarkable URLs with h:button and
h:link Tags
Bookmarkability or the ability to create bookmarkable URLs refers to the ability to generate
hyperlinks based on specified navigation outcome and component parameters. Bookmarkable
URLs are supported in JavaServer Faces 2.0.

In HTTP protocol, by default most browsers send GET requests for URL retrieval and POST
requests for data processing. The GET requests can have query parameters and can be cached
while it is not advised for POSTs which send data to the external servers. The other JavaServer
faces tags capable of generating hyperlinks use either simple GET requests as in the case of
h:outputlink, or POST requests as in the case of h:commandLink or h:commandButton tags.
Get requests with query parameters provide finer granularity to URL strings. These URLs are
created with a one or more name=value parameters appended to the simple URL after a ?
character and separated by either &; or & strings.

Bookmarkable URLs or can be created with the help of the OutcomeTarget component, which
is rendered as one of the following two HTML tags:
■ h:button

■ h:link

Both of these tags are capable of generating a hyperlink based on the outcome attribute of the
component. For example:

<h:link outcome="response" value="Message">
<f:param name="Result" value="#{sampleBean.result}"/>
</h:link>

The h:link tag will generate a URL link that points to the response.xhtml file on the same
server, appended with the single query parameter created by the f:param tag. When processed,
the parameter Result is assigned the value of backing bean's result method
#{sampleBean.result}. A sample HTML generated from the above set of tags is as follows
assuming the value of the parameter is success:

Response

This is a simple GET request. To create more complex GET requests and utilize the h:link tag's
functionality, you may use View Parameters.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 149

Using View Parameters
The core tags metadata and f:viewparam, are used as a source of parameters for configuring
the URLs. View parameters are declared as part of metadata for a page as shown in the
following example:

<h:body>

<f:metadata>

<f:viewParam id="name" name="Name" value="#{sampleBean.username}"/>
<f:viewParam id="ID" name="uid" value="#{sampleBean.useridentity}"/>

</f:metadata>

<h:link outcome="response" value="Message" includeViewParams="true">
</h:link>

</h:body>

View parameters are declared with f:viewparam tag and are placed inside the f:metadata tag.
If includeViewParams attribute is set on the component, the view parameters are added to the
hyperlink.

The resulting URL will look like this:

http://localhost:8080/guessNumber/guess/response.xhtml?Name=Duke&;uid=2001

As the URL can be the result of various parameter values, the order of the URL creation has
been predefined. The order in which the various parameter values are read is as under:

1. Component
2. Navigation-case parameters
3. View parameters

When there is a GET request for the page, the Restore View and Render Response phases (sub
phases of JavaServer Applications request lifecycle) are executed immediately. In case the page
is using view parameters for creating a bookmarkable URL, the post-back request lifecycle is
executed with all phases being processed.

Resource Relocation using h:output Tags
Resource relocation refers to the ability of a JavaServer Faces application to specify the location
where a resource can be rendered. Resource relocation can be defined with the following two
new HTML tags introduced in JavaServer Faces 2.0.
■ h:outputScript

■ h:outputStylesheet

These tags have a couple of attributes, name and target which can be used for defining the
render location. For a complete list of attributes for these tags, see the PDL Documentation at

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009150

http://java.sun.com/

javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html.

For h:outputScript tag, the name and target attributes define where the output of a resource
may appear. Here is an example:

!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

Since target attribute is not defined in the tag, the Stylesheet hello.css is rendered in head
and the hello.js script will be rendered in the body of the page as defined by h:head tag.

Here is the HTML generated by the above page:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</form>

</body>

</html>

The original page can be recreated setting the target attribute for the h:outputScript tag
which allows the incoming GET request to provide the location parameter. Here is an example:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 151

http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://java.sun.com/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: the stylesheet is rendered in the head and the script inline. However if the
incoming request provides the location parameter as head, both the stylesheet and the script
will be rendered in the head element.

The HTML generated by the above page is as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
</form>

</body>

</html>

Similarly if the incoming request provides the location parameter as body, the script will be
rendered in the body element.

The above section describes simple uses for the resource relocation. Resource relocation feature
can add even more functionality for the components and pages. A page author does not have to
know the location of a resource or its placement.

Component authors, by using @ResourceDependency annotation for the components, can
define the resources for the component such as a stylesheet and script. This allows the page
authors freedom from defining resource locations.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial, Volume I • December 2009152

Using Core Tags
The tags included in the JavaServer Faces core tag library are used to perform core actions that
are not performed by HTML tags. Commonly used core tags are listed in Table 7–5 along with
the functions they perform.

TABLE 7–5 The CoreTags

Tag Categories Tags Functions

Event-handling
tags

f:actionListener Adds an action listener to a parent component

f:phaseListener Adds a PhaseListener to a page

f:setPropertyActionListener Registers a special action listener whose sole purpose is
to push a value into a backing bean when a form is
submitted

f:valueChangeListener Adds a value-change listener to a parent component

Attribute
configuration tag

f:attribute Adds configurable attributes to a parent component

Data conversion
tags

f:converter Adds an arbitrary converter to the parent component

f:convertDateTime Adds a DateTime converter instance to the parent
component

f:convertNumber Adds a Number converter instance to the parent
component

Facet tag f:facet Adds a nested component that has a special
relationship to its enclosing tag

f:metadata Registers a facet on a parent component

Localization tag f:loadBundle Specifies a ResourceBundle that is exposed as a Map

Parameter
substitution tag

f:param Substitutes parameters into a MessageFormat instance
and adds query string name-value pairs to a URL

Tags for
representing
items in a list

f:selectItem Represents one item in a list of items in a SelectOne or
SelectMany component

f:selectItems Represents a set of items in a SelectOne or SelectMany
component

Using Core Tags

Chapter 7 • Using JavaServerTM Faces Technology in Web Pages 153

TABLE 7–5 The CoreTags (Continued)
Tag Categories Tags Functions

Validator tags f:validateDoubleRange Adds a DoubleRangeValidator to a component

f:validateLength Adds a LengthValidator to a component

f:validateLongRange Adds a LongRangeValidator to a component

f:validator Adds a custom validator to a component

f:validateRegEx Adds a RegExValidator instance to a component

f:validateBean Delegates the validation of a local value to a
BeanValidator instance

f:validateRequired Enforces the presence of a value in a component

Ajax tag f:ajax Associates Ajax action to a single or group of
components based on placement

Event tag f:event Allows installing ComponentSystemEventListener on
a component

These tags, which are used in conjunction with component tags, are explained in other sections
of this tutorial. Table 7–6 lists the sections that explain how to use specific core tags.

TABLE 7–6 Where the Core Tags Are Explained

Tags Where Explained

Event-handling tags “Registering Listeners on Components” on page 160

Data conversion tags “Using the Standard Converters” on page 155

facet “Using Data-Bound Table Components” on page 144 and “Laying Out Components
With the Panel Component” on page 137

loadBundle “Rendering Components for Selecting Multiple Values” on page 141

param “Displaying a Formatted Message With the h:outputFormat Tag” on page 134

selectItem and
selectItems

“Using The SelectItem and SelectItems Components” on page 143

Validator tags “Using the Standard Validators” on page 162

Using Core Tags

The Java EE 6 Tutorial, Volume I • December 2009154

Using Converters, Listeners and Validators

The previous chapter described different types of components and explained how to add them
to a web page. This chapter provides information on adding more functionality to the
components through converters, listeners and validators.

■ Converters are used to convert data that is received from the input components
■ Listeners are used to listen to the events happening in the page and perform actions as

defined
■ Validators are used to validate the data that is received from the input components

The following topics are addressed in this chapter:

■ “Using the Standard Converters” on page 155
■ “Registering Listeners on Components” on page 160
■ “Using the Standard Validators” on page 162
■ “Referencing a Backing Bean Method” on page 164

Using the Standard Converters
The JavaServerTM Faces implementation provides a set of Converter implementations that you
can use to convert component data.

The standard Converter implementations, located in the javax.faces.convert package, are
as follows:

■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

8C H A P T E R 8

155

■ EnumConverter

■ FloatConverter

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

A standard error message associated with each of these converters. If you have registered one of
these converters onto a component on your page, and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
error message that displays if BigIntegerConverter fails to convert a value is:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
For more information about using DateTimeConverter, see “Using DateTimeConverter” on
page 157. For more information about using NumberConverter, see “Using NumberConverter”
on page 159. The following section explains how to convert a component’s value, including how
to register other standard converters with a component.

Converting a Component’s Value
To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following
four ways:

■ Nest one of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using DateTimeConverter”
on page 157and “Using NumberConverter” on page 159, respectively.

■ Bind the value of the component to a backing bean property of the same type as the
converter.

■ Refer to the converter from the component tag’s converter attribute.
■ Nest a converter tag inside of the component tag and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second way, if you want a component’s data to be converted to an Integer,
you can simply bind the component’s value to a backing bean property. Here is an example:

Integer age = 0;

public Integer getAge(){ return age;}

public void setAge(Integer age) {this.age = age;}

Using the Standard Converters

The Java EE 6 Tutorial, Volume I • December 2009156

If the component is not bound to a bean property, you can employ the third method by using
the converter attribute directly on the component tag:

<h:inputText

converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully-qualified class name of the
converter. The converter attribute can also take the ID of the component.

The data from inputText tag in the this example will be converted to a java.lang.Integer.
The Integer type is already a supported type of the NumberConverter. If you don’t need to
specify any formatting instructions using the convertNumber tag attributes, and if one of the
standard converters will suffice, you can simply reference that converter by using the
component tag’s converter attribute.

Finally, you can nest a converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{LoginBean.Age}" />

<f:converter converterId="Integer" />

</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance.

Custom converters and using binding attribute are advanced topics covered in Java EE 6
Tutorial, Volume II: Advanced Topics.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 8–1 lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

When binding the DateTime converter to a component, ensure that the backing bean property
to which the component is bound is of type java.util.Date. In the preceding example,
cashier.shipDate must be of type java.util.Date.

Using the Standard Converters

Chapter 8 • Using Converters, Listeners and Validators 157

The example tag can display the following output:

Saturday, September 26, 2009

You can also display the same date and time by using the following tag where date format is
specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />

</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display the following output:

sabado 26 de septiembre de 2009

Refer to the Customizing Formats lesson of the Java Tutorial at http://java.sun.com/docs/
books/tutorial/i18n/format/simpleDateFormat.html for more information on how to
format the output using the pattern attribute of the convertDateTime tag.

TABLE 8–1 convertDateTimeTag Attributes

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a backing bean property.

dateStyle String Defines the format, as specified by java.text.DateFormat, of a date or
the date part of a date string. Applied only if type is date (or both) and
pattern is not defined. Valid values: default, short, medium, long, and
full. If no value is specified, default is used.

locale String or Locale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified, dateStyle,
timeStyle, and type attributes are ignored.

Using the Standard Converters

The Java EE 6 Tutorial, Volume I • December 2009158

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html
http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html

TABLE 8–1 convertDateTimeTag Attributes (Continued)
Attribute Type Description

timeStyle String Defines the format, as specified by java.text.DateFormat, of a time or
the time part of a date string. Applied only if type is time and pattern is
not defined. Valid values: default, short, medium, long, and full. If no
value is specified, default is used.

timeZone String or TimeZone Time zone in which to interpret any time information in the date string.

type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is used.

for String Used with composite components. Refers to one of the objects within the
composite component inside which this tag is nestled.

Using NumberConverter

You can convert a component’s data to a java.lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 8–2 lists the attributes.

The following example uses a convertNumber tag to display the total prices of the books in the
shopping cart:

<h:outputText value="#{cart.total}" >

<f:convertNumber type="currency"/>
</h:outputText>

When binding the Number converter to a component, ensure that the backing bean property to
which the component is bound is of primitive type or has a type of java.lang.Number. In the
case of the preceding example, cart.total is of type java.lang.Number.

Here is an example of a number that this tag can display:

$934

This result can also be displayed using the following tag where currency pattern is specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >

<f:convertNumber pattern="
$####"
/>

</h:outputText>

See the Customizing Formats lesson of the Java Tutorial at http://java.sun.com/docs/books/
tutorial/i18n/format/decimalFormat.html for more information on how to format the
output using the pattern attribute of the convertNumber tag.

Using the Standard Converters

Chapter 8 • Using Converters, Listeners and Validators 159

http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html
http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html

TABLE 8–2 convertNumberAttributes

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property.

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

groupingUsed boolean Specifies whether formatted output contains grouping
separators.

integerOnly boolean Specifies whether only the integer part of the value will be
parsed.

locale String or Locale Locale whose number styles are used to format or parse data.

maxFractionDigits int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

type String Specifies whether the string value is parsed and formatted as
a number, currency, or percentage. If not specified, number
is used.

for String Used with composite components. Refers to one of the
objects within the composite component inside which this
tag is nestled.

Registering Listeners on Components
An application developer can implement listeners as classes or as backing bean methods. If a
listener is a backing bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either a valueChangeListener tag or an
actionListener tag, and nest the tag inside the component tag, to register the listener on the
component.

Registering Listeners on Components

The Java EE 6 Tutorial, Volume I • December 2009160

“Referencing a Method That Handles an Action Event” on page 165 and “Referencing a Method
That Handles a Value-Change Event” on page 166 describe how a page author uses the
valueChangeListener and actionListener attributes to reference backing bean methods that
handle events.

This section explains how to register the NameChanged value-change listener and a hypothetical
LocaleChange action listener implementation on components. Implementing value-change
listeners, and implementing action listeners are advanced topics that are covered in Java EE 6
Tutorial, Volume II: Advanced Topics.

Registering a Value-Change Listener on a Component
AValueChangeListener implementation can be registered on a component that implements
EditableValueHolder by nesting a valueChangeListener tag within the component’s tag on
the page. The valueChangeListener tag supports two attributes:

■ type: References the fully qualified class name of a ValueChangeListener implementation
■ binding: References an object that implements ValueChangeListener

One of these attributes must be used to reference the value-change listener. The type attribute
can accept a literal or a value expression. The binding attribute can only accept a value
expression, which must point to a backing bean property that accepts and returns a
ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
ValueChangeListener implementation which is registered on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent that is associated with the specified
ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangeListener implementation to a backing
bean property. It works in a similar way to the binding attribute supported by the standard
converter tags.

Registering Listeners on Components

Chapter 8 • Using Converters, Listeners and Validators 161

Registering an Action Listener on a Component
A page author can register an ActionListener implementation on a Command component by
nesting an actionListener tag within the component’s tag on the page. Similarly to the
valueChangeListener tag, the actionListener tag supports both the type and binding

attributes. One of these attributes must be used to reference the action listener.

Here is an example of commandLink tag, that references an ActionListener implementation
rather than a backing bean method:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tag also supports the binding attribute.

Using the Standard Validators
JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 8–3 lists all the
standard validator classes and the tags that allow you to use the validators from the page.

TABLE 8–3 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange Checks whether the local value of a component is within
a certain range. The value must be floating-point or
convertible to floating-point.

LengthValidator validateLength Checks whether the length of a component’s local value
is within a certain range. The value must be a
java.lang.String.

LongRangeValidator validateLongRange Checks whether the local value of a component is within
a certain range. The value must be any numeric type or
String that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a component is a
match against a regular expression from
java.util.regex package.

BeanValidator validateBean Registers a bean validator for the component

Using the Standard Validators

The Java EE 6 Tutorial, Volume I • December 2009162

TABLE 8–3 The Validator Classes (Continued)
Validator Class Tag Function

RequiredValidator validateRequired Ensures that the local value is not empty on a
EditableValueHolder component

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

Validating a Component’s Value
To validate a component’s value using a particular validator, you need to register that validator
on the component. You can do this in one of the following ways:

■ Nest the validator’s corresponding tag (shown in Table 8–3) inside the component’s tag.
“Using the LongRangeValidator” on page 163 describes how to use the validateLongRange
tag. You can use the other standard tags in the same way.

■ Refer to a method that performs the validation from the component tag’s validator
attribute.

■ Nest a validator tag inside the component tag and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 165 for more information on
using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 156.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder because these components accept values that can be validated.

Using the LongRangeValidator
The following example shows how to use the validateLongRange validator on a input
component tag quantity:

Using the Standard Validators

Chapter 8 • Using Converters, Listeners and Validators 163

<h:inputText id="quantity" size="4"
value=

"#{item.quantity}
" >

<f:validateLongRange minimum="1"/>
</h:inputText>

<h:message for="quantity"/>

This tag requires that the user enter a number that is at least 1. The size attribute specifies that
the number can have no more than four digits. The validateLongRange tag also has a maximum
attribute, with which you can set a maximum value of the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference backing bean properties rather than specify literal values. For example,
the validateLongRange tag in the preceding example can reference a backing bean property
called minimum to get the minimum value acceptable to the validator implementation as shown
here:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Referencing a Backing Bean Method
A component tag has a set of attributes for referencing backing bean methods that can perform
certain functions for the component associated with the tag. These attributes are summarized in
Table 8–4.

TABLE 8–4 Component Tag Attributes That Reference Backing Bean Methods

Attribute Function

action Refers to a backing bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a backing bean method that handles action events

validator Refers to a backing bean method that performs validation on the component’s value

valueChangeListener Refers to a backing bean method that handles value-change events

Only components that implement ActionSource can use the action and actionListener

attributes. Only components that implement EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a backing bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,
which is defined by the tag attribute’s definition in the TLD. For example, the definition of the
validator attribute of the inputText tag in html_basic.tld is the following:

Referencing a Backing Bean Method

The Java EE 6 Tutorial, Volume I • December 2009164

void validate(javax.faces.context.FacesContext,

javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the four different attributes.

■ “Referencing a Method That Performs Navigation” on page 165
■ “Referencing a Method That Handles an Action Event” on page 165
■ “Referencing a Method That Performs Validation” on page 165
■ “Referencing a Method That Handles a Value-Change Event” on page 166

Referencing a Method That Performs Navigation
If your page includes a component (such as a button or hyperlink) that causes the application to
navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

■ Specifies a logical outcome String that tells the application which page to access next
■ References a backing bean method that performs some processing and returns a logical

outcome String

The following examples shows how to reference a navigation method:

<h:commandButton

value="#{bundle.Submit}"
action="#{cashier.submit}" />

Referencing a Method That Handles an Action Event
If a component on your page generates an action event, and if that event is handled by a backing
bean method, you refer to the method by using the component’s actionListener attribute.

The following example shows how the method is referenced:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the chooseLocaleFromLink
method using a method expression. The chooseLocaleFromLink method handles the event
when user clicks the hyperlink rendered by this component.

Referencing a Method That Performs Validation
If the input of one of the components on your page is validated by a backing bean method, refer
to the method from the component’s tag using the validator attribute.

Referencing a Backing Bean Method

Chapter 8 • Using Converters, Listeners and Validators 165

The following example shows how to reference a method that performs validation on email, an
input component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

Referencing a Method That Handles a Value-Change
Event
If you want a component on your page to generate a value-change event and you want that
event to be handled by a backing bean method, you refer to the method using the component’s
valueChangeListener attribute.

The following example shows how a component references a ValueChangeListener
implementation that handles the event when a user enters a name in the name input filed:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

To refer to this backing bean method, the tag uses the valueChangeListener attribute:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean using a method expression. The
processValueChange method handles the event of a user entering a name in the input field
rendered by this component.

Referencing a Backing Bean Method

The Java EE 6 Tutorial, Volume I • December 2009166

Developing With JavaServerTM Faces Technology

The previous chapters, Chapter 7, “Using JavaServer Faces Technology in Web Pages,” and
Chapter 8, “Using Converters, Listeners and Validators,” show how to add components to a
page, connect them to server-side objects using the component tags, and how to provide
additional functionality to the components through converters, listeners, and validators.
Developing a JavaServer Faces application also involves the task of programming the
server-side objects. These objects include backing beans, converters, event handlers, and
validators.

This chapter provides an overview of the backing beans, and explains how to write methods and
properties of backing beans that are used by a JavaServer Faces application. It also introduces
the new bean validation (JSR 303) feature.

Backing Beans
A typical JavaServer Faces application includes one or more backing beans, each of which is a
type of JavaServer Faces managed bean that can be associated with the components used in a
particular page. This section introduces the basic concepts on creating, configuring, and using
backing beans in an application.

Creating a Backing Bean
A backing bean is created with a constructor with no arguments (like all JavaBeansTM

components), and also a set of properties and a set of methods that perform functions for a
component.

Each of the component properties can be bound to one of the following:

■ A component’s value
■ A component instance
■ A converter instance

9C H A P T E R 9

167

■ A listener instance
■ A validator instance

The most common functions that backing bean methods perform include the following:

■ Validating a component’s data
■ Handling an event fired by a component
■ Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code:

Integer userNumber = null;

...

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

...

}

When a bean property is bound to a component’s value, it can be any of the basic primitive and
numeric types, or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type Date if the application has access to a
converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 170 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, if a SelectBoolean component is bound to the property,
the property must accept and return a SelectBoolean object.

Likewise, if the property is bound to a converter, validator, or listener instance, then the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 170.

Backing Beans

The Java EE 6 Tutorial, Volume I • December 2009168

Using the EL to Reference Backing Beans
To bind component values and objects to backing bean properties or to reference backing bean
methods from component tags, page authors use the unified expression language (EL) syntax.
As explained in “Overview of EL” on page 109, the following are some of the features that EL
offers:

■ Deferred evaluation of expressions
■ The ability to use a value expression to both read and write data
■ Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle is split
into several phases where component event handling, data conversion and validation, and data
propagation to external objects are all performed in an orderly fashion. The implementation
must be able to delay the evaluation of expressions until the proper phase of the life cycle has
been reached. Therefore, its tag attributes always use deferred evaluation syntax, which is
distinguished by the #{} delimiter.

In order to store data in external objects, almost all JavaServer Faces tag attributes use lvalue
value expressions, which are expressions that allow both getting and setting data on external
objects.

Finally, some component tag attributes accept method expressions that reference methods that
handle component events, or validate or convert component data.

To illustrate a JavaServer Faces tag using EL, let’s suppose that a tag of an application referenced
a method to perform the validation of user input:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean.userNumber backing bean
property using an lvalue expression. It uses a method expression to refer to the
UserNumberBean.validate method, which performs validation of the component’s local value.
The local value is whatever the user enters into the field corresponding to this tag. This method
is invoked when the expression is evaluated, which is during the process validation phase of the
life cycle.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can also reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is binding a component instance to a backing bean property.
A page author does this by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

Backing Beans

Chapter 9 • Developing With JavaServerTM Faces Technology 169

In addition to using expressions with the standard component tags, you can also configure your
custom component properties to accept expressions by creating ValueExpression or
MethodExpression instances for them.

For information on EL, see Chapter 6, “Unified Expression Language.”

For information on referencing backing bean methods from component tags, see “Referencing
a Backing Bean Method” on page 164.

Writing Bean Properties
As explained in “Backing Beans” on page 167, a backing bean property can be bound to one of
the following items:

■ A component value
■ A component instance
■ A converter implementation
■ A listener implementation
■ A validator implementation

These properties follow the conventions of JavaBeans components (also called beans). For more
information on JavaBeans components, see JavaBeans Tutorial.

The component’s tag binds the component’s value to a backing bean property using its value
attribute and binds the component’s instance to a backing bean property using its binding
attribute.

Likewise, all the converter, listener, and validator tags use their binding attributes to bind their
associated implementations to backing bean properties. Binding is an advanced topic covered
in Java EE 6 Tutorial, Volume II: Advanced Topics.

To bind a component’s value to a backing bean property, the type of the property must match
the type of the component’s value to which it is bound. For example, if a backing bean property
is bound to a SelectBoolean component’s value, the property should accept and return a
boolean value or a Boolean wrapper Object instance.

To bind a component instance to a backing bean property, the property must match the type of
component. For example, if a backing bean property is bound to a SelectBoolean instance, the
property should accept and return SelectBoolean value.

Similarly, to bind a converter, listener, or validator implementation to a backing bean property,
the property must accept and return the same type of converter, listener, or validator object. For
example, if you are using the convertDateTime tag to bind a DateTime converter to a property,
that property must accept and return a DateTime instance.

Writing Bean Properties

The Java EE 6 Tutorial, Volume I • December 2009170

http://java.sun.com/docs/books/tutorial/javabeans/index.html

The rest of this section explains how to write properties that can be bound to component values,
to component instances for the component objects described in “Adding Components to a Page
Using HTML Tags” on page 124, and to converter, listener, and validator implementations.

Writing Properties Bound to Component Values
To write a backing bean property that is bound to a component’s value, you must match the
property type to the component’s value .

Table 9–1 lists the component classes described in “Adding Components to a Page Using
HTML Tags” on page 124 and the acceptable types of their values.

TABLE 9–1 Acceptable Types of Component Values

Component Acceptable Types of Component Values

Input, Output, SelectItem,
SelectOne

Any of the basic primitive and numeric types or any Java programming
language object type for which an appropriate Converter implementation
is available

Data array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

SelectBoolean boolean or Boolean

SelectItems java.lang.String, Collection, Array, Map

SelectMany array or List though elements of the array or List can be any of the
standard types

When page authors bind components to properties using the value attributes of the
component tags, they need to ensure that the corresponding properties match the types of the
components’ values.

Input and OutputProperties
In the following example, an h:inputText tag binds the value of component to the name
property of a backing bean called CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}"

</h:inputText>

The following code segment from the backing bean CashierBean, shows the bean property type
bound by the preceding component tag:

Writing Bean Properties

Chapter 9 • Developing With JavaServerTM Faces Technology 171

protected String name = null;

public void setName(String name) {

this.name = name;

}

public String getName() {

return this.name;

}

As described in “Using the Standard Converters” on page 155, to convert the value of a Input or
Output component, you can either apply a converter or create the bean property bound to the
component with the matching type.

Here is the example tag from “Using DateTimeConverter” on page 157 that displays the date
that books will be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

The bean property represented by this tag must be of a type of java.util.Date. The following
code segment shows the shipDate property from the backing bean CashierBean, that is bound
by the tag's value in the preceding example:

protected Date shipDate;

public Date getShipDate() {

return this.shipDate;

}

public void setShipDate(Date shipDate) {

this.shipDate = shipDate;

}

DataProperties
Data components must be bound to one of the backing bean property types listed in Table 9–1.
The Data component is discussed in “Using Data-Bound Table Components” on page 144.
Here is part of the start tag of dataTable from that section:

<h:dataTable id="items"
...

value="#{cart.items}"
var="item" >

The value expression points to the items property of a shopping cart bean namedcart. The
cart bean maintains a map of ShoppingCartItem beans.

The getItems method from cart bean populates a List with ShoppingCartItem instances that
are saved in the items map from when the customer adds books to the cart, as shown in the
following code segment:

Writing Bean Properties

The Java EE 6 Tutorial, Volume I • December 2009172

public synchronized List getItems() {

List results = new ArrayList();

results.addAll(this.items.values());

return results;

}

All the components contained in the Data component are bound to the properties of the cart
bean that is bound to the entire Data component. For example, here is the h:outputText tag
that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>

</h:commandLink>

SelectBooleanProperties
Backing bean properties that hold the SelectBoolean component’s data must be of boolean or
Boolean type. The example selectBooleanCheckbox tag from the section “Displaying
Components for Selecting One Value” on page 139 binds a component to a property. The
following example shows a tag that binds a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the example
tag:

protected boolean receiveEmails = false;

...

public void setReceiveEmails(boolean receiveEmails) {

this.receiveEmails = receiveEmails;

}

public boolean getReceiveEmails() {

return receiveEmails;

}

SelectManyProperties
Because a SelectMany component allows a user to select one or more items from a list of items,
this component must map to a bean property of type List or array. This bean property
represents the set of currently selected items from the list of available items.

The following example of selectManyCheckbox tag comes from“Rendering Components for
Selecting Multiple Values” on page 141:

Writing Bean Properties

Chapter 9 • Developing With JavaServerTM Faces Technology 173

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>

</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from the
preceding example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {

this.newsletters = newsletters;

}

public String[] getNewsletters() {

return this.newsletters;

}

The SelectItem and SelectItems components are used to represent all the values in a
SelectMany component. See “SelectItem Properties” on page 175 and “SelectItems
Properties” on page 175 for information on writing the bean properties for the SelectItem and
SelectItems components.

SelectOneProperties
SelectOne properties accept the same types as Input and Output properties, because a
SelectOne component represents the single selected item from a set of items. This item can be
any of the primitive types and anything else for which you can apply a converter.

Here is an example of the selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 140:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

Here is the bean property corresponding to this tag:

Writing Bean Properties

The Java EE 6 Tutorial, Volume I • December 2009174

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {

this.shippingOption = shippingOption;

}

public String getShippingOption() {

return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
SelectOne component.

The SelectItem and SelectItems components are used to represent all the values in a
SelectOne component. This is explained in the section “Displaying a Menu Using the
h:selectOneMenu Tag” on page 140.

For information on how to write the backing bean properties for the SelectItem and
SelectItems components, see “SelectItem Properties” on page 175 and “SelectItems
Properties” on page 175 .

SelectItemProperties
A SelectItem component represents a single value in a set of values in a SelectMany or
SelectOne component. A SelectItem component can be bound to a backing bean property of
type SelectItem. A SelectItem object is composed of an Object representing the value, along
with two Strings representing the label and description of the SelectItem object.

The example selectOneMenu tag from “Displaying a Menu Using the h:selectOneMenu Tag”
on page 140 contains selectItem tags that set the values of the list of items in the page. Here is
an example of a bean property that can set the values for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){

return itemOne;

}

void setItemOne(SelectItem item) {

itemOne = item;

}

SelectItemsProperties
The SelectItems components are children of SelectMany and SelectOne components. Each
SelectItems component is composed of a set of either SelectItem instances or anycollection
of objects such as an array, or a list or even POJOs..

Writing Bean Properties

Chapter 9 • Developing With JavaServerTM Faces Technology 175

The following section describes how to write the properties for selectItems tags containing
SelectItem instances.

Properties for SelectItems Composed of SelectItem Instances

You can populate the SelectItems with SelectItem instances programmatically in the
backing bean.

1. In your backing bean, create a list that is bound to the SelectItem component.

2. Then define a set of SelectItem objects, set their values, and populate the list with the
SelectItem objects.

Here is an example code snippet from a backing bean that shows how to create a SelectItems
property:

import javax.faces.component.SelectItem;

...

protected ArrayList options = null;

protected SelectItem newsletter0 =

new SelectItem("200", "Duke’s Quarterly", "");
...

//in constructor, populate the list

options.add(newsletter0);

options.add(newsletter1);

options.add(newsletter2);

...

public SelectItem getNewsletter0(){

return newsletter0;

}

void setNewsletter0(SelectItem firstNL) {

newsletter0 = firstNL;

}

// Other SelectItem properties

public Collection[] getOptions(){

return options;

}

public void setOptions(Collection[] options){

this.options = new ArrayList(options);

}

The code first initializes options as a list. Each newsletter property is defined with values. Then,
each newsletter SelectItem is added to the list. Finally, the code includes the obligatory
setOptions and getOptions accessor methods.

Writing Bean Properties

The Java EE 6 Tutorial, Volume I • December 2009176

Writing Properties Bound to Component Instances
A property bound to a component instance returns and accepts a component instance rather
than a component value. The following components bind a component instance to a backing
bean property:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub SelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
fanClubLabel component (which represents the check box’s label) to the specialOfferText
property of CashierBean. If the user orders more than $100 worth of books and clicks the
Submit button, the submit method of CashierBean sets both components’ rendered properties
to true, causing the check box and label to display when the page is re-rendered.

Because the components corresponding to the example tags are bound to the backing bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of Output type, and the specialOffer property must be
of SelectBoolean type:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {

return this.specialOfferText;

}

public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;

}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {

return this.specialOffer;

}

public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;

}

For more general information on component binding, see “Backing Beans” on page 167.

Writing Bean Properties

Chapter 9 • Developing With JavaServerTM Faces Technology 177

For information on how to reference a backing bean method that performs navigation when a
button is clicked, see “Referencing a Method That Performs Navigation” on page 165.

For more information on writing backing bean methods that handle navigation, see “Writing a
Method to Handle Navigation” on page 179 .

Writing Properties Bound to Converters, Listeners, or
Validators
All of the standard converter, listener, and validator tags that are included with JavaServer Faces
technology support binding attributes that allow binding converter, listener, or validator
implementations to backing bean properties.

The following example shows a standard convertDateTime tag using a value expression with its
binding attribute to bind the DateTimeConverter instance to the convertDate property of
LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />

</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter object, as
shown here:

private DateTimeConverter convertDate;

public DateTimeConverter getConvertDate() {

...

return convertDate;

{

public void setConvertDate(DateTimeConverter convertDate) {

convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property can
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter uses to parse the user’s input into a
Date object.

The backing bean properties that are bound to validator or listener implementations are written
in the same way and have the same general purpose.

Writing Bean Properties

The Java EE 6 Tutorial, Volume I • December 2009178

Writing Backing Bean Methods
Methods of a backing bean can perform several application-specific functions for components
on the page. These functions include:
■ Performing validation on the component’s value
■ Handling action events
■ Handling value-change events
■ Performing processing associated with navigation

By using a backing bean to perform these functions, you eliminate the need to implement the
Validator interface to handle the validation or the Listener interface to handle events. Also,
by using a backing bean instead of a Validator implementation to perform validation, you
eliminate the need to create a custom tag for the Validator implementation. Creating custom
validators is an advanced topic covered in Java EE 6 Tutorial, Volume II: Advanced Topics.

In general, it’s good practice to include these methods in the same backing bean that defines the
properties for the components referencing these methods. The reason for doing so is that the
methods might need to access the component’s data to determine how to handle the event or to
perform the validation associated with the component.

This section describes the requirements for writing the backing bean methods. The following
topics explain writing different types of backing bean methods:
■ “Writing a Method to Handle Navigation” on page 179
■ “Writing a Method to Handle an Action Event” on page 181
■ “Writing a Method to Perform Validation” on page 181
■ “Writing a Method to Handle a Value-Change Event” on page 182

Writing a Method to Handle Navigation
A backing bean method that handles navigation processing, called an action method, must be a
public method that takes no parameters and returns an Object, which is the logical outcome
that the navigation system uses to determine the page to display next. This method is referenced
using the component tag’s action attribute.

The following action method is from a backing bean named CashierBean, which is invoked
when a user clicks the Submit button on the page. If the user has ordered more than $100 worth
of books, this method sets the rendered properties of the fanClub and specialOffer

components to true, causing them to be displayed on the page the next time that page is
rendered.

After setting the components’ rendered properties to true, this method returns the logical
outcome null. This causes the JavaServer Faces implementation to re-render the page without
creating a new view of the page, retaining the customer’s input. If this method were to return
purchase which is the logical outcome to use to advance to a payment page, the page would
re-render without retaining the customer’s input.

Writing Backing Bean Methods

Chapter 9 • Developing With JavaServerTM Faces Technology 179

If the user does not purchase more than $100 worth of books or the thankYou component has
already been rendered, the method returns receipt.The JavaServer Faces implementation
loads the page after this method returns.

public String submit() {

...

if(cart().getTotal() > 100.00 &&

!specialOffer.isRendered())

{

specialOfferText.setRendered(true);

specialOffer.setRendered(true);

return null;

} else if (specialOffer.isRendered() &&

!thankYou.isRendered()){

thankYou.setRendered(true);

return null;

} else {

clear();

return ("receipt");
}

}

Typically, an action method will return a String outcome, as shown in the previous example.
Alternatively, you can define an Enum class that encapsulates all possible outcome strings, and
then make an action method return an enum constant, which represents a particular String
outcome defined by the Enum class. In this case, the value returned by a call to the Enum class’s
toString method must match that specified by the from-outcome element in the appropriate
navigation rule configuration defined in the application configuration file.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {

main, accountHist, accountList, atm, atmAck, transferFunds,

transferAck, error

}

When an action method returns an outcome, it uses the dot notation to reference the outcome
from the Enum class:

public Object submit(){

...

return Navigation.accountHist;

}

The section “Referencing a Method That Performs Navigation” on page 165 explains how a
component tag references this method. The section “Writing Properties Bound to Component
Instances” on page 177 discusses how to write the bean properties to which the components are
bound.

Writing Backing Bean Methods

The Java EE 6 Tutorial, Volume I • December 2009180

Writing a Method to Handle an Action Event
A backing bean method that handles an action event must be a public method that accepts an
action event and returns void. This method is referenced using the component tag’s
actionListener attribute. Only components that implement ActionSource can refer to this
method.

In the following example, a method from a backing bean named LocaleBean processes the
event of a user clicking one of the hyperlinks on the page:

public void chooseLocaleFromLink(ActionEvent event) {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

This method gets the component that generated the event from the event object, and then it gets
the component’s ID, which indicates a region of the world. The method matches the ID against
a HashMap object that contains the locales available for the application. Finally, it sets the locale
using the selected value from the HashMap object.

“Referencing a Method That Handles an Action Event” on page 165 explains how a component
tag references this method.

Writing a Method to Perform Validation
Instead of implementing the Validator interface to perform validation for a component, you
can include a method in a backing bean to take care of validating input for the component.

A backing bean method that performs validation must accept a FacesContext, the component
whose data must be validated, and the data to be validated, just as the validate method of the
Validator interface does. A component refers to the backing bean method by using its
validator attribute. Only values of Input components or values of components that extend
Input can be validated.

Here is an example of a backing bean method that validates user input:

public void validateEmail(FacesContext context,

UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;

if (email.contains(’@’)) {

((UIInput)toValidate).setValid(false);

message = CoffeeBreakBean.loadErrorMessage(context,

Writing Backing Bean Methods

Chapter 9 • Developing With JavaServerTM Faces Technology 181

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,

"EMailError");
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));

}

}

Let's take a closer look at the above code segment:

1. The validateEmail method first gets the local value of the component.
2. It then checks whether the @ character is contained in the value.
3. If not, the method sets the component’s valid property to false.
4. The method then loads the error message and queues it onto the FacesContext instance,

associating the message with the component ID.

See “Referencing a Method That Performs Validation” on page 165 for information on how a
component tag references this method.

Writing a Method to Handle a Value-Change Event
A backing bean that handles a value-change event must use a public method that accepts a
value-change event and returns void. This method is referenced using the component’s
valueChangeListener attribute.

.This section explains how to write a backing bean method to replace the
ValueChangeListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 161, where the h:inputText tag with the id of name, has a
ValueChangeListener instance registered on it. This ValueChangeListener instance handles
the event of entering a value in the field corresponding to the component. When the user enters
a value, a value-change event is generated, and the processValueChange(ValueChangeEvent)
method of the ValueChangeListener class is invoked.

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

Instead of implementing ValueChangeListener, you can write a backing bean method to
handle this event. To do this, you move the processValueChange(ValueChangeEvent) method
from the ValueChangeListener class, called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in the name field on
the page:

Writing Backing Bean Methods

The Java EE 6 Tutorial, Volume I • December 2009182

public void processValueChange(ValueChangeEvent event)

throws AbortProcessingException {

if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().

put("name", event.getNewValue());

}

}

To make this method handle the ValueChangeEvent that is generated by an Input component,
reference this method from the component tag’s valueChangeListener attribute. See
“Referencing a Method That Handles a Value-Change Event” on page 166 for more
information.

Bean Validation
Bean validation (JSR 303) is a new feature that is available in Java EE 6. A JavaServer Faces 2.0
implementation must support bean validation if the server runtime (such as Java EE 6) requires
it.

Validation can take place at different layers in even the simplest of applications, as shown in the
guessNumber example application from the earlier chapter. The guessNumber example
application validates the user input (in the <h:inputText> tag) for numerical data at the
presentation layer and for a valid range of numbers at the business layer.

The bean validation model is supported by constraints in the form of annotations placed on a
field, method, or class of a JavaBeans component such as a backing bean.

Constraints can be built-in or user-defined. Several built-in annotations are available in the
javax.validation.constraints package. Some of the commonly used built-in annotations
are listed below:

■ @Min: The annotated element must be a number whose value must be higher or equal to the
specified minimum.

■ @Max: The annotated element must be a number whose value must be lower or equal to the
specified maximum.

■ @Size: The annotated element must be between specified minimum and maximum
boundaries.

■ @NotNull: The annotated element must not be null.
■ @Null: The annotated element must be null.
■ @Pattern: The annotated element must match the specified Java regular expression.

For a complete list of built-in constraint annotations, see API documentation for
javax.validation.constraints class at http://java.sun.com/javaee/6/docs/api/.

Bean Validation

Chapter 9 • Developing With JavaServerTM Faces Technology 183

http://java.sun.com/javaee/6/docs/api/

In the following example, a constraint is placed on a field using the built-in @NotNull

constraint:

public class Name {

@NotNull

private String firstname;

@NotNull

private String lastname;

}

You can also place more than one constraint on a single JavaBeans component object. For
example, you can place an additional constraint for size of field on the first name and the last
name fields:

public class Name {

@NotNull

@Size(min=1, max=16)

private String firstname;

@NotNull

@Size(min=1, max=16)

private String lastname;

}

The following example shows a user-defined constraint placed on a method which checks for a
predefined email address pattern such as a corporate email account:

@validEmail

public String getEmailAddress()

{

return emailAddress;

}

A user-defined constraint also needs a validation implementation. For a built-in constraint, a
default implementation is already available. Any validation failures are gracefully handled and
can be displayed by h:messages tag.

Bean Validation

The Java EE 6 Tutorial, Volume I • December 2009184

Java Servlet Technology

Shortly after the web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for the same purpose. Initially, Common Gateway
Interface (CGI) server-side scripts were the main technology used to generate dynamic content.
Although widely used, CGI scripting technology had many shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java Servlet technology was
created as a portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of servers
that host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for
writing servlets. All servlets must implement the Servlet interface, which defines life-cycle
methods. When implementing a generic service, you can use or extend the GenericServlet
class provided with the Java Servlet API. The HttpServlet class provides methods, such as
doGet and doPost, for handling HTTP-specific services.

10C H A P T E R 1 0

185

Servlet Life Cycle
The life cycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. If an instance of the servlet does not exist, the web container

a. Loads the servlet class.

b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is covered in
“Initializing a Servlet” on page 189.

2. Invokes the service method, passing request and response objects. Service methods are
discussed in “Writing Service Methods” on page 189.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet’s
destroy method. Finalization is discussed in “Finalizing a Servlet” on page 200.

Handling Servlet Life-Cycle Events
You can monitor and react to events in a servlet’s life cycle by defining listener objects whose
methods get invoked when life-cycle events occur. To use these listener objects you must define
and specify the listener class.

Defining the Listener Class
You define a listener class as an implementation of a listener interface. Table 10–1 lists the
events that can be monitored and the corresponding interface that must be implemented.
When a listener method is invoked, it is passed an event that contains information appropriate
to the event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

TABLE 10–1 Servlet Life-Cycle Events

Object Event Listener Interface and Event Class

Web context (see
“Accessing the Web
Context” on page 198)

Initialization and
destruction

javax.servlet.ServletContextListener and

ServletContextEvent

Attribute added,
removed, or replaced

javax.servlet.ServletContextAttributeListener and

ServletContextAttributeEvent

Servlet Life Cycle

The Java EE 6 Tutorial, Volume I • December 2009186

TABLE 10–1 Servlet Life-Cycle Events (Continued)
Object Event Listener Interface and Event Class

Session (See
“Maintaining Client
State” on page 198)

Creation,
invalidation,
activation,
passivation, and
timeout

javax.servlet.http.HttpSessionListener,
javax.servlet.http.HttpSessionActivationListener,
and

HttpSessionEvent

Attribute added,
removed, or replaced

javax.servlet.http.HttpSessionAttributeListener and

HttpSessionBindingEvent

Request A servlet request has
started being
processed by web
components

javax.servlet.ServletRequestListener and

ServletRequestEvent

Attribute added,
removed, or replaced

javax.servlet.ServletRequestAttributeListener and

ServletRequestAttributeEvent

Specifying Event Listener Classes
You specify an event listener class using the listener element of the deployment descriptor.

You can specify an event listener using the deployment descriptor editor of NetBeans IDE by
doing the following:

1. Expand your application’s project node.
2. Expand the project’s Web Pages and WEB-INF nodes.
3. Double-click web.xml.
4. Click General at the top of the web.xml editor.
5. Expand the Web Application Listeners node.
6. Click Add.
7. In the Add Listener dialog, click Browse to locate the listener class.
8. Click OK.

Handling Servlet Errors
Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the message

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception.

Servlet Life Cycle

Chapter 10 • Java Servlet Technology 187

Sharing Information
Web components, like most objects, usually work with other objects to accomplish their tasks.
There are several ways they can do this. They can use private helper objects (for example,
JavaBeans components), they can share objects that are attributes of a public scope, they can use
a database, and they can invoke other web resources. The Java Servlet technology mechanisms
that allow a web component to invoke other web resources are described in “Invoking Other
Web Resources” on page 196.

Using Scope Objects
Collaborating web components share information by means of objects that are maintained as
attributes of four scope objects. You access these attributes using the [get|set]Attribute
methods of the class representing the scope. Table 10–2 lists the scope objects.

TABLE 10–2 Scope Objects

Scope Object Class Accessible From

Web context javax.servlet.

ServletContext

Web components within a web context. See “Accessing the
Web Context” on page 198.

Session javax.servlet.

http.HttpSession

Web components handling a request that belongs to the
session. See “Maintaining Client State” on page 198.

Request subtype of javax.servlet.
ServletRequest

Web components handling the request.

Page javax.servlet.

jsp.JspContext

The JSP page that creates the object.

Controlling Concurrent Access to Shared Resources
In a multithreaded server, it is possible for shared resources to be accessed concurrently. In
addition to scope object attributes, shared resources include in-memory data (such as instance
or class variables) and external objects such as files, database connections, and network
connections.

Concurrent access can arise in several situations:

■ Multiple web components accessing objects stored in the web context.
■ Multiple web components accessing objects stored in a session.
■ Multiple threads within a web component accessing instance variables. A web container will

typically create a thread to handle each request. To ensure that a servlet instance handles
only one request at a time, a servlet can implement the SingleThreadModel interface. If a
servlet implements this interface, no two threads will execute concurrently in the servlet’s

Sharing Information

The Java EE 6 Tutorial, Volume I • December 2009188

service method. A web container can implement this guarantee by synchronizing access to a
single instance of the servlet or by maintaining a pool of web component instances and
dispatching each new request to a free instance. This interface does not prevent
synchronization problems that result from web components accessing shared resources
such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. You
prevent this by controlling the access using the synchronization techniques described in the
Threads lesson in The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley,
2006).

Initializing a Servlet
After the web container loads and instantiates the servlet class and before it delivers requests
from clients, the web container initializes the servlet. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any other
one-time activities, you override the init method of the Servlet interface. If a servlet cannot
complete its initialization process, it throws an UnavailableException.

Writing Service Methods
The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) of an HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. The term service method is used for any method in a
servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response based on that information.

For HTTP servlets, the correct procedure for populating the response is to first retrieve an
output stream from the response, then fill in the response headers, and finally write any body
content to the output stream. Response headers must always be set before the response has been
committed. Any attempt to set or add headers after the response has been committed will be
ignored by the web container. The next two sections describe how to get information from
requests and generate responses.

Writing Service Methods

Chapter 10 • Java Servlet Technology 189

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
http://java.sun.com/docs/books/tutorial/

Getting Information from Requests
A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

■ Parameters, which are typically used to convey information between clients and servlets
■ Object-valued attributes, which are typically used to pass information between the servlet

container and a servlet or between collaborating servlets
■ Information about the protocol used to communicate the request and about the client and

server involved in the request
■ Information relevant to localization

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the BufferedReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStream returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on.

An HTTP request URL contains the following parts:

http://[host]:[port][request-path]?[query-string]

The request path is further composed of the following elements:

■ Context path: A concatenation of a forward slash (/) with the context root of the servlet’s
web application.

■ Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

■ Path info: The part of the request path that is not part of the context path or the servlet path.

If the context path is /catalog and for the aliases listed in Table 10–3, Table 10–4 gives some
examples of how the URL will be parsed.

TABLE 10–3 Aliases

Pattern Servlet

/lawn/* LawnServlet

/*.jsp JSPServlet

Writing Service Methods

The Java EE 6 Tutorial, Volume I • December 2009190

TABLE 10–4 Request Path Elements

Request Path Servlet Path Path Info

/catalog/lawn/index.html /lawn /index.html

/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings:

■ A query string can explicitly appear in a web page.
■ A query string is appended to a URL when a form with a GET HTTP method is submitted.

Constructing Responses
A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to:

■ Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a MIME
body response, use the ServletOutputStream returned by getOutputStream. To mix
binary and text data (as in a multipart response), use a ServletOutputStream and manage
the character sections manually.

■ Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority (IANA) at http://www.iana.org/assignments/media-types/.

■ Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is actually sent back to the client, thus providing the
servlet with more time to set appropriate status codes and headers or forward to another
web resource. The method must be called before any content is written or before the
response is committed.

■ Set localization information such as locale and character encoding.

Writing Service Methods

Chapter 10 • Java Servlet Technology 191

http://www.iana.org/assignments/media-types/

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields representing
HTTP headers such as the following:

■ Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

■ Cookies, which are used to store application-specific information at the client. Sometimes
cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 199).

Filtering Requests and Responses
A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows:

■ Query the request and act accordingly.
■ Block the request-and-response pair from passing any further.
■ Modify the request headers and data. You do this by providing a customized version of the

request.
■ Modify the response headers and data. You do this by providing a customized version of the

response.
■ Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters in a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

In summary, the tasks involved in using filters are

■ Programming the filter
■ Programming customized requests and responses
■ Specifying the filter chain for each web resource

Programming Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

Filtering Requests and Responses

The Java EE 6 Tutorial, Volume I • December 2009192

The most important method in this interface is doFilter, which is passed request, response,
and filter chain objects. This method can perform the following actions:

■ Examine the request headers.
■ Customize the request object if the filter wishes to modify request headers or data.
■ Customize the response object if the filter wishes to modify response headers or data.
■ Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that

ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object (passing in the
request and response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to invoke the next
entity. In the latter case, the filter is responsible for filling out the response.

■ Examine response headers after it has invoked the next filter in the chain.
■ Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The init
method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Programming Customized Requests and Responses
There are many ways for a filter to modify a request or response. For example, a filter can add an
attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends ServletResponseWrapper or
HttpServletResponseWrapper.

Filtering Requests and Responses

Chapter 10 • Java Servlet Technology 193

Specifying Filter Mappings
A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name, or to web resources by URL pattern.
The filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list for a WAR in its deployment descriptor, either with
NetBeans IDE or by coding the list by hand with XML.

To declare the filter and map it to a web resource using NetBeans IDE, do the following:

1. Expand the application’s project node in the Project pane.

2. Expand the Web Pages and WEB-INF nodes under the project node.

3. Double-click web.xml.

4. Click Filters at the top of the editor pane.

5. Expand the Servlet Filters node in the editor pane.

6. Click Add Filter Element to map the filter to a web resource by name or by URL pattern.

7. In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

8. Click Browse to locate the servlet class to which the filter applies. You can include wildcard
characters so that you can apply the filter to more than one servlet.

9. Click OK.

To constrain how the filter is applied to requests, do the following:

1. Expand the Filter Mappings node in the Filters tab of the editor pane.

2. Select the filter from the list of filters.

3. Click Add.

4. In the Add Filter Mapping dialog, select one of the following dispatcher types:
■ REQUEST: Only when the request comes directly from the client
■ FORWARD: Only when the request has been forwarded to a component (see “Transferring

Control to Another Web Component” on page 197)
■ INCLUDE: Only when the request is being processed by a component that has been

included (see “Including Other Resources in the Response” on page 197)
■ ERROR: Only when the request is being processed with the error page mechanism (see

“Handling Servlet Errors” on page 187)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is
REQUEST.

Filtering Requests and Responses

The Java EE 6 Tutorial, Volume I • December 2009194

You can declare, map, and constrain the filter by editing the XML in the web application
deployment descriptor directly by following these steps:

1. While in the web.xml editor pane in NetBeans IDE, click XML at the top of the editor pane.

2. Declare the filter by adding a filter element right after the display-name element. The
filter element creates a name for the filter and declares the filter’s implementation class
and initialization parameters.

3. Map the filter to a web resource by name or by URL pattern using the filter-mapping
element:

a. Include a filter-name element that specifies the name of the filter as defined by the
filter element.

b. Include a servlet-name element that specifies to which servlet the filter applies. The
servlet-name element can include wildcard characters so that you can apply the filter to
more than one servlet.

4. Constrain how the filter will be applied to requests by specifying one of the enumerated
dispatcher options (described in step 4 of the preceding set of steps) with the dispatcher
element and adding the dispatcher element to the filter-mapping element.

You can direct the filter to be applied to any combination of the preceding situations by
including multiple dispatcher elements. If no elements are specified, the default option is
REQUEST.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*.

You can map a filter to one or more web resources and you can map more than one filter to a
web resource. This is illustrated in Figure 10–1, where filter F1 is mapped to servlets S1, S2, and
S3, filter F2 is mapped to servlet S2, and filter F3 is mapped to servlets S1 and S2.

Filtering Requests and Responses

Chapter 10 • Java Servlet Technology 195

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3, F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

Invoking Other Web Resources
Web components can invoke other web resources in two ways: indirectly and directly. A web
component indirectly invokes another web resource when it embeds a URL that points to
another web component in content returned to a client.

A web component can also directly invoke another resource while it is executing. There are two
possibilities: The web component can include the content of another resource, or it can forward
a request to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object using the getRequestDispatcher("URL") method.

You can get a RequestDispatcher object from either a request or the web context; however, the
two methods have slightly different behavior. The method takes the path to the requested
resource as an argument. A request can take a relative path (that is, one that does not begin with

S1

S2

S3

F1 F2
F3

FIGURE 10–1 Filter-to-Servlet Mapping

Invoking Other Web Resources

The Java EE 6 Tutorial, Volume I • December 2009196

a /), but the web context requires an absolute path. If the resource is not available or if the server
has not implemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the Response
It is often useful to include another web resource (for example, banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object, but it is limited in what it can do with the response object:

■ It can write to the body of the response and commit a response.
■ It cannot set headers or call any method (for example, setCookie) that affects the headers of

the response.

Transferring Control to Another Web Component
In some applications, you might want to have one web component do preliminary processing of
a request and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the
forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward.[request-uri|context-path|servlet-path|path-info|query-string].

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStream or PrintWriter object within the
servlet, you cannot use this method; doing so throws an IllegalStateException.

Invoking Other Web Resources

Chapter 10 • Java Servlet Technology 197

Accessing the Web Context
The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context using the getServletContext
method. The web context provides methods for accessing:

■ Initialization parameters
■ Resources associated with the web context
■ Object-valued attributes
■ Logging capabilities

The counter’s access methods are synchronized to prevent incompatible operations by servlets
that are running concurrently. A filter retrieves the counter object using the context’s
getAttribute method. The incremented value of the counter is recorded in the log.

Maintaining Client State
Many applications require that a series of requests from a client be associated with one another.
For example, a web application can save the state of a user’s shopping cart across requests.
Web-based applications are responsible for maintaining such state, called a session, because
HTTP is stateless. To support applications that need to maintain state, Java Servlet technology
provides an API for managing sessions and allows several mechanisms for implementing
sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request, or, if the request does not have a session, it creates one.

Associating Objects with a Session
You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

Accessing the Web Context

The Java EE 6 Tutorial, Volume I • December 2009198

Notifying Objects That Are Associated with a Session
Recall that your application can notify web context and session listener objects of servlet
life-cycle events (“Handling Servlet Life-Cycle Events” on page 186). You can also notify objects
of certain events related to their association with a session such as the following:

■ When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

■ When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

Session Management
Because there is no way for an HTTP client to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout period can
be accessed by using a session’s [get|set]MaxInactiveInterval methods.

You can also set the timeout period in the deployment descriptor using NetBeans IDE:

1. Open the web.xml file in the web.xml editor.
2. Click General at the top of the editor.
3. Enter an integer value in the Session Timeout field. The integer value represents the number

of minutes of inactivity that must pass before the session times out.

To ensure that an active session is not timed out, you should periodically access the session by
using service methods because this resets the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data.

Session Tracking
A web container can use several methods to associate a session with a user, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL(URL) method on all URLs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, it returns the URL
unchanged.

Maintaining Client State

Chapter 10 • Java Servlet Technology 199

Finalizing a Servlet
When a servlet container determines that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being shut down),
the container calls the destroy method of the Servlet interface. In this method, you release
any resources the servlet is using and save any persistent state. The destroy method releases the
database object created in the init method .

All of a servlet’s service methods should be complete when a servlet is removed. The server tries
to ensure this by calling the destroy method only after all service requests have returned or
after a server-specific grace period, whichever comes first. If your servlet has operations that
take a long time to run (that is, operations that may run longer than the server’s grace period),
the operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section describes how to
do the following:
■ Keep track of how many threads are currently running the service method.
■ Provide a clean shutdown by having the destroy method notify long-running threads of the

shutdown and wait for them to complete.
■ Have the long-running methods poll periodically to check for shutdown and, if necessary,

stop working, clean up, and return.

Tracking Service Requests
To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value.

public class ShutdownExample extends HttpServlet {

private int serviceCounter = 0;

...

// Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {

serviceCounter--;

}

protected synchronized int numServices() {

return serviceCounter;

}

}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that

Finalizing a Servlet

The Java EE 6 Tutorial, Volume I • December 2009200

your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

protected void service(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException,IOException {

enteringServiceMethod();

try {

super.service(req, resp);

} finally {

leavingServiceMethod();

}

}

Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {

private boolean shuttingDown;

...

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {

shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {

return shuttingDown;

}

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {

/* Check to see whether there are still service methods /*

/* running, and if there are, tell them to stop. */

if (numServices() > 0) {

setShuttingDown(true);

}

/* Wait for the service methods to stop. */

while(numServices() > 0) {

try {

Thread.sleep(interval);

Finalizing a Servlet

Chapter 10 • Java Servlet Technology 201

} catch (InterruptedException e) {

}

}

}

Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary.

public void doPost(...) {

...

for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

try {

partOfLongRunningOperation(i);

} catch (InterruptedException e) {

...

}

}

}

Further Information about Java Servlet Technology
For more information on Java Servlet technology, see:

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ The Java Servlet web site:
http://java.sun.com/products/servlet

Further Information about Java Servlet Technology

The Java EE 6 Tutorial, Volume I • December 2009202

http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/products/servlet

Web Services
Part Three explores web services.

P A R T I I I

203

204

Introduction to Web Services

This section of the tutorial discusses Java EE 6 web services technologies. For this book, these
technologies include Java API for XML Web Services (JAX-WS) and Java API for RESTful Web
Services (JAX-RS).
■ “What Are Web Services?” on page 205
■ “Types of Web Services” on page 205
■ “Deciding Which Type of Web Service to Use” on page 208

What Are Web Services?
Web services are client and server applications that communicate over the World Wide Web's
(WWW) HyperText Transfer Protocol (HTTP) protocol.

As described by the World Wide Web Consortium (W3C,) web services provide a standard
means of interoperating between different software applications, running on a variety of
platforms and frameworks. Web services are characterized by their great interoperability and
extensibility, as well as their machine-processable descriptions thanks to the use of XML. They
can be combined in a loosely coupled way to achieve complex operations. Programs providing
simple services can interact with each other to deliver sophisticated added-value services.

Types of Web Services
On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider use messages to exchange
invocation request and response information in the form of self-containing documents that
make very few assumptions about the technological capabilities of the receiver.

On a technical level, web services can be implemented in different ways. The two types of web
services discussed in this section can be distinguished as “Big” web services and “RESTful” web
services.

11C H A P T E R 1 1

205

http://www.w3.org/2002/ws/Activity

■ In Java EE 6, JAX-WS provides the functionality for “Big” web services. Big web services use
Extensible Markup Language (XML) messages that follow the Simple Object Access
Protocol (SOAP) standard, which is an XML language defining a message architecture and
message formats. In such systems, there is often a machine-readable description of the
operations offered by the service written in the Web Services Description Language
(WSDL), which is an XML language for defining interfaces syntactically.
The SOAP message format and the WSDL interface definition language have gained
widespread adoption and there are many development tools available, such as NetBeans
IDE, that reduce the complexity of developing web service applications.
A SOAP-based design must include the following elements:
■ A formal contract must be established to describe the interface that the web service

offers. The Web Services Description Language (WSDL)can be used to describe the
details of the contract, which may include messages, operations, bindings, and the
location of the web service. You may also process SOAP messages in a JAX-WS service
without publishing a WSDL.

■ The architecture must address complex nonfunctional requirements. Many web service
specifications address such requirements and establish a common vocabulary for them.
Examples include Transactions, Security, Addressing, Trust, Coordination, and so on.

■ The architecture needs to handle asynchronous processing and invocation. In such
cases, the infrastructure provided by standards such as WSRM and APIs such as
JAX-WS with their client-side asynchronous invocation support can be leveraged out of
the box.
“Big” web services are described in Chapter 12, “Building Web Services with JAX-WS.”

■ In Java EE 6, JAX-RS provides the functionality for REpresentational State Transfer
(RESTful) Web Services. REST is well suited for basic, ad hoc integration scenarios. RESTful
web services are often better integrated with HTTP than SOAP-based services are. They do
not require XML messages or WSDL service-API definitions.
Project Jersey is the production-ready reference implementation for JSR 311: JAX-RS: The
Java API for RESTful Web Services. Jersey implements support for the annotations defined
in JSR-311, making it easy for developers to build RESTful web services with Java and the
Java JVM. Jersey also adds additional features not specified by the JSR.
Because RESTful web services use existing well-known W3C/IETF standards (HTTP, XML,
URI, MIME), and have a lightweight infrastructure, where services can be built with
minimal tooling, developing RESTful web services is inexpensive and thus has a very low
barrier for adoption. You can use one of the development tools, such as NetBeans IDE, to
further reduce the complexity of developing RESTful web services.
A few real-world web applications that use RESTful web services include most blog sites.
These are considered RESTful in that most blog sites involve downloading XML files in RSS
or Atom format which contain lists of links to other resources. Other web sites and web
applications that use REST-like developer interfaces to connect to data include Twitter and
Amazon Simple Storage Service (S3). With Amazon S3, buckets and objects can be created,

Types of Web Services

The Java EE 6 Tutorial, Volume I • December 2009206

http://jcp.org/en/jsr/detail?id=311
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features

listed, and retrieved using either a REST-style HTTP interface or a SOAP interface. The
examples that ship with Project Jersey include a storage service example with a RESTful
interface. The tutorial at http://netbeans.org/kb/docs/websvc/twitter-swing.html
uses the NetBeans IDE to create a simple, graphical, REST-based client that displays Twitter
public time line messages and lets you view and update your Twitter status.
A RESTFul design may be appropriate in the following situation:
■ The web services are completely stateless. A good test is to consider whether the

interaction can survive a restart of the server.
■ A caching infrastructure can be leveraged for performance. If the data that the web

service returns is not dynamically generated and can be cached, then the caching
infrastructure that web servers and other intermediaries inherently provide can be
leveraged to improve performance. However, the developer must take care because such
caches are limited to the HTTP GET method for most servers.

■ The service producer and service consumer have a mutual understanding of the context
and content being passed along. Because there is no formal way to describe the web
services interface, both parties must agree out of band on the schemas that describe the
data being exchanged and on ways to process it meaningfully. In the real world, most
commercial applications that expose services as RESTful implementations also
distribute so-called value-added toolkits that describe the interfaces to developers in
popular programming languages.

■ Bandwidth is particularly important and needs to be limited. REST is particularly useful
for limited-profile devices such as PDAs and mobile phones, for which the overhead of
headers and additional layers of SOAP elements on the XML payload must be restricted.

■ Web service delivery or aggregation into existing web sites can be enabled easily with a
RESTful style. Developers can use technologies such as JAX-RS, Asynchronous
JavaScript with XML (AJAX) and toolkits such as Direct Web Remoting (DWR) to
consume the services in their web applications. Rather than starting from scratch,
services can be exposed with XML and consumed by HTML pages without significantly
refactoring the existing web site architecture. Existing developers will be more
productive because they are adding to something they are already familiar with, rather
than having to start from scratch with new technology.

RESTful web services are discussed in Chapter 13, “Building RESTful Web Services with
JAX-RS and Jersey.” This chapter contains information about generating the skeleton of a
RESTful web service using both NetBeans IDE and the Maven project management tool.

Types of Web Services

Chapter 11 • Introduction to Web Services 207

http://netbeans.org/kb/docs/websvc/twitter-swing.html

Deciding Which Type of Web Service to Use
Basically, you would want to use RESTful web services for integration over the Web and use Big
web services in enterprise application integration scenarios that have advanced QoS
requirements. This topic is discussed in more detail in the following sections.

Note – For an article that provides more in-depth analysis of this issue, see RESTful Web Services
vs. “Big” Web Services: Making the Right Architectural Decision by Cesare Pautasso, Olaf
Zimmermann, and Frank Leymann from the WWW '08: Proceedings of the 17th International
Conference on the World Wide Web (2008), pp. 805-814.

When Should I Use JAX-WS?
JAX-WS addresses advanced quality of service (QoS) requirements commonly occurring in
enterprise computing. When compared to JAX-RS, JAX-WS makes it easier to support the
WS-* set of protocols (which provide standards for security and reliability, among other things)
and interoperate with other WS-* conforming clients and servers.

When Should I Use JAX-RS?
When compared with JAX-WS, JAX-RS makes it easier to write applications for the web that
apply some or all of the constraints of the REST style to induce desirable properties in the
application like loose coupling (evolving the server is easier without breaking existing clients),
scalability (start small and grow), and architectural simplicity (use off-the-shelf components
like proxies, HTTP routers, or others). You would choose to use JAX-RS for your web
application because it is easier for many types of clients to consume RESTful web services while
enabling the server side to evolve and scale. Clients can choose to consume some or all aspects
of the service and mash it up with other web-based services.

Deciding Which Type of Web Service to Use

The Java EE 6 Tutorial, Volume I • December 2009208

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf

Building Web Services with JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-WS is a technology for building web
services and clients that communicate using XML. JAX-WS allows developers to write
message-oriented as well as RPC-oriented web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol such
as SOAP. The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and responses. These calls and responses
are transmitted as SOAP messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from the
application developer. On the server side, the developer specifies the web service operations by
defining methods in an interface written in the Java programming language. The developer also
codes one or more classes that implement those methods. Client programs are also easy to code.
A client creates a proxy (a local object representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages.
It is the JAX-WS runtime system that converts the API calls and responses to and from SOAP
messages.

With JAX-WS, clients and web services have a big advantage: the platform independence of the
Java programming language. In addition, JAX-WS is not restrictive: a JAX-WS client can access
a web service that is not running on the Java platform, and vice versa. This flexibility is possible
because JAX-WS uses technologies defined by the World Wide Web Consortium (W3C):
HTTP, SOAP, and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

12C H A P T E R 1 2

209

Setting the Port
Several files in the JAX-WS examples depend on the port that you specified when you installed
the Enterprise Server. The tutorial examples assume that the server runs on the default port,
8080. If you have changed the port, you must update the port number in the following file
before building and running the JAX-WS examples:

tut-install/examples/jaxws/simpleclient/src/java/simpleclient/HelloClient.java

Creating a Simple Web Service and Client with JAX-WS
This section shows how to build and deploy a simple web service and client. The source code for
the service is in tut-install/examples/jaxws/helloservice/ and the client is in
tut-install/examples/jaxws/simpleclient/.

Figure 12–1 illustrates how JAX-WS technology manages communication between a web
service and client.

The starting point for developing a JAX-WS web service is a Java class annotated with the
javax.jws.WebService annotation. The @WebService annotation defines the class as a web
service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class,
respectively, that declares the methods that a client can invoke on the service. An interface is not
required when building a JAX-WS endpoint. The web service implementation class implicitly
defines an SEI.

Client

JAX-WS runtime

Service

JAX-WS runtimeSOAP message

FIGURE 12–1 Communication between a JAX-WS Web Service and a Client

Setting the Port

The Java EE 6 Tutorial, Volume I • December 2009210

You may specify an explicit interface by adding the endpointInterface element to the
@WebService annotation in the implementation class. You must then provide an interface that
defines the public methods made available in the endpoint implementation class.

You use the endpoint implementation class and the wsgen tool to generate the web service
artifacts that connect a web service client to the JAX-WS runtime. For reference documentation
on wsgen, see the Sun GlassFish Enterprise Server v3 Reference Manual.

Together, the wsgen tool and the Enterprise Server provide the Enterprise Server’s
implementation of JAX-WS.

These are the basic steps for creating the web service and client:

1. Code the implementation class.
2. Compile the implementation class.
3. Use wsgen to generate the artifacts required to deploy the service.
4. Package the files into a WAR file.
5. Deploy the WAR file. The web service artifacts (which are used to communicate with

clients) are generated by the Enterprise Server during deployment.
6. Code the client class.
7. Use wsimport to generate and compile the web service artifacts needed to connect to the

service.
8. Compile the client class.
9. Run the client.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint
JAX-WS endpoints must follow these requirements:

■ The implementing class must be annotated with either the javax.jws.WebService or
javax.jws.WebServiceProvider annotation.

■ The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation, but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public, and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Creating a Simple Web Service and Client with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 211

http://docs.sun.com/doc/820-7701

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See JAXB default data type bindings (http://java.sun.com/
javaee/5/docs/tutorial/doc/bnazq.html#bnazs).

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for life cycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Coding the Service Endpoint Implementation Class
In this example, the implementation class, Hello, is annotated as a web service endpoint using
the @WebService annotation. Hello declares a single method named sayHello, annotated with
the @WebMethod annotation. @WebMethod exposes the annotated method to web service clients.
sayHello returns a greeting to the client, using the name passed to sayHello to compose the
greeting. The implementation class also must define a default, public, no-argument
constructor.

package helloservice.endpoint;

import javax.jws.WebService;

@WebService

public class Hello {

private String message = new String("Hello, ");

public void Hello() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, and Deploying the Service
You can build, package, and deploy the helloservice application using either NetBeans IDE or
ant.

Creating a Simple Web Service and Client with JAX-WS

The Java EE 6 Tutorial, Volume I • December 2009212

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

Building, Packaging, and Deploying the Service Using NetBeans IDE
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/examples/jaxws/.

3. Select the helloservice folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the helloservice project and select Undeploy and Deploy.

This builds and packages to application into helloservice.war, located in
tut-install/examples/jaxws/helloservice/dist/, and deploys this WAR file to your
Application Server instance.

Building, Packaging, and Deploying the Service Using Ant
To build and package helloservice using Ant, in a terminal window, go to the
tut-install/examples/jaxws/helloservice/ directory and type the following:

ant

This command calls the default target, which builds and packages the application into an
WAR file, helloservice.war, located in the dist directory.

To deploy the helloservice example, follow these steps:

1. In a terminal window, go to tut-install/examples/jaxws/helloservice/.
2. Make sure the Enterprise Server is started.
3. Run ant deploy.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/hello?WSDL in a web browser. Now you are ready to
create a client that accesses this service.

Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished with this
example, you can undeploy the service by typing this command:

ant undeploy

Creating a Simple Web Service and Client with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 213

The all Task

As a convenience, the all task will build, package, and deploy the application. To do this, enter
the following command:

ant all

Testing the Service without a Client
Enterprise Server allows you to test the methods of a web service endpoint. To test the sayHello
method of HelloService, do the following:

1. Open the web service test interface by entering the following URL in a web browser:

http://localhost:8080/helloservice/HelloService?Tester

2. Under Methods, enter a name as the parameter to the sayHello method.
3. Click the sayHello button.

This will take you to the sayHello Method invocation page.
4. Under Method returned, you’ll see the response from the endpoint.

A Simple JAX-WS Client
HelloClient is a standalone Java program that accesses the sayHello method of
HelloService. It makes this call through a port, a local object that acts as a proxy for the remote
service. The port is created at development time by the wsimport tool, which generates JAX-WS
portable artifacts based on a WSDL file.

Coding the Client
When invoking the remote methods on the port, the client performs these steps:

1. Uses the generated helloservice.endpoint.HelloService class which represents the
service at the URI of the deployed service’s WSDL file.

HelloService service = new HelloService();

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the
service.

Hello port = service.getHelloPort();

The port implements the SEI defined by the service.
3. Invokes the port’s sayHello method, passing to the service a name.

String response = port.sayHello(name);

Creating a Simple Web Service and Client with JAX-WS

The Java EE 6 Tutorial, Volume I • December 2009214

Here is the full source of HelloClient, which is located in the
tut-install/examples/jaxws/simpleclient/src/java/ directory.

package simpleclient;

import javax.xml.ws.WebServiceRef;

import helloservice.endpoint.HelloService;

import helloservice.endpoint.Hello;

public class HelloClient {

public static void main(String[] args) {

try {

HelloClient client = new HelloClient();

client.doTest(args);

} catch(Exception e) {

e.printStackTrace();

}

}

public void doTest(String[] args) {

try {

System.out.println("Retrieving the port from

the following service: " + service);

HelloService service = new HelloService();

Hello port = service.getHelloPort();

System.out.println("Invoking the sayHello operation

on the port.");

String name;

if (args.length > 0) {

name = args[0];

} else {

name = "No Name";
}

String response = port.sayHello(name);

System.out.println(response);

} catch(Exception e) {

e.printStackTrace();

}

}

}

Creating a Simple Web Service and Client with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 215

Building and Running the Client
You can build and run the simpleclient application using either NetBeans IDE or ant. To
build the client, you must first have deployed helloservice, as described in “Building,
Packaging, and Deploying the Service” on page 212.

Building and Running the Client in NetBeans IDE

Do the following to build and run simpleclient:

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/examples/jaxws/.
3. Select the simpleclient folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the simpleclient project and select Run.

You will see the output of the application client in the Output pane.

Building and Running the Client Using Ant

In a terminal navigate to tut-install/examples/jaxws/simpleclient/ and type the following
command:

ant

This command calls the default target, which builds and packages the application into a JAR
file, simpleclient.jar, located in the dist directory.

The run the client, type the following command:

ant run

Types Supported by JAX-WS
JAX-WS delegates the mapping of Java programming language types to and from XML
definitions to JAXB. Application developers don’t need to know the details of these mappings,
but they should be aware that not every class in the Java language can be used as a method
parameter or return type in JAX-WS. For information on which types are supported by JAXB,
see JAXB default data type bindings (http://java.sun.com/javaee/5/docs/tutorial/doc/
bnazq.html#bnazs).

Types Supported by JAX-WS

The Java EE 6 Tutorial, Volume I • December 2009216

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

Web Services Interoperability and JAX-WS
JAX-WS 2.0 supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1. The
WS-I Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications to
promote SOAP interoperability. For links related to WS-I, see “Further Information about
JAX-WS” on page 217.

To support WS-I Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal and
rpc/literal encodings for services, static ports, dynamic proxies, and DII.

Further Information about JAX-WS
For more information about JAX-WS and related technologies, see:

■ Java API for XML Web Services 2.0 specification
https://jax-ws.dev.java.net/spec-download.html

■ JAX-WS home
https://jax-ws.dev.java.net/

■ Simple Object Access Protocol (SOAP) 1.2 W3C Note
http://www.w3.org/TR/soap/

■ Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.org/TR/wsdl

■ WS-I Basic Profile 1.1
http://www.ws-i.org

Further Information about JAX-WS

Chapter 12 • Building Web Services with JAX-WS 217

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

218

Building RESTful Web Services with JAX-RS and
Jersey

PUThis chapter describes the REST architecture, RESTful web services, and Sun's reference
implementation for JAX-RS (JavaTM API for RESTful Web Services, JSR-311), which is referred
to as Jersey.

What are RESTful Web Services?
RESTful web services are services that are built to work best on the web. Representational State
Transfer (REST) is an architectural style that specifies constraints, such as the uniform interface,
that if applied to a web service induce desirable properties, such as performance, scalability, and
modifiability, that enable services to work best on the Web. In the REST architectural style, data
and functionality are considered resources, and these resources are accessed using Uniform
Resource Identifiers (URIs), typically links on the web. The resources are acted upon by using a
set of simple, well-defined operations. The REST architectural style constrains an architecture
to a client-server architecture, and is designed to use a stateless communication protocol,
typically HTTP. In the REST architecture style, clients and servers exchange representations of
resources using a standardized interface and protocol. These principles encourages RESTful
applications to be simple, lightweight, and have high performance.

A paper that expands on the basic principles of REST technology can be found at
http://www2008.org/papers/pdf/p805-pautassoA.pdf.

■ Resource identification through URI. A RESTful Web service exposes a set of resources
which identify the targets of the interaction with its clients. Resources are identified by URIs,
which provide a global addressing space for resource and service discovery. This topic is
discussed in “The @Path Annotation and URI Path Templates” on page 223.

■ Uniform interface. Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can
be then deleted using DELETE. GET retrieves the current state of a resource in some
representation. POST transfers a new state onto a resource. This topic is discussed in
“Responding to HTTP Resources” on page 226.

13C H A P T E R 1 3

219

https://jsr311.dev.java.net/
http://www2008.org/papers/pdf/p805-pautassoA.pdf

■ Self-descriptive messages. Resources are decoupled from their representation so that their
content can be accessed in a variety of formats (such as HTML, XML, plain text, PDF, JPEG,
JSON, and others). Metadata about the resource is available and used, for example, to
control caching, detect transmission errors, negotiate the appropriate representation
format, and perform authentication or access control. This topic is discussed in
“Responding to HTTP Resources” on page 226 and “Using Entity Providers to Map HTTP
Response and Request Entity Bodies” on page 227.

■ Stateful interactions through hyperlinks. Every interaction with a resource is stateless; that is,
request messages are self-contained. Stateful interactions are based on the concept of
explicit state transfer. Several techniques exist to exchange state, such as URI rewriting,
cookies, and hidden form fields. State can be embedded in response messages to point to
valid future states of the interaction. This topic is discussed somewhat in “Using Entity
Providers to Map HTTP Response and Request Entity Bodies” on page 227, is discussed
somewhat in the section Building URIs in the JAX-RS Overview document, and may be
discussed in more detail in a forthcoming advanced version of this tutorial.

Where Does Jersey Fit In?
Jersey is Sun's production quality reference implementation for JSR 311: JAX-RS: The Java API
for RESTful Web Services. Jersey implements support for the annotations defined in JSR-311,
making it easy for developers to build RESTful web services with Java and the Java JVM. Jersey
also adds additional features not specified by the JSR.

The latest version of the JAX-RS API's can be viewed at https://jsr311.dev.java.net/
nonav/javadoc/index.html

If you are developing with Enterprise Server v3, you can install the Jersey samples and
documentation using the Update Tool. Instructions for using the Update Tool can be found in
the section “Java EE 6 Tutorial Component” on page 57.

Creating a RESTful Root Resource Class
Root resource classes are POJOs (Plain Old Java Objects) that are either annotated with@Path or
have at least one method annotated with @Path or a request method designator such as @GET,
@PUT, @POST, or @DELETE. Resource methods are methods of a resource class annotated with a
request method designator. This section describes how to use Jersey to annotate Java objects to
create RESTful web services.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009220

http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features
http://jcp.org/en/jsr/detail?id=311
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features
https://jsr311.dev.java.net/nonav/javadoc/index.html
https://jsr311.dev.java.net/nonav/javadoc/index.html

Developing RESTful Web Services with JAX-RS and
Jersey
The JAX-RS API for developing RESTful web services is a Java programming language API
designed to make it easy to develop applications that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with
HTTP-specific annotations to define resources and the actions that can be performed on those
resources. Jersey annotations are runtime annotations, therefore, runtime reflection will
generate the helper classes and artifacts for the resource, and then the collection of classes and
artifacts will be built into a web application archive (WAR). The resources are exposed to clients
by deploying the WAR to a Java EE or web server.

Here is a listing of some of the Java programming annotations that are defined by JAX-RS, with
a brief description of how each is used. Further information on the JAX-RS API's can be viewed
at https://jsr311.dev.java.net/nonav/javadoc/index.html.

TABLE 13–1 Summary of Jersey Annotations

Annotation Description

@Path The @Path annotation's value is a relative URI path indicating where the Java class will
be hosted, for example, /helloworld. You can also embed variables in the URIs to
make a URI path template. For example, you could ask for the name of a user, and pass
it to the application as a variable in the URI, like this, /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP GET requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP POST requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP PUT requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP DELETE requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 221

https://jsr311.dev.java.net/nonav/javadoc/index.html

TABLE 13–1 Summary of Jersey Annotations (Continued)
Annotation Description

@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP HEAD requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query
parameters.

@Consumes The @Consumes annotation is used to specify the MIME media types of representations
a resource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations
a resource can produce and send back to the client, for example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method
parameters. On the response side, a return value is mapped to an HTTP response
entity body using a MessageBodyWriter. If the application needs to supply additional
metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity, and which can be built using
Response.ResponseBuilder.

Overview of a Jersey-Annotated Application
The following code sample is a very simple example of a root resource class using JAX-RS
annotations. The sample shown here is from the samples that ship with Jersey, and which can be
found in the following directory of that installation:
jersey/samples/helloworld/src/main/java/com/sun/jersey/samples/helloworld/resources/HelloWorldResource.jav

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009222

// The Java method will process HTTP GET requests

@GET

// The Java method will produce content identified by the MIME Media

// type "text/plain"
@Produces("text/plain")
public String getClichedMessage() {

// Return some cliched textual content

return "Hello World";
}

}

The following sections describe the annotations used in this example.
■ The @Path annotation's value is a relative URI path. In the example above, the Java class will

be hosted at the URI path /helloworld. This is an extremely simple use of the @Path
annotation. What makes JAX-RS so useful is that you can embed variables in the URIs. URI
path templates are URIs with variables embedded within the URI syntax.

■ The @GET annotation is a request method designator, along with @POST, @PUT, @DELETE, and
@HEAD, that is defined by JAX-RS, and which correspond to the similarly named HTTP
methods. In the example above, the annotated Java method will process HTTP GET
requests. The behavior of a resource is determined by the HTTP method to which the
resource is responding.

■ The @Produces annotation is used to specify the MIME media types of representations a
resource can produce and send back to the client. In this example, the Java method will
produce representations identified by the MIME media type "text/plain".

■ The @Consumes annotation is used to specify the MIME media types of representations a
resource can consume that were sent by the client. The above example could be modified to
set the cliched message as shown in this code example.

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

The @Path Annotation and URI Path Templates
The @Path annotation identifies the URI path template to which the resource responds, and is
specified at the class level of a resource. The @Path annotation's value is a partial URI path
template relative to the base URI of the server on which the resource is deployed, the context
root of the WAR, and the URL pattern to which the Jersey helper servlet responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables
are substituted at runtime in order for a resource to respond to a request based on the
substituted URI. Variables are denoted by curly braces. For example, look at the following
@Path annotation:

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 223

@Path("/users/{username}")

In this type of example, a user will be prompted to enter their name, and then a Jersey web
service configured to respond to requests to this URI path template will respond. For example, if
the user entered their user name as Galileo, the web service will respond to the following URL:

http://example.com/users/Galileo

To obtain the value of the username variable, the @PathParamannotation may be used on the
method parameter of a request method, as shown in the following code example.

@Path("/users/{username}")
public class UserResource {

@GET

@Produces("text/xml")
public String getUser(@PathParam("username") String userName) {

...

}

}

If it is required that a user name must only consist of lower and upper case numeric characters,
it is possible to declare a particular regular expression that will override the default regular
expression, "[^/]+?". The following example shows how this could be used with the @Path
annotation.

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

In this type of example the username variable will only match user names that begin with one
upper or lower case letter and zero or more alpha numeric characters and the underscore
character. If a user name does not match that template, then a 404 (Not Found) response will
occur.

An @Path value may or may not begin with a forward slash (/), it makes no difference. Likewise,
by default, an @Path value may or may not end in a forward lash (/), it makes no difference, and
thus request URLs that end or do not end with a forward slash will both be matched. However,
Jersey has a redirection mechanism, which, if enabled, automatically performs redirection to a
request URL ending in a / if a request URL does not end in a / and the matching @Path does end
in a /.

More on URI Path Template Variables
A URI path template has one or more variables, with each variable name surrounded by curly
braces, { to begin the variable name and } to end it. In the example above, username is the
variable name. At runtime, a resource configured to respond to the above URI path template
will attempt to process the URI data that corresponds to the location of {username} in the URI
as the variable data for username.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009224

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/jerseybeans/{name1}/{name2}/, you must deploy the
WAR to a Java EE server that responds to requests to the http://example.com/myContextRoot
URI, and then decorate your resource with the following @Path annotation:

@Path("/{name1}/{name2}/")
public class SomeResource {

...

}

In this example, the URL pattern for the Jersey helper servlet, specified in web.xml, is the
default:

<servlet-mapping>

<servlet-name>My Jersey Bean Resource</servlet-name>

<url-pattern>/jerseybeans/*</url-pattern>

</servlet-mapping>

A variable name can be used more than once in the URI path template.

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the
value of a variable should be substituted with %20.

Be careful when defining URI path templates that the resulting URI after substitution is valid.

The following table lists some examples of URI path template variables and how the URIs are
resolved after substitution. The following variable names and values are used in the examples:

■ name1:jay
■ name2: gatsby
■ name3:
■ location: Main%20Street
■ question: why

Note – The value of the name3 variable is an empty string.

TABLE 13–2 Examples of URI path templates

URI Path Template URI After Substitution

http://example.com/{name1}/{name2}/ http://example.com/jay/gatsby/

http://example.com/{question}/

{question}/{question}/

http://example.com/why/why/why/

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 225

TABLE 13–2 Examples of URI path templates (Continued)
URI Path Template URI After Substitution

http://example.com/maps/{location} http://example.com/maps/Main%20Street

http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Resources
The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT,
DELETE) to which the resource is responding.

The Request Method Designator Annotations
A request method designatorannotations are runtime annotations, defined by JAX-RS, and
which correspond to the similarly named HTTP methods. Within a resource class file, HTTP
methods are mapped to Java programming language methods using the request method
designator annotations. The behavior of a resource is determined by which of the HTTP
methods the resource is responding to. Jersey defines a set of request method designators for the
common HTTP methods: @GET, @POST, @PUT, @DELETE, @HEAD, but you can create your own
custom request method designators. Creating custom request method designators is outside the
scope of this document.

The following example is an extract from the storage service sample that shows the use of the
PUTmethod to create or update a storage container.

@PUT

public Response putContainer() {

System.out.println("PUT CONTAINER " + container);

URI uri = uriInfo.getAbsolutePath();

Container c = new Container(container, uri.toString());

Response r;

if (!MemoryStore.MS.hasContainer(c)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

MemoryStore.MS.createContainer(c);

return r;

}

By default the JAX-RS runtime will automatically support the methods HEAD and OPTIONS if not
explicitly implemented. For HEAD, the runtime will invoke the implemented GET method (if

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009226

present) and ignore the response entity (if set). For OPTIONS, the Allow response header will be
set to the set of HTTP methods support by the resource. In addition Jersey will return a WADL
document describing the resource.

Methods decorated with request method designators must return void, a Java programming
language type, or a javax.ws.rs.core.Response object. Multiple parameters may be extracted
from the URI using the PathParam or QueryParam annotations as described in “Extracting
Request Parameters” on page 231. Conversion between Java types and an entity body is the
responsibility of an entity provider, such as MessageBodyReader or MessageBodyWriter.
Methods that need to provide additional metadata with a response should return an instance of
Response. The ResponseBuilder class provides a convenient way to create a Response instance
using a builder pattern. The HTTP PUT and POST methods expect an HTTP request body, so you
should use a MessageBodyReader for methods that respond to PUT and POST requests.

As PUT and POST can post be used to create or update, here is a bit more information on when
you'd use each:
■ PUT has defined/specified semantics. POST can mean anything, so when using POSTit is up to

the application to define the semantics.
■ When using PUT for creation, the client declares the URI for the newly created resource.

PUT has very clear semantics for creating and updating. The representation the client sends
must be the same representation that is received using a GET, given the same media type. It
does not specify partial update, a mistake people often make. A common application pattern
is to use POST to create a resource and return a 201 response with a location header whose
value is the URI to the newly-created resource. Thus in this pattern, the web service declares
the URI for the newly-created resource.

Using Entity Providers to Map HTTP Response and Request Entity
Bodies
Entity providers supply mapping services between representations and their associated Java
types. There are two types of entity providers: MessageBodyReader and MessageBodyWriter.
For HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to
method parameters. On the response side, a return value is mapped to an HTTP response entity
body using a MessageBodyWriter. If the application needs to supply additional metadata, such
as HTTP headers or a different status code, a method can return a Response that wraps the
entity, and which can be built using Response.ResponseBuilder.

The following list contains the standard types that are supported automatically for entities. You
only need to write an entity provider if you are not choosing one of the following, standard
types.
■ byte[] — All media types (*/*)
■ java.lang.String — All text media types (text/*)
■ java.io.InputStream — All media types (*/*)

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 227

https://wadl.dev.java.net/

■ java.io.Reader — All media types (*/*)
■ java.io.File — All media types (*/*)
■ javax.activation.DataSource — All media types (*/*)
■ javax.xml.transform.Source — XML types (text/xml, application/xml, and

application/*+xml)
■ javax.xml.bind.JAXBElement and application-supplied JAXB classes XML media types

(text/xml, application/xml, and application/*+xml)
■ MultivaluedMap<String, String> — Form content

(application/x-www-form-urlencoded)
■ StreamingOutput — All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @Consumes and
@Provider annotations:

@Consumes("application/x-www-form-urlencoded")
@Provider

public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @Produces and
@Provider annotations:

@Produces("text/html")
@Provider

public class FormWriter implements MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET

public Response getItem() {

System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);

if (i == null)

throw new NotFoundException("Item not found");
Date lastModified = i.getLastModified().getTime();

EntityTag et = new EntityTag(i.getDigest());

ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

if (rb != null)

return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).

lastModified(lastModified).tag(et).build();

}

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009228

Using @Consumes and @Produces to Customize
Requests and Responses
The information sent to a resource and then passed back to the client is specified as a MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the
javax.ws.rs.Consumes and javax.ws.rs.Produces annotations.

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @ProducesAnnotation
The @Produces annotation is used to specify the MIME media types or representations a
resource can produce and send back to the client. If @Produces is applied at the class level, all
the methods in a resource can produce the specified MIME types by default. If it is applied at the
method level, it overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the Jersey
runtime sends back an HTTP “406 Not Acceptable” error.

The value of @Produces is an array of String of MIME types. For example:

@Produces({"image/jpeg,image/png"})

The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {

@GET

public String doGetAsPlainText() {

...

}

@GET

@Produces("text/html")
public String doGetAsHtml() {

...

}

}

The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation
at the class level. The doGetAsHtml method's @Produces annotation overrides the class-level
@Produces setting, and specifies that the method can produce HTML rather than plain text.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 229

If a resource class is capable of producing more that one MIME media type, the resource
method chosen will correspond to the most acceptable media type as declared by the client.
More specifically, the Accept header of the HTTP request declared what is most acceptable. For
example if the Accept header is Accept: text/plain, the doGetAsPlainText method will be
invoked. Alternatively if the Accept header is Accept: text/plain;q=0.9, text/html, which
declares that the client can accept media types of text/plain and text/html, but prefers the
latter, then the doGetAsHtml method will be invoked.

More than one media type may be declared in the same @Produces declaration. The following
code example shows how this is done.

@Produces({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

...

}

The doGetAsXmlOrJson method will get invoked if either of the media types application/xml
and application/json are acceptable. If both are equally acceptable, then the former will be
chosen because it occurs first. The examples above refer explicitly to MIME media types for
clarity. It is possible to refer to constant values, which may reduce typographical errors. For
more information, see the constant field values of MediaType.

The @ConsumesAnnotation
The @Consumes annotation is used to specify which MIME media types of representations a
resource can accept, or consume, from the client. If @Consumes is applied at the class level, all the
response methods accept the specified MIME types by default. If @Consumes is applied at the
method level, it overrides any @Consumes annotations applied at the class level.

If a resource is unable to consume the MIME type of a client request, the Jersey runtime sends
back an HTTP “415 Unsupported Media Type” error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

@Consumes({"text/plain,text/html"})

The following example shows how to apply @Consumes at both the class and method levels:

@Path("/myResource")
@Consumes("multipart/related")
public class SomeResource {

@POST

public String doPost(MimeMultipart mimeMultipartData) {

...

}

@POST

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009230

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html

@Consumes("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

...

}

}

The doPost method defaults to the MIME media type of the @Consumes annotation at the class
level. The doPost2 method overrides the class level @Consumes annotation to specify that it can
accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 error

(Unsupported Media Type) is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the cliched
message using @Consumes, as shown in the following code example.

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

In this example, the Java method will consume representations identified by the MIME media
type text/plain. Notice that the resource method returns void. This means no representation
is returned and response with a status code of HTTP 204 (No Content) will be returned.

Extracting Request Parameters
Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @PathParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path. There are six types of parameters you can extract for use in
your resource class: query parameters, URI path parameters, form parameters, cookie
parameters, header parameters, and matrix parameters.

Query parameters are extracted from the request URI query parameters, and are specified by
using the javax.ws.rs.QueryParam annotation in the method parameter arguments. The
following example (from the sparklines sample application) demonstrates using @QueryParam
to extract query parameters from the Query component of the request URL.

@Path("smooth")
@GET

public Response smooth(

@DefaultValue("2") @QueryParam("step") int step,

@DefaultValue("true") @QueryParam("min-m") boolean hasMin,

@DefaultValue("true") @QueryParam("max-m") boolean hasMax,

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 231

@DefaultValue("true") @QueryParam("last-m") boolean hasLast,

@DefaultValue("blue") @QueryParam("min-color") ColorParam minColor,

@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,

@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor

) { ... }

If a query parameter "step" exists in the query component of the request URI, then the "step"
value will be extracted and parsed as a 32–bit signed integer and assigned to the step method
parameter. If "step" does not exist, then a default value of 2, as declared in the @DefaultValue
annotation, will be assigned to the step method parameter. If the "step" value cannot be parsed
as a 32–bit signed integer, then an HTTP 400 (Client Error) response is returned.

User-defined Java types such as ColorParam may be used. The following code example shows
how to implement this.

public class ColorParam extends Color {

public ColorParam(String s) {

super(getRGB(s));

}

private static int getRGB(String s) {

if (s.charAt(0) == ’#’) {

try {

Color c = Color.decode("0x" + s.substring(1));

return c.getRGB();

} catch (NumberFormatException e) {

throw new WebApplicationException(400);

}

} else {

try {

Field f = Color.class.getField(s);

return ((Color)f.get(null)).getRGB();

} catch (Exception e) {

throw new WebApplicationException(400);

}

}

}

}

@QueryParam and @PathParam can only be used on the following Java types:
■ All primitive types except char
■ All wrapper classes of primitive types except Character
■ Have a constructor that accepts a single String argument
■ Any class with the static method named valueOf(String) that accepts a single String

argument
■ Any class with a constructor that takes a single String as a parameter

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009232

■ List<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes
parameters may contain more than one value for the same name. If this is the case, these
types may be used to obtain all values

If @DefaultValue is not used in conjunction with @QueryParam, and the query parameter is not
present in the request, then value will be an empty collection for List, Set, or SortedSet; null
for other object types; and the Java-defined default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond
to the URI path template variable names specified in the @Path class-level annotation. URI
parameters are specified using the javax.ws.rs.PathParam annotation in the method
parameter arguments. The following example shows how to use @Path variables and the
@PathParam annotation in a method:

@Path("/{userName}")
public class MyResourceBean {

...

@GET

public String printUserName(@PathParam("userName") String userId) {

...

}

}

In the above snippet, the URI path template variable name userName is specified as a parameter
to the printUserName method. The @PathParam annotation is set to the variable name
userName. At runtime, before printUserName is called, the value of userName is extracted from
the URI and cast to a String. The resulting String is then available to the method as the userId
variable.

If the URI path template variable cannot be cast to the specified type, the Jersey runtime returns
an HTTP 400 Bad Request error to the client. If the @PathParam annotation cannot be cast to
the specified type, the Jersey runtime returns an HTTP 404 Not Found error to the client.

The @PathParam parameter and the other parameter-based annotations, @MatrixParam,
@HeaderParam, @CookieParam, and @FormParam obey the same rules as @QueryParam.

Cookie parameters (indicated by decorating the parameter with javax.ws.rs.CookieParam)
extract information from the cookies declared in cookie-related HTTP headers. Header
parameters (indicated by decorating the parameter with javax.ws.rs.HeaderParam) extracts
information from the HTTP headers. Matrix parameters (indicated by decorating the
parameter with javax.ws.rs.MatrixParam) extracts information from URL path segments.
These parameters are beyond the scope of this tutorial.

Form parameters (indicated by decorating the parameter with javax.ws.rs.FormParam)
extract information from a request representation that is of the MIME media type
application/x-www-form-urlencoded and conforms to the encoding specified by HTML

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 233

forms, as described here. This parameter is very useful for extracting information that is
POSTed by HTML forms. The following example extracts the form parameter named "name"
from the POSTed form data.

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(@FormParam("name") String name) {

// Store the message

}

If it is necessary to obtain a general map of parameter names to values, use code such as that
shown in the following example , for query and path parameters.

@GET

public String get(@Context UriInfo ui) {

MultivaluedMap<String, String> queryParams = ui.getQueryParameters();

MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

Or code such as the following for header and cookie parameters:

@GET

public String get(@Context HttpHeaders hh) {

MultivaluedMap<String, String> headerParams = ui.getRequestHeaders();

Map<String, Cookie> pathParams = ui.getCookies();

}

In general @Context can be used to obtain contextual Java types related to the request or
response.

For form parameters it is possible to do the following:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(MultivaluedMap<String, String> formParams) {

// Store the message

}

Overview of JAX-RS and Jersey: Further Information
The following documents contain information that you might find useful when creating
applications using Jersey and JAX-RS.

■ Overview of JAX-RS 1.0 Features

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial, Volume I • December 2009234

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

This document contains some of the information from this tutorial, as well as additional
topics such as Representations and Java types, Building Responses, Sub-resources, Building
URIs, WebApplicationException and mapping Exceptions to Responses, Conditional GETs
and Returning 304 (Not Modified) Responses, Life-cycle of root resource classes, Security, Rules
of Injection, Use of @Context, and APIs defined by JAX-RS.

■ Overview of Jersey 1.0 Features
This document contains the following topics: Deployment, Web-Deployment Using
Servlet, Embedded-Web-Deployment Using GlassFish, Embedded-Deployment Using
Grizzly, Embedded-Web-Deployment Using Grizzly, Client-Side API, Client-Side Filters,
Integration with Spring, JSON, JAXB, Module View Controller with JSPs, Resource Class
Life-Cycle, Resource Class Instantiation, Web Application Description Language (WADL)
Support, Pluggable Templates for Model View Controller, Server-Side Filters URI utilities,
Web Application Reloading, Pluggable Injection, Pluggable Life-Cycle, Pluggable HTTP
containers, and Pluggable IoC Integration.

Example Applications for JAX-RS and Jersey
This section provides an introduction to creating, deploying, and running your own Jersey
applications. This section demonstrates the steps that you would take to create, build, deploy,
and test a very simple web application that is annotated with Jersey.

Another way that you could learn more about deploying and running Jersey applications is to
review the many sample applications that ship with Jersey. These samples are installed into the
as-install/jersey/samples directory when the Jersey Documentation and Samples are installed
onto the Enterprise Server using the Update Tool. The process of installing from the Update
Tool is described in “Java EE 6 Tutorial Component” on page 57. There is a README.html file for
each sample that describes the sample and describes how to deploy and test the sample. These
samples also include a Project Object Model file, pom.xml, that is used by Maven to build the
project. The sample applications that ship with Jersey require Maven to run. The sample
applications included with the tutorial will run using Ant.

Creating a RESTful Web Service
This section discusses two ways that you can create a RESTful web service. If you choose to use
NetBeans IDE to create a RESTful web service, the IDE generates a skeleton where you simply
need to implement the appropriate methods. If you choose not to use an IDE, try using one of
the example applications that ship with Jersey as a template to modify.

▼ Creating a RESTful Web Service Using NetBeans IDE
This section describes, using a very simple example, how to create a Jersey-annotated web
application from NetBeans IDE.

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 235

http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features
http://maven.apache.org/

In NetBeans IDE, create a simple web application. This example creates a very simple“Hello,
World”web application.

a. Open NetBeans IDE.

b. Select File→New Project.

c. From Categories, select Java Web. From Projects, select Web Application. Click Next.

Note – For this step, you could also create a RESTful web service in a Maven web project by
selecting Maven as the category and Maven Web Project as the project. The remaining steps
would be the same.

d. Enter a project name, HelloWorldApplication, click Next.

e. Make sure the Server is Sun GlassFish v3 (or similar wording.)

f. Click Finish. You may be prompted for your server Administrator User Name and Password. If
so, enter this information.

The project will be created. The file index.jspwill display in the Source pane.

Right-click the project and select New, then select RESTful Web Services from Patterns.

a. Select Simple Root Resource. Click Next.

b. Enter a Resource Package name, like helloWorld.

c. Enter helloworld in the Path field. Enter HelloWorld in the Class Name field. For MIME Type
select text/html.

d. Click Finish.

e. The REST Resources Configuration page displays. Select OK.
A new resource, HelloWorld.java, is added to the project and displays in the Source pane.
This file provides a template for creating a RESTful web service.

In HelloWorld.java, find the getHtml()method. Replace the //TODO comment and the
exception with the following text, so that the finished product resembles the following method.

Note – Because the MIME type that is produces is HTML, you can use HTML tags in your return
statement.

1

2

3

4

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009236

/**

* Retrieves representation of an instance of helloWorld.HelloWorld

* @return an instance of java.lang.String

*/

@GET

@Produces("text/html")
public String getHtml() {

return "<html><body><h1>Hello, World!!</body></h1></html>";
}

Test the web service. To do this, right-click the project node and click Test RESTful Web Services.
This step will deploy the application and bring up a test client in the browser.

When the test client displays, select the helloworld resource in the left pane, and click the Test
button in the right pane.
The words Hello, World!! will display in the Response window below.

Deploy and Run the application.

a. Set the Run Properties. To do this, right-click the project node, select Properties, and then
select the Run category. Set the Relative URL to the location of the RESTful web service
relative to the Context Path, which for this example is resources/helloworld.

Tip – You can find the value for the Relative URL in the Test RESTful Web Services browser
window. In the top of the right pane, after Resource, is the URL for the RESTful web service
being tested. The part following the Context Path
(http://localhost:8080/HelloWorldApp) is the Relative URL that needs to be entered
here.

If you don't set this property, by default the file index.jsp will display when the application
is run. As this file also contains Hello World as its default value, you might not notice that
your RESTful web service isn't running, so just be aware of this default and the need to set
this property, or update index.jsp to provide a link to the RESTful web service.

b. Right-click the project and select Deploy.

c. Right-click the project and select Run.
A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running Jersey applications
using NetBeans, read “Example: Creating a Simple Hello World Application Using JAX-RS and
Jersey” on page 242 and/or look at the tutorials on the NetBeans tutorial site, such as the one

5

6

7

See Also

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 237

titled Getting Started with RESTful Web Services. This tutorial includes a section on creating a
CRUD application from a database. Create, read, update and delete (CRUD) are the four basic
functions of persistent storage and relational databases.

▼ Creating a RESTful Web Service From Examples
The easiest way to create and run an application without NetBeans IDE is to copy and edit one
of the Jersey sample applications. These samples are installed into the
as-install/jersey/samples directory when the Jersey Documentation and Samples are installed
onto the Enterprise Server using the Update Tool. The process of installing from the Update
Tool is described in “Java EE 6 Tutorial Component” on page 57. This task uses the simplest
sample application, helloworld-webapp, to demonstrate one way you could go about creating
your own application without NetBeans IDE.

Before you can deploy the Jersey sample applications to GlassFish from the command line, you
must have downloaded and installed Maven onto your system. You can install Maven from the
Maven website at http://maven.apache.org.

Copy the helloworld-webapp application to a new directory named helloworld2. You will find
this application in the directory as-install/glassfish/jersey/samples/helloworld-webapp.

Do a search for all directories named helloworld-webapp and rename them to helloworld2.

Search again for all files containing the text helloworld-webapp and edit these files to replace
this text with helloworld2.

Using a text editor, open the file
jersey/samples/helloworld2/src/main/java/com/sun/jersey/samples/helloworld/resources/HelloWorldResource.ja

Modify the text that is returned by the resource to Hello World 2. Save and close the file.

Use Maven to compile and deploy the application. For this sample application, it is deployed
onto Grizzly. Enter the following command from the command line in the directory
jersey/samples/helloworld2 to compile and deploy the application: mvn glassfish:run.

Open a web browser, and enter the URL to which the application was deployed, which in this
examples is http://localhost:8080/helloworld2/helloworld. Hello World 2 will display
in the browser.

You can learn more about deploying and running Jersey applications by reviewing the many
sample applications that ship with Jersey. There is a README.html file for each sample that
describes the sample and describes how to deploy and test the sample, and there is a Project
Object Model file, pom.xml, that is used by Maven to build the project. Find a project that is
similar to one you are hoping to create and use it as a template to get you started.

Before You Begin

1

2

3

4

5

6

7

See Also

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009238

http://www.netbeans.org/kb/docs/websvc/rest.html
http://maven.apache.org

An example that starts from scratch can be found here.

For questions regarding Jersey sample applications, visit the Jersey Community Wiki page, or
send an email to the users mailing list, users@jersey.dev.java.net.

▼ Creating a RESTful Web Service From Maven Archetype
Although this tutorial does not present instructions on using Maven for creating applications as
a general rule, because Project Jersey is built, assembled and installed using Maven, and all of its
sample applications are Maven-based, this section provides an example that creates a skeleton
Jersey application from a Maven archetype.

This example requires that Maven be installed and configured to run from the command line on
your system. Maven can be downloaded from http://maven.apache.org/.

Start the Enterprise Server. For instructions on how to do this, read “Starting and Stopping the
Enterprise Server”on page 58.

After Maven is installed, run the following from the command line:

mvn archetype:generate -DarchetypeCatalog=http://download.java.net/maven/2

The archetype catalog will download. You will be prompted to select the type of archetype you
want to create. As of the publication date of this tutorial, the following choices display in the
command window. These options are likely to change, but are provided here to give you an idea
of what they might look like.
Choose archetype:

1: http://download.java.net/maven/2/archetype-catalog.xml ->

jersey-quickstart-grizzly (Archetype for creating a RESTful web

application with Jersey and Grizzly)

2: http://download.java.net/maven/2/archetype-catalog.xml ->

jersey-quickstart-webapp (Archetype for creating a Jersey based RESTful

web application with WAR packaging)

3: http://download.java.net/maven/2/archetype-catalog.xml ->

jersey-quickstart-ejb (Archetype for creating a Jersey based RESTful EJB

application with WAR packaging)

4: http://download.java.net/maven/2/archetype-catalog.xml ->

jsf2-simple-example-archetype (Simple JSF project with no non-JavaEE

dependencies)

Before You Begin

1

2

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 239

https://jersey.dev.java.net/source/browse/*checkout*/jersey/tags/jersey-1.0/jersey/getting-started.html
http://wikis.sun.com/display/Jersey/Main
http://maven.apache.org/

Select the appropriate option for the type of RESTful web service you would like to create.
With the Grizzly-based archetype (selection 1), you will get a sample Java application, which
you can run directly from Java without a need to deploy it to any container. The web application
archetype (selection 2) enables you to build a WAR archive, which you could deploy onto any
web Servlet container.

Define a value for groupId, such as RESTHello.

Define a value for artifactId, such as RESTHelloApp. This is the name of the web application as
well as the directory in which the application is created.

Define value for version: 1.0–SNAPSHOT. You can accept the default by not entering anything.

Define value for package: groupId, such as restHello. This is the directory where the main Java
files will be located, which is basedir/artifactId/src/main/java/package. If you used the example
entries, this directory will be RESTHelloApp/src/main/java/restHello.

Confirm properties configuration. Enter Y to confirm or N to cancel.
Maven generates a new project containing a simple Hello World RESTful web service.

Build and run your RESTful web service. First, change into the project directory, which is the
artifactId, or RESTHelloApp if you used the example text.

■ For the Grizzly-based scenario (selection 1), build and run the web service on the Grizzy
container using this command: mvn clean compile exec:java.

■ If you selected the WAR-based scenario (selection 2), build your WAR file using the command
mvn clean package. Deploy the WAR file to your favorite Servlet container. To run it using
the embedded version of GlassFish V3, use this command: mvn glassfish:run.

Test the service in your browser.

■ Enter the following URL to run the Grizzly-based application (selection 1):
http://localhost:9998/myresource. This is the location where it is published by default.
The browser displays the text Got it!

■ Enter the following URL to run the WAR-based scenario (selection 2):
http://localhost:8080/artifactId/webresources/myresource. If you used the example
entries, enter http://localhost:8080/RESTHelloApp/webresources/myresource. This is
the location where it is published by default. The browser displays the text Hi there!
After starting the application using Grizzly, you should see output that looks similar to that
in the example output, below:
[INFO] --

[INFO] Building RESTHelloApp

3

4

5

6

7

8

9

10

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009240

[INFO] task-segment: [clean, compile, exec:java]

[INFO] --

[INFO] [clean:clean]

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:compile]

[INFO] Compiling 2 source files to /export/home/japod/test/jaxrs-tutorial/

RESTHelloApp/target/classes

[INFO] Preparing exec:java

[INFO] No goals needed for project - skipping

[INFO] [exec:java]

Starting grizzly...

Jersey app started with WADL available at http://localhost:9998/application.wadl

Hit enter to stop it...

After starting the application for the WAR-based scenario, you should see output that looks
similar to that in the example output, below:

[INFO] Building RESTHelloApp Jersey Webapp

[INFO] task-segment: [glassfish:run]

[INFO] --

[INFO] Preparing glassfish:run

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] snapshot org.glassfish:glassfish-parent:10.0-SNAPSHOT: checking for

updates from glassfish-maven2-repository.dev.java.net

[INFO] [compiler:compile]

[INFO] Compiling 1 source file to /export/home/japod/test/jaxrs-tutorial/

RESTHelloApp/target/classes

[INFO] [glassfish:run]

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: HK2 initialized in 479 ms

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.naming.impl.ServicesHookup@1342545 Init done in 486 ms

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.v3.server.Globals@6de609 Init done in 488 ms

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.v3.server.SystemTasks@e7e8eb Init done in 493 ms

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.v3.services.impl.HouseKeeper@1a6518 Init done in 503 ms

Dec 8, 2009 1:20:34 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.v3.services.impl.CmdLineParamProcessor@8390b0

Init done in 506 ms

JMXMP connector server URL = service:jmx:jmxmp://localhost:8888

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.services.impl.GrizzlyProxy start

INFO: Listening on port 8080

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: com.sun.enterprise.v3.services.impl.GrizzlyService@59cbda startup

done in 815 ms

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 241

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.services.impl.

ApplicationLoaderService postConstruct

INFO: loader service postConstruct started at 1260231635181

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: Application Loader startup done in 883 ms

Dec 8, 2009 1:20:35 AM com.sun.enterprise.v3.server.AppServerStartup run

INFO: Glassfish v3 started in 883 ms

Dec 8, 2009 1:20:38 AM com.sun.enterprise.web.WebModuleContextConfig

authenticatorConfig

SEVERE: webModuleContextConfig.missingRealm

Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init

INFO: Scanning for root resource and provider classes in the packages:

restHello

Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init

INFO: Root resource classes found:

class restHello.MyResource

Dec 8, 2009 1:20:38 AM com.sun.jersey.api.core.PackagesResourceConfig init

INFO: Provider classes found:

Dec 8, 2009 1:20:38 AM com.sun.jersey.server.impl.application.

WebApplicationImpl initiate

INFO: Initiating Jersey application, version ’Jersey: 1.1.4.1 11/24/2009 01:30 AM’

Hit ENTER for redeploy

Example: Creating a Simple Hello World Application
Using JAX-RS and Jersey
This section discusses the simple RESTful web service that is included with the tutorial
examples in the directory jaxrs/JAXRSHelloWorld. This example was created by following the
steps similar to those described in “ Creating a RESTful Web Service Using NetBeans IDE” on
page 235.

JAXRSHelloWorld Example: Discussion
With this simple application, a simple root resource for a RESTful web service was selected.
This generates a RESTful root resource class with GET and PUT methods. This design is useful
for creating examples such as this simple Hello World service.

In this example, the method getHtml() is annotated with @GET and the
@Produces("text/html") annotation. This method will process HTTP GET requests and
produce content in HTML. To finish this example, you simply need to replace the current
contents of this example with a statement that returns Hello World. This example has also
replaced the name of the method with the name sayHello. Here is the code for the completed
sayHello() method:

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009242

@GET

@Produces("text/html")
public String sayHello() {

return "Hello World";
}

▼ Testing the JAXRSHelloWorld Example

Open the project javaeetutorial/jaxrs/JAXRSHelloWorld in NetBeans IDE.

Right-click the project node, JAXRSHelloWorld, and select Test RESTful Web Services.

Click the helloWorld service in the left pane.

The Get(text/html)method is selected by default. Click Test.

The response Hello World, displays in the lower pane, as shown in the following figure.

1

2

3

4

5

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 243

FIGURE 13–1 Testing JAXRSHelloWorld Web Service

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009244

▼ Deploying and Running the JAXRSHelloWorld Example
The application's Run properties must be set to run the RESTful web service. For the provided
application, this task has been completed. For future reference, right-click the project node,
select Properties, then select Run, and enter the Relative URL. For this example, you would
enter /resources/helloWorld.

Right-click the project node, JAXRSHelloWorld, and select Deploy.

Right-click the project node, JAXRSHelloWorld, and select Run.

A browser opens and displays Hello World at the URL
http://localhost:8080/HelloWorld/resources/helloWorld.
The browser displays the text “Hello World”.

Example: Adding on to the Simple Hello World RESTful
Web Service
This section discusses the simple RESTful web service that is included with the tutorial
examples in the directory jaxrs/HelloWorld3. This example was created by following the steps
similar to those described in “ Creating a RESTful Web Service Using NetBeans IDE” on
page 235.

HelloWorld3 Example: Discussion
This example takes the simple Hello World application discussed in the previous section and
adds to it. In this example, there are methods for getting a user's name, and then the name is
appended to the Hello World greeting. An annotation that wasn't used in the previous example,
@QueryParam, is used in this example.

In this example, there is a simple RESTful web service that returns HTML messages. To
accomplish this task, you would first create a class that uses Java Architecture for XML Binding
(JAXB). This class represents the HTML message in Java (RESTGreeting.java), then creates a
RESTful web service that returns an HTML message (HelloGreetingService.java.)

The JAXB class that represents the HTML message gets the message and the name. This file,
RESTGreeting.java, is basic Java code that creates a new instance of RESTGreeting and the
getter and setter methods for its parameters.

The RESTful web service that returns an HTML message is in the file
HelloGreetingService.java. You may notice that method that is annotated with JAX-RS
annotations is similar to the one described in the previous example, however, this example adds
an @QueryParam annotation to extract query parameters from the Query component of the
request URL. The following code example shows the JAX-RS-annotated method:

Before You Begin

1

2

3

Example Applications for JAX-RS and Jersey

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 245

@GET

@Produces("text/html")
public RESTGreeting getHtml(@QueryParam("name")String name) {

return new RESTGreeting(getGreeting(), name);

}

private String getGreeting(){

return "Hello ";
}

▼ Testing the HelloWorld3 Example

Open the project javaeetutorial/jaxrs/HelloWorld3 in NetBeans IDE.

Right-click the project node, HelloWorld3, and select Test RESTful Web Services.

Click the helloGreeting service in the left pane.

Enter a name in the name text field.

The Get(text/html)method is selected by default. Click Test.

The response Helloname, displays in the Response pane, under the Raw View tab.

▼ Deploying and Running the HelloWorld3 Example
The application's Run properties must be set to run the RESTful web service. For the provided
application, this task has been completed. For future reference, right-click the project node,
select Properties, then select Run, and enter the Relative URL. For this example, you would
enter /helloGreeting.

Right-click the project node, HelloWorld3, and select Deploy.

Right-click the project node, HelloWorld3, and select Run.

The Run property does not specify a particular name, so none is shown in the browser window
when it displays. The browser window simply shows the message Hello.

Append a name to the URL in the web browser, so that the URL looks like this:
http://localhost:8080/HelloWorld3/helloGreeting?name=your_name.

The message Hello and the name your_name display in the browser.

1

2

3

4

5

6

Before You Begin

1

2

3

4

Example Applications for JAX-RS and Jersey

The Java EE 6 Tutorial, Volume I • December 2009246

JAX-RS in the First Cup Example
JAX-RS is used in the Your First Cup of Java example, which you will find at Your First Cup: An
Introduction to the Java EE Platform

Real World Examples
A few real-world web applications that use RESTful web services include most blog sites. These
are considered RESTful in that most blog sites involve downloading XML files in RSS or Atom
format which contain lists of links to other resources. Other web sites and web applications that
use REST-like developer interfaces to data include Twitter and Amazon S3 (Simple Storage
Service). With Amazon S3, buckets and objects can be created, listed, and retrieved using either
a REST-style HTTP interface or a SOAP interface. The examples that ship with Jersey include a
storage service example with a RESTful interface. The tutorial at http://netbeans.org/kb/
docs/websvc/twitter-swing.html uses the NetBeans IDE to create a simple, graphical,
REST-based client that displays Twitter public time line messages and lets you view and update
your Twitter status.

Further Information
The information in this tutorial focuses on learning about JAX-RS and Jersey. If you are
interested in learning more about RESTful Web Services in general, here are a few links to get
you started.

■ The Community Wiki for Project Jersey has loads of information on all things RESTful.
You'll find it at http://wikis.sun.com/display/Jersey/Main.

■ Fielding Dissertation: Chapter 5: Representational State Transfer (REST), at
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

■ Representational State Transfer, from Wikipedia, http://en.wikipedia.org/wiki/
Representational_State_Transfer.

■ RESTful Web Services, by Leonard Richardson and Sam Ruby. Available from O'Reilly
Media at http://oreilly.com/catalog/9780596529260/.

Some of the Jersey team members discuss topics out of the scope of this tutorial on their blogs. A
few are listed below:

■ Earthly Powers, by Paul Sandoz, at http://blogs.sun.com/sandoz/category/REST.
■ Marc Hadley's Blog, at http://weblogs.java.net/blog/mhadley/
■ Japod's Blog, by Jakub Podlesak, at http://blogs.sun.com/japod/category/REST.

Further Information

Chapter 13 • Building RESTful Web Services with JAX-RS and Jersey 247

http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7759
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://oreilly.com/catalog/9780596529260/
http://blogs.sun.com/sandoz/category/REST
http://weblogs.java.net/blog/mhadley/
http://blogs.sun.com/japod/category/REST

You can always get the latest technology and information by visiting the Java Developer's
Network. The links are listed below:

■ Get the latest on JSR-311, the Java API's for RESTful Web Services (JAX-RS), at
https://jsr311.dev.java.net/.

■ Get the latest on Jersey, the open source JAX-RS reference implementation, at
https://jersey.dev.java.net/.

Further Information

The Java EE 6 Tutorial, Volume I • December 2009248

https://jsr311.dev.java.net/
https://jersey.dev.java.net/

Enterprise Beans
Part Four explores Enterprise JavaBeans.

P A R T I V

249

250

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
Enterprise Server (see “Container Types” on page 38). Although transparent to the application
developer, the EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enterprise beans,
which form the core of transactional Java EE applications.

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side component that
encapsulates the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the enterprise
beans might implement the business logic in methods called checkInventoryLevel and
orderProduct. By invoking these methods, clients can access the inventory services provided
by the application.

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to enterprise beans,
the bean developer can concentrate on solving business problems. The EJB container, rather
than the bean developer, is responsible for system-level services such as transaction
management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic, the
client developer can focus on the presentation of the client. The client developer does not have
to code the routines that implement business rules or access databases. As a result, the clients
are thinner, a benefit that is particularly important for clients that run on small devices.

14C H A P T E R 1 4

251

Third, because enterprise beans are portable components, the application assembler can build
new applications from existing beans. These applications can run on any compliant Java EE
server provided that they use the standard APIs.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the following
requirements:

■ The application must be scalable. To accommodate a growing number of users, you may
need to distribute an application’s components across multiple machines. Not only can the
enterprise beans of an application run on different machines, but also their location will
remain transparent to the clients.

■ Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

■ The application will have a variety of clients. With only a few lines of code, remote clients
can easily locate enterprise beans. These clients can be thin, various, and numerous.

Types of Enterprise Beans
Table 14–1 summarizes the two types of enterprise beans. The following sections discuss each
type in more detail.

TABLE 14–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally may implement a web service

Message-Driven Acts as a listener for a particular messaging type, such as the Java

Message Service API

Note – Entity beans have been replaced by Java Persistence API entities. For information about
entities, see Chapter 19, “Introduction to the Java Persistence API.”

What Is an Enterprise Bean?

The Java EE 6 Tutorial, Volume I • December 2009252

What Is a Session Bean?
A session bean encapsulates business logic that can be invoked programmatically by a client
over local, remote, or web service client views. To access an application that is deployed on the
server, the client invokes the session bean’s methods. The session bean performs work for its
client, shielding the client from complexity by executing business tasks inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 16, “Running the Enterprise Bean Examples.”

Types of Session Beans
There are three types of session beans: stateful, stateless, and singleton.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful session bean,
the instance variables represent the state of a unique client-bean session. Because the client
interacts (“talks”) with its bean, this state is often called the conversational state.

As its name suggests, a session bean is similar to an interactive session. A session bean is not
shared; it can have only one client, in the same way that an interactive session can have only one
user. When the client terminates, its session bean appears to terminate and is no longer
associated with the client.

The state is retained for the duration of the client-bean session. If the client removes the bean,
the session ends and the state disappears. This transient nature of the state is not a problem,
however, because when the conversation between the client and the bean ends there is no need
to retain the state.

Stateless Session Beans
A stateless session bean does not maintain a conversational state with the client. When a client
invokes the methods of a stateless bean, the bean’s instance variables may contain a state specific
to that client, but only for the duration of the invocation. When the method is finished, the
client-specific state should not be retained. Clients may, however, change the state of instance
variables in pooled stateless beans, and this state is held over to the next invocation of the
pooled stateless bean. Except during method invocation, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client. That is, the state of a
stateless session bean should apply across all clients.

Because stateless session beans can support multiple clients, they can offer better scalability for
applications that require large numbers of clients. Typically, an application requires fewer
stateless session beans than stateful session beans to support the same number of clients.

What Is a Session Bean?

Chapter 14 • Enterprise Beans 253

A stateless session bean can implement a web service, but a stateful session bean cannot.

Singleton Session Beans
A singleton session bean is instantiated once per application, and exists for the lifecycle of the
application. Singleton session beans are designed for circumstances where a single enterprise
bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans, but differ from
stateless session beans in that there is only one singleton session bean per application, as
opposed to a pool of stateless session beans, any of which may respond to a client request. Like
stateless session beans, singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations, but are not required to
maintain their state across server crashes or shutdowns.

Applications that use a singleton session bean may specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform initialization tasks
for the application. The singleton may perform cleanup tasks on application shutdown as well,
because the singleton will operate throughout the lifecycle of the application.

When to Use Session Beans
Stateful session beans are appropriate if any of the following conditions are true:
■ The bean’s state represents the interaction between the bean and a specific client.
■ The bean needs to hold information about the client across method invocations.
■ The bean mediates between the client and the other components of the application,

presenting a simplified view to the client.
■ Behind the scenes, the bean manages the work flow of several enterprise beans.

To improve performance, you might choose a stateless session bean if it has any of these traits:
■ The bean’s state has no data for a specific client.
■ In a single method invocation, the bean performs a generic task for all clients. For example,

you might use a stateless session bean to send an email that confirms an online order.
■ The bean implements a web service.

Singleton session beans are appropriate in the following circumstances:
■ State needs to be shared across the application.
■ A single enterprise bean needs to be accessed by multiple threads concurrently.
■ The application needs an enterprise bean to perform tasks upon application startup and

shutdown.

What Is a Session Bean?

The Java EE 6 Tutorial, Volume I • December 2009254

■ The bean implements a web service.

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. It normally acts as a JMS message listener, which is similar to an
event listener except that it receives JMS messages instead of events. The messages can be sent
by any Java EE component (an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use Java EE technology.
Message-driven beans can process JMS messages or other kinds of messages.

What Makes Message-Driven Beans Different from
Session Beans?
The most visible difference between message-driven beans and session beans is that clients do
not access message-driven beans through interfaces. Interfaces are described in the section
“Accessing Enterprise Beans” on page 256. Unlike a session bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

■ A message-driven bean’s instances retain no data or conversational state for a specific client.
■ All instances of a message-driven bean are equivalent, allowing the EJB container to assign a

message to any message-driven bean instance. The container can pool these instances to
allow streams of messages to be processed concurrently.

■ A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across the
handling of client messages (for example, a JMS API connection, an open database connection,
or an object reference to an enterprise bean object).

Client components do not locate message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through, for example, JMS by sending messages
to the message destination for which the message-driven bean class is the MessageListener.
You assign a message-driven bean’s destination during deployment by using Enterprise Server
resources.

Message-driven beans have the following characteristics:

■ They execute upon receipt of a single client message.
■ They are invoked asynchronously.
■ They are relatively short-lived.

What Is a Message-Driven Bean?

Chapter 14 • Enterprise Beans 255

■ They do not represent directly shared data in the database, but they can access and update
this data.

■ They can be transaction-aware.
■ They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application’s business logic. The onMessage
method can call helper methods, or it can invoke a session bean to process the information in
the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. If message processing
is rolled back, the message will be redelivered. For more information, see Chapter 27,
“Transactions.”

When to Use Message-Driven Beans
Session beans allow you to send JMS messages and to receive them synchronously, but not
asynchronously. To avoid tying up server resources, do not to use blocking synchronous
receives in a server-side component, and in general JMS messages should not be sent or
received synchronously. To receive messages asynchronously, use a message-driven bean.

Accessing Enterprise Beans

Note – The material in this section applies only to session beans and not to message-driven
beans. Because they have a different programming model, message-driven beans do not have
interfaces or no-interface views that define client access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of an
enterprise bean may invoke any public methods in the enterprise bean implementation class, or
any superclasses of the implementation class. A business interface is a standard Java
programming language interface that contains the business methods of the enterprise bean.

A client can access a session bean only through the methods defined in the bean’s business
interface, or through the pubic methods of an enterprise bean that has a no-interface view. The
business interface or no-interface view defines the client’s view of an enterprise bean. All other
aspects of the enterprise bean (method implementations and deployment settings) are hidden
from the client.

Accessing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009256

Well-designed interfaces and no-interface views simplify the development and maintenance of
Java EE applications. Not only do clean interfaces and no-interface views shield the clients from
any complexities in the EJB tier, but they also allow the enterprise beans to change internally
without affecting the clients. For example, if you change the implementation of a session bean
business method, you won’t have to alter the client code. But if you were to change the method
definitions in the interfaces, then you might have to modify the client code as well. Therefore, it
is important that you design the interfaces and no-interface views carefully to isolate your
clients from possible changes in the enterprise beans.

Session beans can have more than one business interface. Session beans should, but are not
required to, implement their business interface or interfaces.

Using Enterprise Beans in Clients
The client of an enterprise bean obtains a reference to an instance of an enterprise bean either
through dependency injection, using Java programming language annotations, or JNDI lookup,
using the Java Naming and Directory Interface syntax to find the enterprise bean instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients that
run within a Java EE server-managed environment, like JSF web applications, JAX-RS web
services, other enterprise beans, or Java EE application clients support dependency injection
using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Java EE components to simplify this explicit lookup.

Portable JNDI Syntax
There are three JNDI namespaces used for portable JNDI lookups: java:global, java:module,
and java:app.

The java:global JNDI namespace is the portable way of finding remote enterprise beans using
JNDI lookups. JNDI addresses are of the following form:

java:global[/application name]/module name/enterprise bean name[/interface name]

Application name and module name default to the name of the application and module minus
the file extension. Application names are only required if the application is packaged within an
EAR. The interface name is only required if the enterprise bean implements more than one
business interface.

The java:module namespace is used to lookup local enterprise beans within the same module.
JNDI addresses using the java:module namespace are of the following form:

java:module/enterprise bean name/[interface name]

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 257

The interface name is only required if the enterprise bean implements more than one business
interface.

The java:app namespace is used to lookup local enterprise beans packaged within the same
application. That is, the enterprise bean is packaged within an EAR file containing multiple Java
EE modules. JNDI addresses using the java:app namespace are of the following form:

java:app[/module name]/enterprise bean name[/interface name]

The module name is optional. The interface name is only required if the enterprise bean
implements more than one business interface.

EXAMPLE 14–1 JNDI Address of an Enterprise Bean Packaged Within a WAR File

If an enterprise bean, MyBean, is packaged in within the web application archive myApp.war, the
module name is myApp. The portable JNDI name is:

java:module/MyBean

An equivalent JNDI name using the java:global namespace is:

java:global/myApp/MyBean

Deciding on Remote or Local Access
When you design a Java EE application, one of the first decisions you make is the type of client
access allowed by the enterprise beans: remote, local, or web service.

Whether to allow local or remote access depends on the following factors.
■ Tight or loose coupling of related beans: Tightly coupled beans depend on one another.

For example, if a session bean that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly coupled. Tightly coupled
beans are good candidates for local access. Because they fit together as a logical unit, they
typically call each other often and would benefit from the increased performance that is
possible with local access.

■ Type of client: If an enterprise bean is accessed by application clients, then it should allow
remote access. In a production environment, these clients almost always run on different
machines than the Enterprise Server. If an enterprise bean’s clients are web components or
other enterprise beans, then the type of access depends on how you want to distribute your
components.

■ Component distribution: Java EE applications are scalable because their server-side
components can be distributed across multiple machines. In a distributed application, for
example, the web components may run on a different server than do the enterprise beans
they access. In this distributed scenario, the enterprise beans should allow remote access.

Accessing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009258

■ Performance: Due to factors such as network latency, remote calls may be slower than local
calls. On the other hand, if you distribute components among different servers, you may
improve the application’s overall performance. Both of these statements are generalizations;
actual performance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote access.
This decision gives you more flexibility. In the future you can distribute your components to
accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote and local
access. If this is the case, either the business interface of the bean must be explicitly designated as
a business interface by being decorated with the @Remote or @Local annotations, or the bean
class must explicitly designate the business interfaces by using the @Remote and @Local

annotations. The same business interface cannot be both a local and remote business interface.

Local Clients
A local client has these characteristics:
■ It must run in the same application as the enterprise bean it accesses.
■ It can be a web component or another enterprise bean.
■ To the local client, the location of the enterprise bean it accesses is not transparent.

The no-interface view of an enterprise bean is a local view. The public methods of the enterprise
bean implementation class are exposed to local clients that access the no-interface view of the
enterprise bean. Enterprise beans that use the no-interface view do not implement a business
interface.

The local business interface defines the bean’s business and lifecycle methods. If the bean’s
business interface is not decorated with @Local or @Remote, and the bean class does not specify
the interface using @Local or @Remote, the business interface is by default a local interface.

To build an enterprise bean that allows only local access, you may, but are not required to do
one of the following:
■ Create an enterprise bean implementation class that does not implement a business

interface, indicating that the bean exposes a no-interface view to clients. For example:

@Session

public class MyBean { ... }

■ Annotate the business interface of the enterprise bean as a @Local interface. For example:

@Local

public interface InterfaceName { ... }

■ Specify the interface by decorating the bean class with @Local and specify the interface
name. For example:

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 259

@Local(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

Accessing Local Enterprise Beans Using the No-Interface View
Client access to an enterprise bean that exposes a local, no-interface view is accomplished either
through dependency injection or JNDI lookup.

Clients do not use the new operator to obtain a new instance of an enterprise bean that uses a
no-interface view.

EXAMPLE 14–2 Injecting an Enterprise Bean Using the No-Interface View

To obtain a reference to the no-interface view of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean's implementation
class.

@EJB

ExampleBean exampleBean;

EXAMPLE 14–3 Looking Up an Enterprise Bean Using the No-Interface View

To obtain a reference to the no-interface view of an enterprise bean using JNDI lookup, use the
javax.naming.InitialContext interface's lookup method.

ExampleBean exampleBean = (ExampleBean)

InitialContext.lookup("java:module/ExampleBean");

Accessing Local Enterprise Beans That Implement Business Interfaces
Client access to enterprise beans that implement local business interfaces is accomplished using
either dependency injection or JNDI lookup.

EXAMPLE 14–4 Injecting an Enterprise Bean's Local Business Interface

To obtain a reference to the local business interface of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean's local business
interface name.

@EJB

Example example;

EXAMPLE 14–5 Looking Up a Local Enterprise Bean Using JNDI

The obtain a reference to a local business interface of an enterprise bean using JNDI lookup, use
the javax.naming.InitialContext interface's lookup method.

Accessing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009260

EXAMPLE 14–5 Looking Up a Local Enterprise Bean Using JNDI (Continued)

ExampleLocal example = (ExampleLocal)

InitialContext.lookup("java:module/ExampleLocal");

Remote Clients
A remote client of an enterprise bean has the following traits:

■ It can run on a different machine and a different Java virtual machine (JVM) than the
enterprise bean it accesses. (It is not required to run on a different JVM.)

■ It can be a web component, an application client, or another enterprise bean.
■ To a remote client, the location of the enterprise bean is transparent.
■ The enterprise bean must implement a business interface. That is, remote clients may not

access an enterprise bean using a no-interface view.

To create an enterprise bean that allows remote access, you must do one of the following:

■ Decorate the business interface of the enterprise bean with the @Remote annotation:

@Remote

public interface InterfaceName { ... }

■ Decorate the bean class with @Remote, specifying the business interface or interfaces:

@Remote(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

The remote interface defines the business and life cycle methods that are specific to the bean. For
example, the remote interface of a bean named BankAccountBean might have business methods
named deposit and credit. Figure 14–1 shows how the interface controls the client’s view of
an enterprise bean.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 261

Accessing Remote Enterprise Beans
Client access to an enterprise bean that implements a remote business interface is accomplished
using either dependency injection or JNDI lookup.

EXAMPLE 14–6 Injecting an Enterprise Bean's Remote Business Interface

To obtain a reference to the remote business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean's
remote business interface name.

@EJB

Example example;

EXAMPLE 14–7 Looking Up an Enterprise Bean's Remote Business Interface

The obtain a reference to a remote business interface of an enterprise bean using JNDI lookup,
use the javax.naming.InitialContext interface's lookup method.

ExampleRemote example = (ExampleRemote)

InitialContext.lookup("java:global/myApp/ExampleRemote");

Web Service Clients
A web service client can access a Java EE application in two ways. First, the client can access a
web service created with JAX-WS. (For more information on JAX-WS, see Chapter 12,
“Building Web Services with JAX-WS.”) Second, a web service client can invoke the business
methods of a stateless session bean. Message beans cannot be accessed by web service clients.

Remote Client Remote
Interface

deposit()
credit()

BankAccountBean

FIGURE 14–1 Interfaces for an Enterprise Bean with Remote Access

Accessing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009262

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web service client can
access a stateless session bean, whether or not the client is written in the Java programming
language. The client doesn’t even “know” what technology implements the service: stateless
session bean, JAX-WS, or some other technology. In addition, enterprise beans and web
components can be clients of web services. This flexibility enables you to integrate Java EE
applications with web services.

A web service client accesses a stateless session bean through the bean’s web service endpoint
implementation class. By default, all public methods in the bean class are accessible to web
service clients. The @WebMethod annotation may be used to customize the behavior of web
service methods. If the @WebMethod annotation is used to decorate the bean class’s methods,
only those methods decorated with @WebMethod are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 294.

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by clients. The
following topics apply not only to method parameters but also to method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With remote calls, the
client and bean operate on different copies of a parameter object. If the client changes the value
of the object, the value of the copy in the bean does not change. This layer of isolation can help
protect the bean if the client accidentally modifies the data.

In a local call, both the client and the bean can modify the same parameter object. In general,
you should not rely on this side effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters than does
the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in remote methods
should be relatively coarse-grained. A coarse-grained object contains more data than a
fine-grained one, so fewer access calls are required. For the same reason, the parameters of the
methods called by web service clients should also be coarse-grained.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 263

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

■ Enterprise bean class: Implements the business methods of the enterprise bean and any life
cycle callback methods.

■ Business Interfaces: The business interface defines the business methods implemented by
the enterprise bean class. A business interface is not required if the enterprise bean exposes a
local, no-interface view.

■ Helper classes: Other classes needed by the enterprise bean class, such as exception and
utility classes.

Package the programming artifacts in the preceding list into either an EJB JAR file (a standalone
module that stores the enterprise bean), or within a web application archive (WAR) module.

Packaging Enterprise Beans In EJB JAR Modules
An EJB JAR file is portable and can be used for different applications.

To assemble a Java EE application, package one or more modules (such as EJB JAR files) into an
EAR file, the archive file that holds the application. When deploying the EAR file that contains
the enterprise bean’s EJB JAR file, you also deploy the enterprise bean to the Enterprise Server.
You can also deploy an EJB JAR that is not contained in an EAR file. Figure 14–2 shows the
contents of an EJB JAR file.

The Contents of an Enterprise Bean

The Java EE 6 Tutorial, Volume I • December 2009264

Packaging Enterprise Beans in WAR Modules
Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application's WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the
WEB-INF/lib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml deployment
descriptor. If the application uses ejb-jar.xml, it must be located in the WAR module's
WEB-INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB JAR file.
The enterprise beans contained within the JAR file are semantically equivalent to enterprise
beans located in the WAR module's WEB-INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

EXAMPLE 14–8 Enterprise Beans Packaged In A WAR Module

Suppose a web application consisted of a shopping cart enterprise bean, a credit card processing
enterprise bean, and a Java servlet front-end. The shopping cart bean exposes a local,
no-interface view and is defined as follows:

ejb-jar.xml
sun-ejb-jar.xml MANIFEST.MF

All .class files
for this module

Assembly
Root

META-INF

FIGURE 14–2 Structure of an Enterprise Bean JAR

The Contents of an Enterprise Bean

Chapter 14 • Enterprise Beans 265

EXAMPLE 14–8 Enterprise Beans Packaged In A WAR Module (Continued)

package com.example.cart;

@Stateless

public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc.jar. It exposes a local,
no-interface view and is defined as follows:

package com.example.cc;

@Stateless

public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet handles the web front-end and uses both
CartBean and CreditCardBean. The WAR module layout for this application looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class

WEB-INF/classes/com/example/web/StoreServlet

WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Naming Conventions for Enterprise Beans
Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 14–2 summarizes the conventions for the example
beans in this tutorial.

TABLE 14–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name nameBean AccountBean

Enterprise bean class nameBean AccountBean

Business interface name Account

Naming Conventions for Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009266

The Life Cycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or life cycle. Each type of
enterprise bean (stateful session, stateless session, or message-driven) has a different life cycle.

The descriptions that follow refer to methods that are explained along with the code examples
in the next two chapters. If you are new to enterprise beans, you should skip this section and run
the code examples first.

The Life Cycle of a Stateful Session Bean
Figure 14–3 illustrates the stages that a session bean passes through during its lifetime. The
client initiates the life cycle by obtaining a reference to a stateful session bean. The container
performs any dependency injection and then invokes the method annotated with
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by
moving it from memory to secondary storage. (Typically, the EJB container uses a
least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the
method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes
a business method on the bean while it is in the passive stage, the EJB container activates the
bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

At the end of the life cycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for
garbage collection.

Does Not
Exist Ready

1. Create
2. Dependency injection, if any
3. PostConstruct callback, if any
4. Init method, or ejbCreate<METHOD>,
 if any

1. Remove
2. PreDestroy callback, if any

Passive

PrePassivate
callback, if any

PostActivate
callback, if any

FIGURE 14–3 Life Cycle of a Stateful Session Bean

The Life Cycles of Enterprise Beans

Chapter 14 • Enterprise Beans 267

Your code controls the invocation of only one lifecycle method: the method annotated @Remove.
All other methods in Figure 14–3 are invoked by the EJB container. See Chapter 28, “Resource
Connections,” for more information.

The Lifecycle of a Stateless Session Bean
Because a stateless session bean is never passivated, its life cycle has only two stages: nonexistent
and ready for the invocation of business methods. Figure 14–4 illustrates the stages of a stateless
session bean.

The EJB container typically creates and maintains a pool of stateless session beans, beginning
the stateless session bean's lifecycle. The container performs any dependency injection and then
invokes the method annotated @PostConstruct, if it exists. The bean is now ready to have its
business methods invoked by a client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton Session Bean
Like a stateless session bean, a singleton session bean is never passivated and has only two
stages: nonexistent and ready for the invocation of business methods.

Does Not
Exist Ready

1. Dependency injection, if any
2. PostConstruct callbacks, if any

PreDestroy callbacks, if any

FIGURE 14–4 Lifecycle of a Stateless Session Bean

The Life Cycles of Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009268

The EJB container initiates the singleton session bean lifecycle by creating the singleton
instance. This occurs upon application deployment if the singleton is annotated with the
@Startup annotation The container performs any dependency injection and then invokes the
method annotated @PostConstruct, if it exists. The singleton session bean is now ready to have
its business methods invoked by the client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of a Message-Driven Bean
Figure 14–6 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each instance,
the EJB container performs these tasks:

1. If the message-driven bean uses dependency injection, the container injects these references
before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

Does Not
Exist Ready

1. Dependency injection, if any
2. PostConstruct callbacks, if any

PreDestroy callbacks, if any

FIGURE 14–5 Lifecycle of a Singleton Session Bean

Does Not
Exist

Ready

1. Dependency injection, if any
2. PostConstruct callback, if any

PreDestroy callback, if any

onMessage

FIGURE 14–6 Life Cycle of a Message-Driven Bean

The Life Cycles of Enterprise Beans

Chapter 14 • Enterprise Beans 269

Like a stateless session bean, a message-driven bean is never passivated, and it has only two
states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the method annotated @PreDestroy, if any. The
bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans
For more information on Enterprise JavaBeans technology, see:

■ Enterprise JavaBeans 3.1 specification:
http://java.sun.com/products/ejb/docs.html

■ The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

Further Information about Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009270

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application named
converter. The purpose of converter is to calculate currency conversions between Japanese
yen and Eurodollars. converter consists of an enterprise bean, which performs the
calculations, and two types of clients: an application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the enterprise bean: ConverterBean.
2. Create the web client.
3. Deploy converter onto the server.
4. Using a browser, run the web client.

Before proceeding, make sure that you’ve done the following:

■ Read Chapter 1, “Overview.”
■ Become familiar with enterprise beans (see Chapter 14, “Enterprise Beans”).
■ Started the server (see “Starting and Stopping the Enterprise Server” on page 58).

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called ConverterBean. The source
code for ConverterBean is in the tut-install/examples/ejb/converter/src/java/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code with the Ant tool

15C H A P T E R 1 5

271

Coding the Enterprise Bean
The enterprise bean in this example needs the following code:

■ Enterprise bean class

Coding the Enterprise Bean Class
The enterprise bean class for this example is called ConverterBean. This class implements two
business methods (dollarToYen and yenToEuro). Because the enterprise bean class doesn't
implement a business interface, the enterprise bean exposes a local, no-interface view. The
public methods in the enterprise bean class are available to clients that obtain a reference to
ConverterBean. The source code for the ConverterBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

@Stateless

public class ConverterBean {

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

Note the @Stateless annotation decorating the enterprise bean class. This lets the container
know that ConverterBean is a stateless session bean.

Creating the converterWeb Client
The web client is contained in the servlet class
tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java. A
Java servlet is a web component that responds to HTTP requests.

Creating the Enterprise Bean

The Java EE 6 Tutorial, Volume I • December 2009272

Coding the converterWeb Client
The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the private
member variable converterBean, which is of type ConverterBean. ConverterBean exposes a
local, no-interface view, so the enterprise bean implementation class is the variable type.

@WebServlet

public class ConverterServlet extends HttpServlet {

@EJB

ConverterBean converterBean;

...

}

When the user enters an amount to be converted to Yen and Euro, the amount is retrieved from
the request parameters, then the ConverterBean.dollarToYen and
ConverterBean.yenToEuro methods are called.

...

try {

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

// convert the amount to a BigDecimal from the request parameter

BigDecimal d = new BigDecimal(amount);

// call the ConverterBean.dollarToYen() method to get the amount

// in Yen

BigDecimal yenAmount = converter.dollarToYen(d);

// call the ConverterBean.yenToEuro() method to get the amount

// in Euros

BigDecimal euroAmount = converter.yenToEuro(yenAmount);

...

}

...

}

The results are displayed to the user.

Compiling, Packaging, and Running the converter
Example
Now you are ready to compile the enterprise bean class (ConverterBean.java) and the servlet
class (ConverterServlet.java), and package the compiled classes into a WAR file.

Creating the Enterprise Bean

Chapter 15 • Getting Started with Enterprise Beans 273

Compiling, Packaging, and Running the converter Example in
NetBeans IDE
Follow these instructions to build and package the converter example in NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/examples/ejb/.

3. Select the converter folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project.

6. In the Projects tab, right-click the converter project and select Run. A web browser window
will open the URL http://localhost:8080/converter

Compiling, Packaging, and Running the converter Example Using Ant
To compile and package converter using Ant, do the following:

1. In a terminal window, go to this directory:

tut-install/examples/ejb/converter/

2. Type the following command:

ant all

3. Open a web browser to the following URL:

http://localhost:8080/converter

This command calls the default task, which compiles the source files for the enterprise bean
and the servlet, placing the class files in the build subdirectory (not the src directory) of the
project. The default task packages the project into a WAR module: converter.war. For more
information about the Ant tool, see “Building the Examples” on page 60.

Note – When compiling the code, the preceding ant task includes the Java EE API JAR files in
the classpath. These JARs reside in the modules directory of your Enterprise Server installation.
If you plan to use other tools to compile the source code for Java EE components, make sure
that the classpath includes the Java EE API JAR files.

After entering 100 in the input field and clicking Submit, you should see the screen shown in
Figure 15–1.

Creating the Enterprise Bean

The Java EE 6 Tutorial, Volume I • December 2009274

Modifying the Java EE Application
The Enterprise Server supports iterative development. Whenever you make a change to a Java
EE application, you must redeploy the application.

Modifying a Class File
To modify a class file in an enterprise bean, you change the source code, recompile it, and
redeploy the application. For example, if you want to change the exchange rate in the
dollarToYen business method of the ConverterBean class, you would follow these steps.

1. Edit ConverterBean.java and save the file.
2. Recompile ConverterBean.java in NetBeans IDE by right-clicking the converter project

and selecting Run.
This recompiles the ConverterBean.java file, replaces the old class file in the build
directory, and redeploys the application to Enterprise Server.

3. Recompile ConverterBean.java using Ant.
a. In a terminal window, go to the tut-install/examples/ejb/converter/ subdirectory.
b. Type the following command:

ant all

This command repackages, deploys, and runs the application.

To modify ConvererServlet the procedure is the same as that described in the preceding steps.

FIGURE 15–1 converterWeb Client

Modifying the Java EE Application

Chapter 15 • Getting Started with Enterprise Beans 275

276

Running the Enterprise Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within an
application. They can be accessed from remote Java clients, web service clients, and from
components running in the same server.

In Chapter 15, “Getting Started with Enterprise Beans,” you built a stateless session bean named
ConverterBean. This chapter examines the source code of four more session beans:

■ CartBean: a stateful session bean that is accessed by a remote client
■ CounterBean: a singleton session bean.
■ HelloServiceBean: a stateless session bean that implements a web service
■ TimerSessionBean: a stateless session bean that sets a timer

The cart Example
The cart example represents a shopping cart in an online bookstore, and uses a stateful session
bean to manage the operations of the shopping cart. The bean’s client can add a book to the cart,
remove a book, or retrieve the cart’s contents. To assemble cart, you need the following code:

■ Session bean class (CartBean)
■ Remote business interface (Cart)

All session beans require a session bean class. All enterprise beans that permit remote access
must have a remote business interface. To meet the needs of a specific application, an enterprise
bean may also need some helper classes. The CartBean session bean uses two helper classes
(BookException and IdVerifier) which are discussed in the section “Helper Classes” on
page 282.

The source code for this example is in the tut-install/examples/ejb/cart/ directory.

16C H A P T E R 1 6

277

The Business Interface
The Cart business interface is a plain Java interface that defines all the business methods
implemented in the bean class. If the bean class implements a single interface, that interface is
assumed to the business interface. The business interface is a local interface unless it is
annotated with the javax.ejb.Remote annotation; the javax.ejb.Local annotation is
optional in this case.

The bean class may implement more than one interface. If the bean class implements more than
one interface, either the business interfaces must be explicitly annotated either @Local or
@Remote, or the business interfaces must be specified by decorating the bean class with @Local

or @Remote. However, the following interfaces are excluded when determining if the bean class
implements more than one interface:

■ java.io.Serializable

■ java.io.Externalizable

■ Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:

package com.sun.tutorial.javaee.ejb;

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface Cart {

public void initialize(String person) throws BookException;

public void initialize(String person, String id)

throws BookException;

public void addBook(String title);

public void removeBook(String title) throws BookException;

public List<String> getContents();

public void remove();

}

Session Bean Class
The session bean class for this example is called CartBean. Like any stateful session bean, the
CartBean class must meet these requirements:

■ The class is annotated @Stateful.
■ The class implements the business methods defined in the business interface.

The cart Example

The Java EE 6 Tutorial, Volume I • December 2009278

Stateful session beans also may:
■ Implement the business interface, a plain Java interface. It is good practice to implement the

bean’s business interface.
■ Implement any optional life cycle callback methods, annotated @PostConstruct,

@PreDestroy, @PostActivate, and @PrePassivate.
■ Implement any optional business methods annotated @Remove.

The source code for the CartBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

@Stateful

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(String person, String id)

throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 279

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

public void addBook(String title) {

contents.add(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + " not in cart.");
}

}

public List<String> getContents() {

return contents;

}

@Remove

public void remove() {

contents = null;

}

}

Lifecycle Callback Methods
Methods in the bean class may be declared as a lifecycle callback method by annotating the
method with the following annotations:

■ javax.annotation.PostConstruct

■ javax.annotation.PreDestroy

■ javax.ejb.PostActivate

■ javax.ejb.PrePassivate

Lifecycle callback methods must return void and have no parameters.

@PostConstruct methods are invoked by the container on newly constructed bean instances
after all dependency injection has completed and before the first business method is invoked on
the enterprise bean.

@PreDestroy methods are invoked after any method annotated @Remove has completed, and
before the container removes the enterprise bean instance.

@PostActivate methods are invoked by the container after the container moves the bean from
secondary storage to active status.

The cart Example

The Java EE 6 Tutorial, Volume I • December 2009280

@PrePassivate methods are invoked by the container before the container passivates the
enterprise bean, meaning the container temporarily removes the bean from the environment
and saves it to secondary storage.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The client invokes
business methods on the object reference it gets from dependency injection or JNDI lookup.
From the client’s perspective, the business methods appear to run locally, but they actually run
remotely in the session bean. The following code snippet shows how the CartClient program
invokes the business methods:

cart.create("Duke DeEarl", "123");
...

cart.addBook("Bel Canto");
...

List<String> bookList = cart.getContents();

...

cart.removeBook("Gravity’s Rainbow");

The CartBean class implements the business methods in the following code:

public void addBook(String title) {

contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + "not in cart.");
}

}

public List<String> getContents() {

return contents;

}

The signature of a business method must conform to these rules:
■ The method name must not begin with ejb to avoid conflicts with callback methods defined

by the EJB architecture. For example, you cannot call a business method ejbCreate or
ejbActivate.

■ The access control modifier must be public.
■ If the bean allows remote access through a remote business interface, the arguments and

return types must be legal types for the Java RMI API.
■ If the bean is a web service endpoint, the arguments and return types for the methods

annotated @WebMethod must be legal types for JAX-WS.

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 281

■ The modifier must not be static or final.

The throws clause can include exceptions that you define for your application. The removeBook
method, for example, throws a BookException if the book is not in the cart.

To indicate a system-level problem, such as the inability to connect to a database, a business
method should throw a javax.ejb.EJBException. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of RuntimeException,
you do not need to include it in the throws clause of the business method.

The Remove Method
Business methods annotated with javax.ejb.Remove in the stateful session bean class can be
invoked by enterprise bean clients to remove the bean instance. The container will remove the
enterprise bean after a @Remove method completes, either normally or abnormally.

In CartBean, the remove method is a @Remove method:

@Remove

public void remove() {

contents = null;

}

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVerifier. The
BookException is thrown by the removeBook method, and the IdVerifier validates the
customerId in one of the create methods. Helper classes may reside in an EJB JAR file that
contains the enterprise bean class, a WAR file if the enterprise bean is packaged within a WAR,
or in an EAR that contains an EJB JAR or a WAR file that contains an enterprise bean.

Building, Packaging, Deploying, and Running the cart
Example
You can build, package, deploy, and run the cart application using either NetBeans IDE or the
Ant tool.

The cart Example

The Java EE 6 Tutorial, Volume I • December 2009282

Building, Packaging, and Deploying the cart Example Using NetBeans
IDE
Follow these instructions to build, package, and deploy the cart example to your Application
Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/examples/ejb/.
3. Select the cart folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project Folder.
6. In the Projects tab, right-click the cart project and select Deploy Project.

This builds and packages the application into cart.ear, located in
tut-install/examples/ejb/cart/dist/, and deploys this EAR file to your Application Server
instance.

Running the cartApplication Client Using NetBeans IDE
To run cart’s application client, select Run→Run Main Project. You will see the output of the
application client in the Output pane:

...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

Building, Packaging, and Deploying the cart Example Using Ant
Now you are ready to compile the remote interface (Cart.java), the home interface
(CartHome.java), the enterprise bean class (CartBean.java), the client class
(CartClient.java), and the helper classes (BookException.java and IdVerifier.java).

1. In a terminal window, go to this directory:

tut-install/examples/ejb/cart/

2. Type the following command:

ant

This command calls the default target, which builds and packages the application into an
EAR file, cart.ear, located in the dist directory.

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 283

3. Type the following command:

ant deploy

cart.ear will be deployed to the Application Server.

Running the cartApplication Client Using Ant
When you run the client, the application client container injects any component references
declared in the application client class, in this case the reference to the Cart enterprise bean. To
run the application client, perform the following steps.

1. In a terminal window, go to this directory:

tut-install/examples/ejb/cart/

2. Type the following command:

ant run

This task will retrieve the application client JAR, cartClient.jar and run the application
client. cartClient.jar contains the application client class, the helper class
BookException, and the Cart business interface.

This is the equivalent of running:

appclient -client cartClient.jar

3. In the terminal window, the client displays these lines:

[echo] running application client container.

[exec] Retrieving book title from cart: Infinite Jest

[exec] Retrieving book title from cart: Bel Canto

[exec] Retrieving book title from cart: Kafka on the Shore

[exec] Removing "Gravity’s Rainbow" from cart.

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

[exec] Result: 1

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

The cart Example

The Java EE 6 Tutorial, Volume I • December 2009284

Undeploying the cart Example
To undeploy cart.ear using NetBeans IDE:

1. Click the Runtime tab.
2. Expand the Servers node and locate the Application Server instance to which you deployed

cart.
3. Expand your Application Server instance node, then Applications→Enterprise

Applications.
4. Right-click cart and select Undeploy.

To undeploy cart.ear using Ant, enter the following command:

ant undeploy

A Singleton Session Bean Example: counter
The counter example demonstrates how to create a singleton session bean.

Creating a Singleton Session Bean
The javax.ejb.Singleton annotation is used to specify that the enterprise bean
implementation class is a singleton session bean.

@Singleton

public class SingletonBean { ... }

Initializing Singleton Session Beans
The EJB container is responsible for determining when to initialize a singleton session bean
instance unless the singleton session bean implementation class is annotated with the
javax.ejb.Startup annotation. This is sometimes called eager initialization. In this case, the
EJB container must initialize the singleton session bean upon application startup. The singleton
session bean is initialized before the EJB container delivers client requests to any enterprise
beans in the application. This allows the singleton session bean to perform, for example,
application startup tasks.

EXAMPLE 16–1 An Eagerly Initialized Singleton Session Bean

The following singleton session bean stores the status of an application, and is eagerly
initialized:

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 285

EXAMPLE 16–1 An Eagerly Initialized Singleton Session Bean (Continued)

@Startup

@Singleton

public class StatusBean {

private String status;

@PostConstruct

void init {

status = "Ready";
}

...

}

Sometimes multiple singleton session beans are used to initialize data for an application, and
therefore must be initialized in a specific order. In these cases, use the javax.ejb.DependsOn
annotation to declare the startup dependencies of the singleton session bean. The @DependsOn
annotation's value attribute is one or more strings that specify the name of the target singleton
session bean. If more than one dependent singleton bean is specifies in @DependsOn, the order
that they are listed is not necessarily the order that the EJB container will initialize the target
singleton session beans.

EXAMPLE 16–2 Specifying the Ordering Of Singleton Session Bean Initialization

The following singleton session bean, PrimaryBean should be started up first:

@Singleton

public class PrimaryBean { ... }

SecondaryBean depends on PrimaryBean:

@Singleton

@DependsOn("PrimaryBean")
public class SecondaryBean { ... }

This guarantees that the EJB container will initialize PrimaryBean before SecondaryBean.

EXAMPLE 16–3 Specifying Multiple Dependent Singleton Session Beans

The following singleton session bean, TertiaryBean, depends on PrimaryBean and
SecondaryBean:

@Singleton

@DependsOn("PrimaryBean", "SecondaryBean")
public class TertiaryBean { ... }

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial, Volume I • December 2009286

EXAMPLE 16–3 Specifying Multiple Dependent Singleton Session Beans (Continued)

SecondaryBean explicitly requires PrimaryBean to be initialized before it is initialized (through
it's own @DependsOn annotation). In this case, the EJB container will first initialize
PrimaryBean, then SecondaryBean, and finally TertiaryBean.

If, however, SecondaryBean did not explicitly depend on PrimaryBean, the EJB container may
initialize either PrimaryBean or SecondaryBean first. That is, the EJB container could initialize
the singletons in the following order: SecondaryBean, PrimaryBean, TertiaryBean.

Managing Concurrent Access in a Singleton Session Bean
Singleton session beans are designed for concurrent access, or situations where many clients
need to access a single instance of a session bean at the same time. A singleton's client only
needs a reference to a singleton in order to invoke any business methods exposed by the
singleton, and doesn't need to worry about any other clients that may be simultaneously
invoking business methods on the same singleton.

When creating a singleton session bean there are two ways of controlling concurrent access to
the singleton's business methods: container-managed concurrency and bean-managed
concurrency.

The javax.ejb.ConcurrencyManagement annotation is used to specify either
container-managed or bean-managed concurrency for the singleton.
@ConcurrencyManagement requires a type attribute to be set, one of
javax.ejb.ConcurrencyManagementType.CONTAINER or
javax.ejb.ConcurrencyManagementType.BEAN. If no @ConcurrencyManagement annotation is
present on the singleton implementation class, the EJB container default of container-managed
concurrency is used.

Container-Managed Concurrency
If a singleton uses container-managed concurrency, the EJB container controls client access to
the business methods of the singleton. The javax.ejb.Lock annotation and a
javax.ejb.LockType type are used to specify the access level of the singleton's business
methods or @Timeout methods.

Annotate a singleton's business or timeout method using @Lock(READ) if the method can be
concurrently accessed, or shared, with many clients. Annotate the business or timeout method
with @Lock(WRITE) if the singleton session bean should be locked to other clients while a client
is calling that method. Typically, the @Lock(WRITE) annotation is used when clients are
modifying the state of the singleton.

Annotating a singleton class with @Lock specifies that all the business methods and any timeout
methods of the singleton will use the specified lock type unless they explicitly set the lock type
with a method-level @Lock annotation. If no @Lock annotation is present on the singleton class,
the default lock type of @Lock(WRITE) is applied to all business and timeout methods.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 287

EXAMPLE 16–4 Specifying Container-Managed Concurrency in a Singleton Session Bean

The following example shows how to use the @ConcurrencyManagement, @Lock(READ), and
@Lock(WRITE) annotations for a singleton that uses container-managed concurrency.

Although by default singletons use container-managed concurrency, the
@ConcurrencyManagement(CONTAINER) annotation may be added at the class level of the
singleton to explicitly set the concurrency management type.

@ConcurrencyManagement(CONTAINER)

@Singleton

public class ExampleSingletonBean {

private String state;

@Lock(READ)

public String getState() {

return state;

}

@Lock(WRITE)

public void setState(String newState) {

state = newState;

}

}

The getState method can be accessed by many clients at the same time, because it is annotated
with @Lock(READ). When the setState method is called, however, all the methods in
ExampleSingletonBean will be locked to other clients because setState is annotated with
@Lock(WRITE). This prevents two clients from attempting to simultaneously change the state
variable of ExampleSingletonBean.

EXAMPLE 16–5 Using Class- and Method-Level @LockAnnotations in a Singleton Session Bean

The getData and getStatus methods in the following singleton are of type READ, and the
setStatus method is of type WRITE:

@Singleton

@Lock(READ)

public class SharedSingletonBean {

private String data;

private String status;

public String getData() {

return data;

}

public String getStatus() {

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial, Volume I • December 2009288

EXAMPLE 16–5 Using Class- and Method-Level @LockAnnotations in a Singleton Session Bean
(Continued)

return status;

}

@Lock(WRITE)

public void setStatus(String newStatus) {

status = newStatus;

}

}

If a method is of locking type WRITE, client access to all the singleton's methods are blocked until
the current client finishes its method call, or an access timeout occurs. When an access timeout
occurs, the EJB container throws a javax.ejb.ConcurrentAccessTimeoutException. The
javax.ejb.AccessTimeout annotation is used to specify the number of milliseconds before an
access timeout occurs. If @AccessTimeout is added at the class level of a singleton, it specifies the
access timeout value for all methods in the singleton unless a method explicitly overrides the
default with its own @AccessTimeout annotation.

The @AccessTimeout annotation can be applied to both @Lock(READ) and @Lock(WRITE)

methods.

@AccessTimeout has one required element, value, and one optional element, timeUnit. By
default, the value is specified in milliseconds. To change the value unit, set timeUnit to one of
the java.util.concurrent.TimeUnit constants: MICROSECONDS, MILLISECONDS,
MICROSECONDS, or SECONDS.

EXAMPLE 16–6 Setting the Access Timeout in a Singleton

The following singleton has a default access timeout value of 120,000 milliseconds, or 2
minutes. The doTediousOperation method overrides the default access timeout and sets the
value to 360,000 milliseconds, or 6 minutes.

@Singleton

@AccessTimeout(value=120000)

public class StatusSingletonBean {

private String status;

@Lock(WRITE)

public void setStatus(String new Status) {

status = newStatus;

}

@Lock(WRITE)

@AccessTimeout(value=360000)

public void doTediousOperation {

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 289

EXAMPLE 16–6 Setting the Access Timeout in a Singleton (Continued)

...

}

}

EXAMPLE 16–7 Setting the Access Timeout in a Singleton in Seconds

The following singleton has a default access timeout value of 60 seconds, specified using the
TimeUnit.SECONDS constant.

@Singleton

@AccessTimeout(value=60, timeUnit=SECONDS)

public class StatusSingletonBean { ... }

Bean-Managed Concurrency
Singletons that use bean-managed concurrency allow full concurrent access to all the business
and timeout methods in the singleton. The developer of the singleton is responsible for
ensuring that the state of the singleton is synchronized across all clients. Developers who create
singletons with bean-managed concurrency are allowed to use the Java programming language
synchronization primitives like synchronization and volatile to prevent errors during
concurrent access.

EXAMPLE 16–8 Specifying Bean-Managed Concurrency in a Singleton Session Bean

Add a @ConcurrencyManagement annotation at the class level of the singleton to specify
bean-managed concurrency.

@ConcurrencyManagement(BEAN)

@Singleton

public class AnotherSingletonBean { ... }

Handling Errors in a Singleton Session Bean
If a singleton session bean encounters an error when it is initialized by the EJB container, that
singleton instance will be destroyed.

Unlike other enterprise beans, once a singleton session bean instance is initialized it is not
destroyed if the singleton's business or lifecycle methods cause system exceptions. This ensures
that the same singleton instance is used throughout the application lifecycle.

The Architecture of the counter Example
The counter example consists of a singleton session bean, CounterBean, and a JavaServer Faces
Facelets web front-end.

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial, Volume I • December 2009290

CounterBean is a simple singleton with one method, getHits, that returns an integer
representing the number of times a web page has been accessed. Here is the code of
CounterBean:

package counter.ejb;

import javax.ejb.Singleton;

/**

*

* @author ian

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

@Singleton

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

public int getHits() {

return hits++;

}

}

The @Singleton annotation marks CounterBean as a singleton session bean. CounterBean uses
a local, no-interface view.

CounterBean uses the EJB container's default metadata values for singletons to simplify the
coding of the singleton implementation class. There is no @ConcurrencyManagement

annotation on the class, so the default of container-managed concurrency access is applied.
There is no @Lock annotation on the class or business method, so the default of @Lock(WRITE) is
applied to the only business method, getHits. The following version of CounterBean is
functionally equivalent to the version above:

package counter.ejb;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;

import javax.ejb.Lock;

import javax.ejb.LockType.WRITE;

/**

*

* @author ian

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 291

@Singleton

@ConcurrencyManagement(CONTAINER)

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

@Lock(WRITE)

public int getHits() {

return hits++;

}

}

The web-front end of counter consists of a JSF managed bean, Count.java, that is used by the
Facelets XHTML files template.xhtml and template-client.xhtml. The Count JSF managed
bean obtains a reference to CounterBean through dependency injection. Count defines a
hitCount JavaBeans property. When the getHitCount getter method is called from the
XHTML files, CounterBean's getHits method is called to return the current number of page
hits.

Here's the Count managed bean class:

@ManagedBean

@SessionScoped

public class Count {

@EJB

private CounterBean counterBean;

private int hitCount;

public Count() {

this.hitCount = 0;

}

public int getHitCount() {

hitCount = counterBean.getHits();

return hitCount;

}

public void setHitCount(int newHits) {

this.hitCount = newHits;

}

}

The template.xhtml and template-client.xhtml files are used to render a Facelets view that
displays the number of hits to that view. The template-client.xhtml file uses an expression
language statement, #{count.hitCount}, to access the hitCount property of the Count
managed bean. Here is the content of template-client.xhtml:

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial, Volume I • December 2009292

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<body>

This text above will not be displayed.

<ui:composition template="/template.xhtml">

This text will not be displayed.

<ui:define name="title">
This page has been accessed #{count.hitCount} time(s).

</ui:define>

This text will also not be displayed.

<ui:define name="body">
Hooray!

</ui:define>

This text will not be displayed.

</ui:composition>

This text below will also not be displayed.

</body>

</html>

Follow these instructions to build, package, and deploy the cart example to your Application
Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/examples/ejb/.
3. Select the cart folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project Folder.
6. In the Projects tab, right-click the cart project and select Deploy Project.

Building, Deploying, and Running the counter
Example
The counter example application can be built, deployed, and run using NetBeans IDE or Ant.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 293

▼ Building, Deploying, and Running the counter Example in NetBeans
IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.

Select the counter folder.

Select the Open as Main Project check box.

Click Open Project Folder.

In the Projects tab, right-click the counterproject and select Run.

A web browser will open the URL http://localhost:8080/counter that displays the number
of hits.

Click the browser's Refresh button to see the hit count increment.

▼ Building, Deploying, and Running the counter Example Using Ant

In a terminal, navigate to tut-install/examples/ejb/counter.

Enter the following command:
ant all

This will build and deploy counter to your Enterprise Server instance.

In a web browser, enter the following URL: http://localhost:8080/counter.

Click the browser's Refresh button to see the hit count increment.

A Web Service Example: helloservice
This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean that
implements a single method, sayHello. This method matches the sayHello method invoked by
the client described in “A Simple JAX-WS Client” on page 214.

1

2

3

4

5

6

7

1

2

3

4

A Web Service Example: helloservice

The Java EE 6 Tutorial, Volume I • December 2009294

The Web Service Endpoint Implementation Class
HelloServiceBean is the endpoint implementation class. The endpoint implementation class is
typically the primary programming artifact for enterprise bean web service endpoints. The web
service endpoint implementation class has the following requirements:

■ The class must be annotated with either the javax.jws.WebService or
javax.jws.WebServiceProvider annotations.

■ The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation, but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public, and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See JAXB default data type bindings (http://java.sun.com/
javaee/5/docs/tutorial/doc/bnazq.html#bnazs).

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The endpoint class must be annotated @Stateless.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for lifecycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Stateless Session Bean Implementation Class
The HelloServiceBean class implements the sayHello method, which is annotated
@WebMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebService;

A Web Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 295

http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html#bnazs

@Stateless

@WebService

public class HelloServiceBean {

private String message = "Hello, ";

public void HelloServiceBean() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, Deploying, and Testing the
helloservice Example
You can build, package, and deploy the helloservice example using either NetBeans IDE or
Ant. You can then use the Admin Console to test the web service endpoint methods.

Building, Packaging, and Deploying the helloservice Example Using
NetBeans IDE
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/examples/ejb/.

3. Select the helloservice folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project Folder.

6. In the Projects tab, right-click the helloservice project and select Deploy Project.

This builds and packages to application into helloservice.ear, located in
tut-install/examples/ejb/helloservice/dist, and deploys this ear file to your Application
Server instance.

A Web Service Example: helloservice

The Java EE 6 Tutorial, Volume I • December 2009296

Building, Packaging, and Deploying the helloservice Example Using
Ant
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using Ant.

1. In a terminal window, go to the tut-install/examples/ejb/helloservice/ directory.
2. To build helloservice, type the following command:

ant

This runs the default task, which compiles the source files and packages the application
into a JAR file located at
tut-install/examples/ejb/helloservice/dist/helloservice.jar.

3. To deploy helloservice, type the following command:

ant deploy

Upon deployment, the Application Server generates additional artifacts required for web
service invocation, including the WSDL file.

Testing the Service without a Client
1. The Application Server Admin Console allows you to test the methods of a web service

endpoint. To test the sayHello method of HelloServiceBean, do the following: Open the
Admin Console by opening the following URL in a web browser:

http://localhost:4848/

2. Enter the admin username and password to log in to the Admin Console.
3. Click Web Services in the left pane of the Admin Console.
4. Click helloservice.
5. Click Test.
6. Under Methods, enter a name as the parameter to the sayHello method.
7. Click the sayHello button.

This will take you to the sayHello Method invocation page.
8. Under Method returned, you’ll see the response from the endpoint.

A Web Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 297

Using the Timer Service
Applications that model business work flows often rely on timed notifications. The timer
service of the enterprise bean container enables you to schedule timed notifications for all types
of enterprise beans except for stateful session beans. You can schedule a timed notification to
occur according to a calendar schedule, at a specific time, after a duration of time, or at timed
intervals. For example, you could set timers to go off at 10:30 AM on May 23, in 30 days, or
every 12 hours.

There are two types of enterprise bean timers: programmatic timers and automatic timers.
Programmatic timers are set by explicitly calling one of the timer creation methods of the
TimerService interface. Automatic timers are created upon the successful deployment of an
enterprise bean that contains a method annotated with the java.ejb.Schedule or
java.ejb.Schedules annotations.

Creating Calendar-Based Timer Expressions
Timers can be set according to a calendar-based schedule, expressed using a syntax similar to
the UNIX cron utility. Both programmatic and automatic timers can use calendar-based timer
expressions.

TABLE 16–1 Calendar-Based Timer Attributes

Attribute Description Allowable Values Default Value Examples

second One or more
seconds within a
minute.

0 to 59 0 second="30"

minute One or more
minutes within an
hour.

0 to 59 0 minute="15"

hour One or more
hours within a
day.

0 to 23 0 hour="13"

dayOfWeek One or more days
within a week.

0 to 7
1

Sun, Mon, Tue, Wed, Thu, Fri, Sat

* dayOfWeek="3"

dayOfWeek="Mon"
1 Both 0 and 7 refer to Sunday.

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009298

TABLE 16–1 Calendar-Based Timer Attributes (Continued)
Attribute Description Allowable Values Default Value Examples

dayOfMonth One or more days
within a month.

1 to 31

-7 to –1
2

Last

[1st, 2nd, 3rd, 4th, 5th, Last] [Sun, Mon,
Tue, Wed, Thu, Fri, Sat]

* dayOfMonth="15"

dayOfMonth="-3"

dayOfMonth="Last"

dayOfMonth="2nd
Fri"

month One or more
months within a
year.

1 to 12

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec

* month="7"

month="July"

year A particular
calendar year.

A four-digit calendar year. * year="2010"

2 A negative number means the xth day or days before the end of the month.

Specifying Multiple Values in Calendar Expressions
You can specify multiple values in calendar expressions in the following ways:

■ “Using Wildcards in Calendar Expressions” on page 299
■ “Specifying a List of Values” on page 299
■ “Specifying a Range of Values” on page 300
■ “Specifying Intervals” on page 300

Using Wildcards in Calendar Expressions

Setting an attribute to an asterisk symbol (*) represents all allowable values for the attribute.

EXAMPLE 16–9 Calendar Expressions with Wildcards

The following expression represents every minute:

minute="*"

The following expression represents every day of the week:

dayOfWeek="*"

Specifying a List of Values

To specify two or more values for an attribute, use a comma (,) to separate the values. A range
of values are allowed as part of a list. Wildcards and intervals, however, are not allowed.

Duplicates within a list are ignored.

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 299

EXAMPLE 16–10 Calendar Expressions with a List of Values

The following expression sets the day of the week to Tuesday and Thursday:

dayOfWeek="Tue, Thu"

The following expression represents 4:00 AM, every hour from 9:00 AM to 5:00 PM using a
range, and 10:00 PM:

hour="4,9-17,20"

Specifying a Range of Values

Use a dash character (-) to specify an inclusive range of values for an attribute. Members of a
range cannot be wildcards, lists, or intervals. If the range is of the form x-x, it is equivalent to the
single-valued expression x. If the range is of the form x-y and x is greater than y, it is equivalent
to the expression x-maximum value, minimum value-y. That is, the expression begins at x,
rolls-over to the beginning of the allowable values, and continues up to y.

EXAMPLE 16–11 Calendar Expressions Using Ranges

The following expression represents 9:00 AM to 5:00 PM:

hour="9-17"

The following expression represents Friday through Monday:

dayOfWeek="5-1"

The following expression represents the 25th day of the month to the end of the month, and the
beginning of the month to the 5th day of the month:

dayOfMonth="25-5"

It is equivalent to the following expression:

dayOfMonth="25-Last,1-5"

Specifying Intervals

The forward slash (/) constrains an attribute to a starting point and an interval. It is used to
specify every N seconds, minutes, or hours within the minute, hour or day. For an expression of
the form x/y, x represents the starting point and y represents the interval. The wildcard
character may be used in the x position of an interval, and is equivalent to setting x to 0.

Intervals may only be set for second, minute, and hour attributes.

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009300

EXAMPLE 16–12 Calendar Expressions Using Intervals

The following expression represents every 10 minutes within the hour:

minute="*/10"

It is equivalent to:

minute="0,10,20,30,40,50"

The following expression represents every two hours starting at noon:

hour="12/2"

Programmatic Timers
When a programmatic timer expires (goes off), the container calls the method annotated
@Timeout in the bean’s implementation class. The @Timeout method contains the business logic
that handles the timed event.

The TimeoutMethod
Methods annotated @Timeout in the enterprise bean class must return void and optionally take
a javax.ejb.Timer object as the only parameter. They may not throw application exceptions.

@Timeout

public void timeout(Timer timer) {

System.out.println("TimerBean: timeout occurred");
}

Creating Programmatic Timers
To create a timer, the bean invokes one of the create methods of the TimerService interface.
The create methods of TimerService allow single-action, interval, or calendar-based timers to
be created.

For single-action or interval timers, the expiration of the timer can be expressed either as a
duration or an absolute time. The duration is expressed as a the number of milliseconds before a
timeout event is triggered. To specify an absolute time, create a java.util.Date object and
pass it to either the TimerService.createSingleActionTimer or TimerService.createTimer
methods.

EXAMPLE 16–13 Setting a Programmatic Timer Based On a Duration

The following code sets a programmatic timer that will expire in one minute (6000
milliseconds):

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 301

EXAMPLE 16–13 Setting a Programmatic Timer Based On a Duration (Continued)

long duration = 6000;

Timer timer = timerService.createSingleActionTimer(duration, new TimerConfig());

EXAMPLE 16–14 Setting a Programmatic Timer Based On an Absolute Time

The following code sets a programmatic timer that will expire at 12:05 PM on May 1st, 2010,
specified as a java.util.Date:

SimpleDateFormatter formatter = new SimpleDateFormatter("MM/dd/yyyy ’at’ HH:mm");
Date date = formatter.parse("05/01/2010 at 12:05");
Timer timer = timerService.createSingleActionTimer(date, new TimerConfig());

For calendar-based timers, the expiration of the timer is expressed as a
javax.ejb.ScheduleExpression object, passed as a parameter to the
TimerService.createCalendarTimer method. The ScheduleExpression class represents
calendar-based timer expressions, and has methods that correspond to the attributes described
in “Creating Calendar-Based Timer Expressions” on page 298.

EXAMPLE 16–15 Using ScheduleExpression to Set a Timer

The following code creates a programmatic timer using the ScheduleExpression helper class:

ScheduleExpression schedule = new ScheduleExpression();

schedule.dayOfWeek("Mon");
schedule.hour("12-17, 23");
Timer timer = timerService.createCalendarTimer(schedule);

For details on the method signatures, see the TimerService API documentation at
http://java.sun.com/javaee/6/docs/api/javax/ejb/TimerService.html.

The bean described in “The timersession Example” on page 305 creates a timer as follows:

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");

In the timersession example, createTimer is invoked in a business method, which is called by
a client.

Timers are persistent by default. If the server is shut down (or even crashes), persistent timers
are saved and will become active again when the server is restarted. If a persistent timer expires
while the server is down, the container will call the @Timeout method when the server is
restarted.

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009302

http://java.sun.com/javaee/6/docs/api/javax/ejb/TimerService.html

Non-persistent programmatic timers are created by calling
TimerConfig.setPersistent(false) and passing the TimerConfig object to one of the timer
creation methods.

The Date and long parameters of the createTimer methods represent time with the resolution
of milliseconds. However, because the timer service is not intended for real-time applications, a
callback to the @Timeout method might not occur with millisecond precision. The timer service
is for business applications, which typically measure time in hours, days, or longer durations.

Automatic Timers
Automatic timers are created by the EJB container when an enterprise bean that contains
methods annotated with the @Schedule or @Schedules annotations is deployed. An enterprise
bean can have multiple automatic timeout methods, unlike a programmatic timer where there
can only be one method annotated with the @Timeout annotation in the enterprise bean class.

Automatic timers can be configured through annotations or through the ejb-jar.xml
deployment descriptor.

The @Schedule and @SchedulesAnnotations
Adding a @Schedule annotation on an enterprise bean marks that method as a timeout method
according to the calendar schedule specified in the attributes of @Schedule.

The @Schedule annotation has elements that correspond to the calendar expressions detailed in
“Creating Calendar-Based Timer Expressions” on page 298and the persistent, info, and
timezone elements.

The optional persistent element takes a boolean value, and is used to specify whether the
automatic timer should survive a server restart or crash. By default, all automatic timers are
persistent.

The optional timezone element is used to optionally specify that the automatic timer is
associated with a particular time zone. If set, this element will evaluate all timer expressions in
relation to the specified time zone, regardless of the time zone in which the EJB container is
running. By default, all automatic timers set are in relation to the default time zone of the server.

The optional info element is used to set an informational description of the timer. A timer's
information can be retrieved later using Timer.getInfo.

EXAMPLE 16–16 Setting an Automatic Timer Using @Schedule

The following timeout method uses @Schedule to set a timer that will expire every Sunday at
midnight:

@Schedule(dayOfWeek="Sun", hour="0")
public void cleanupWeekData() { ... }

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 303

The @Schedules annotation is used to specify multiple calendar-based timer expressions for a
given timeout method.

EXAMPLE 16–17 Setting Multiple Automatic Timers for a Timeout Method Using @Schedules

The following timeout method uses the @Schedules annotation to set multiple calendar-based
timer expressions. The first expression sets a timer to expire on the last day of every month. The
second expression sets a timer to expire every Friday at 11:00 PM.

@Schedules ({

@Schedule(dayOfMonth="Last"),
@Schedule(dayOfWeek="Fri", hour="23")

})

public void doPeriodicCleanup() { ... }

Canceling and Saving Timers
Timers can be canceled by the following events:
■ When a single-event timer expires, the EJB container calls the associated timeout method

and then cancels the timer.
■ When the bean invokes the cancel method of the Timer interface, the container cancels the

timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To re-instantiate the
Timer object, retrieve the handle from the database and invoke getTimer on the handle. A
TimerHandle object cannot be passed as an argument of a method defined in a remote or web
service interface. In other words, remote clients and web service clients cannot access a bean’s
TimerHandle object. Local clients, however, do not have this restriction.

Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface defines
methods for obtaining information about timers:

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the createTimer
invocation. For example, in the createTimer code snippet of the preceding section, this
information parameter is a String object with the value created timer.

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009304

To retrieve all of a bean’s active timers, call the getTimers method of the TimerService
interface. The getTimers method returns a collection of Timer objects.

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction is rolled back,
the timer creation is also rolled back. Similarly, if a bean cancels a timer within a transaction
that gets rolled back, the timer cancellation is rolled back. In this case, the timer’s duration is
reset as if the cancellation had never occurred.

In beans that use container-managed transactions, the @Timeout method usually has the
Required or RequiresNew transaction attribute to preserve transaction integrity. With these
attributes, the EJB container begins the new transaction before calling the @Timeout method. If
the transaction is rolled back, the container will call the @Timeout method at least one more
time.

The timersession Example
The source code for this example is in the tut-install/examples/ejb/timersession/src/java/
directory.

TimerSessionBean is a singleton session bean that shows how to set both an automatic timer
and a programmatic timer. In the source code listing of TimerSessionBean that follows, the
setTimer and @Timeout methods are used to set a programmatic timer. A TimerService

instance is injected by the container when the bean is created. Because it’s a business method,
setTimer is exposed to the local, no-interface view of TimerSessionBean and can be invoked by
the client. In this example, the client invokes setTimer with an interval duration of 30,000
milliseconds. The setTimer method creates a new timer by invoking the createTimer method
of TimerService. Now that the timer is set, the EJB container will invoke the
programmaticTimeout method of TimerSessionBean when the timer expires, in about 30
seconds.

...

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for " +

intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 305

}

...

TimerSessionBean also has an automatic timer and timeout method, automaticTimeout. The
automatic timer is set to expire every 3 minutes, and is set using a calendar-based timer
expression in the @Schedule annotation.

...

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

...

TimerSessoinBean also has two business methods, getLastProgrammaticTimeout and
getLastAutomaticTimeout. Clients call these methods to get the date and time of the last
timeout for the programmatic timer and automatic timer, respectively.

Here’s the source code for the TimerSessionBean class:

package timersession.ejb;

import java.util.Date;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.ejb.Schedule;

import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Singleton

public class TimerSessionBean {

@Resource

TimerService timerService;

private Date lastProgrammaticTimeout;

private Date lastAutomaticTimeout;

private Logger logger = Logger

.getLogger("com.sun.tutorial.javaee.ejb.timersession.TimerSessionBean");

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for " +

intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009306

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");
}

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

public String getLastProgrammaticTimeout() {

if (lastProgrammaticTimeout != null) {

return lastProgrammaticTimeout.toString();

} else {

return "never";
}

}

public void setLastProgrammaticTimeout(Date lastTimeout) {

this.lastProgrammaticTimeout = lastTimeout;

}

public String getLastAutomaticTimeout() {

if (lastAutomaticTimeout != null) {

return lastAutomaticTimeout.toString();

} else {

return "never";
}

}

public void setLastAutomaticTimeout(Date lastAutomaticTimeout) {

this.lastAutomaticTimeout = lastAutomaticTimeout;

}

}

Note – Enterprise Server has a default minimum timeout value of 1000 milliseconds, or 1 second.
If you need to set the timeout value lower than 1000 milliseconds, change the value of the
minimum-delivery-interval-in-millis element in domain-dir/config/domain.xml. Due to
virtual machine constraints, the lowest practical value for
minimum-delivery-interval-in-millis is around 10 milliseconds.

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 307

Building, Packaging, Deploying, and Running the
timersession Example
You can build, package, deploy, and run the timersession example using either NetBeans IDE
or Ant.

▼ Building, Packaging, Deploying, and Running the timersession
Example Using NetBeans IDE
Follow these instructions to build, package, and deploy the timersession example to your
Enterprise Server instance using the NetBeans IDE IDE.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to tut-install/examples/ejb/.

Select the timersession folder.

Select the Open as Main Project check box.

Click Open Project Folder.

Select Run→Run Main Project.
This builds and packages the application into timersession.war, located in
tut-install/examples/ejb/timersession/dist/, deploys this WAR file to your Enterprise
Server instance, and then runs the web client.

▼ Building, Packaging, and Deploying the timersession Example Using
Ant
Follow these instructions to build, package, and deploy the timersession example to your
Application Server instance using Ant.

In a terminal window, go to the tut-install/examples/ejb/timersession/ directory.

To build timersession, type the following command:
ant build

This runs the default task, which compiles the source files and packages the application into a
WAR file located at tut-install/examples/ejb/timersession/dist/timersession.war.

To deploy the application, type the following command:
ant deploy

1

2

3

4

5

6

1

2

3

Using the Timer Service

The Java EE 6 Tutorial, Volume I • December 2009308

▼ Running the Web Client

Open a web browser to http://localhost:8080/timersession.

Click the Set Timer button to set a programmatic timer.

Wait for a while and click the browser's Refresh button.
You will see the date and time of the last programmatic and automatic timeouts.

You can also see the messages that are logged when a timeout occurs by opening the
server.log file located in domain-dir/server/logs/.

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and application.

A system exception indicates a problem with the services that support an application. Examples
of these problems include the following: a connection to an external resource cannot be
obtained or an injected resource cannot be found. If your enterprise bean encounters a
system-level problem, it should throw a javax.ejb.EJBException. Because the EJBException
is a subclass of the RuntimeException, you do not have to specify it in the throws clause of the
method declaration. If a system exception is thrown, the EJB container might destroy the bean
instance. Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise bean. Application
exceptions are typically exceptions that you’ve coded yourself, such as the BookException
thrown by the business methods of the CartBean example. When an enterprise bean throws an
application exception, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back the transaction.
However, if an application exception is thrown within a transaction, the container does not roll
back the transaction.

1

2

3

Handling Exceptions

Chapter 16 • Running the Enterprise Bean Examples 309

310

Contexts and Dependency Injection for the
JavaTM EE Platform
Part Five explores Contexts and Dependency Injection for the Java EE Platform.

P A R T V

311

312

Introduction to Contexts and Dependency
Injection for the JavaTM EE Platform

Contexts and Dependency Injection for the Java EE Platform (CDI) is one of several Java EE 6
features that help to knit together the web tier and the transactional tier of the Java EE platform.
It is a set of services that, used together, makes it easy for developers to use enterprise beans
along with JavaServerTM Faces technology in web applications. Designed for use with stateful
objects, it also has many broader uses, allowing developers a great deal of flexibility to integrate
different kinds of components in a loosely coupled but type-safe way.

CDI is specified by JSR-299, which was formerly known as Web Beans. Related specifications
that CDI uses include the following:

■ JSR-330, Dependency Injection for Java
■ The Managed Beans specification that is an offshoot of the Java EE 6 platform specification

(JSR-316)

This chapter covers the following topics.

■ “Overview of Contexts and Dependency Injection for the Java EE Platform” on page 314
■ “About Beans” on page 315
■ “Beans as Injectable Objects” on page 316
■ “Using Qualifiers” on page 317
■ “Injecting Beans” on page 318
■ “Using Scopes” on page 318
■ “Giving Beans EL Names” on page 320
■ “Adding Setter and Getter Methods” on page 320
■ “Using a Managed Bean in a Facelets Page” on page 321
■ “Injecting Objects by Using Producer Methods” on page 322
■ “Configuring a CDI Application” on page 323
■ “Further Information” on page 323

17C H A P T E R 1 7

313

Overview of Contexts and Dependency Injection for the Java
EE Platform

The two most fundamental services provided by CDI are as follows:

■ Contexts: The ability to bind the lifecycle and interactions of stateful components to
well-defined but extensible lifecycle contexts

■ Dependency injection: The ability to inject components into an application in a type-safe
way, including the ability to choose at deployment time which implementation of a
particular interface to inject

In addition, CDI provides the following services:

■ Integration with the Unified Expression Language (EL), which allows any component to be
used directly within a JavaServer Faces page (or a JavaServer PagesTM page)

■ The ability to decorate injected components
■ The ability to associate interceptors with components using type-safe interceptor bindings
■ An event notification model
■ A web conversation scope in addition to the three standard scopes (request, session, and

application) defined by the Java Servlet specification
■ A complete Service Provider Interface (SPI) that allows third-party frameworks to integrate

cleanly in the Java EE 6 environment

A major theme of CDI is loose coupling. CDI does the following:

■ It decouples the server and the client by means of well-defined types and qualifiers, so that
the server implementation may vary.

■ It decouples the lifecycles of collaborating components by doing the following:
■ Making components contextual, with automatic lifecycle management
■ Allowing stateful components to interact like services, purely by message passing

■ It completely decouples message producers from consumers, by means of events.
■ It decouples orthogonal concerns by means of Java EE interceptors.

Along with loose coupling, CDI provides strong typing, as follows:

■ It eliminates lookup using string-based names for wiring and correlations, so that the
compiler will detect typing errors.

■ It allows the use of declarative Java annotations to specify everything, largely eliminating the
need for XML deployment descriptors, and making it easy to provide tools that introspect
the code and understand the dependency structure at development time.

Overview of Contexts and Dependency Injection for the Java EE Platform

The Java EE 6 Tutorial, Volume I • December 2009314

About Beans
CDI redefines the concept of a bean beyond its use in other Java technologies, such as the
JavaBeansTM and Enterprise JavaBeansTM (EJBTM) technologies. In CDI, a bean is a source of
contextual objects that defines application state and/or logic. A Java EE component is a bean if
the lifecycle of its instances may be managed by the container according to the lifecycle context
model defined in the CDI specification.

More specifically, a bean has the following attributes:

■ A (nonempty) set of bean types
■ A (nonempty) set of qualifiers (see “Using Qualifiers” on page 317)
■ A scope (see “Using Scopes” on page 318)
■ Optionally, a bean EL name (see “Giving Beans EL Names” on page 320)
■ A set of interceptor bindings
■ A bean implementation

A bean type defines a client-visible type of the bean. Almost any Java type may be a bean type of
a bean:

■ A bean type may be an interface, a concrete class or an abstract class, and may be declared
final or have final methods.

■ A bean type may be a parameterized type with actual type parameters and type variables.
■ A bean type may be an array type. Two array types are considered identical only if the

element type is identical.
■ A bean type may be a primitive type. Primitive types are considered to be identical to their

corresponding wrapper types in java.lang.
■ A bean type may be a raw type.

About Managed Beans
A managed bean is a bean that is implemented by a Java class, which is called its bean class. A
top-level Java class is a managed bean if it is defined to be a managed bean by any other Java EE
technology specification (for example, the JavaServer Faces technology specification), or if it
meets all of the following conditions:

■ It is not a non-static inner class.
■ It is a concrete class, or is annotated @Decorator.
■ It is not annotated with an EJB component-defining annotation or declared as an EJB bean

class in ejb-jar.xml.
■ It has an appropriate constructor. That is, one of the following is the case:

■ The class has a constructor with no parameters.

About Managed Beans

Chapter 17 • Introduction to Contexts and Dependency Injection for the JavaTM EE Platform 315

■ The class declares a constructor annotated @Inject.

No special declaration, such as an annotation, is required to define a managed bean.

Beans as Injectable Objects
The concept of injection has been part of Java technology for some time. Since the Java EE 5
platform was introduced, annotations have made it possible to inject resources and some other
kinds of objects into container-managed objects. CDI makes it possible to inject more kinds of
objects, and to inject them into objects that are not container-managed.

The following kinds of objects can be injected:

■ (Almost) any Java class
■ Session beans
■ Java EE resources (data sources, Java Message Service topics, queues, and connection

factories, and the like)
■ Persistence contexts (JPA EntityManager objects)
■ Producer fields, and objects returned by producer methods
■ Web service references
■ Remote enterprise bean references

For example, suppose you created a simple Java class with a method that returns a string:

package greetings;

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

This class becomes a bean that you can then inject into another class. This bean is not exposed
to the EL in this form. “Giving Beans EL Names” on page 320 explains how you can make a bean
accessible via the EL.

Beans as Injectable Objects

The Java EE 6 Tutorial, Volume I • December 2009316

Using Qualifiers
You can use qualifiers to provide different implementations of a particular bean type. A
qualifier is an annotation that you apply to a bean. A qualifier type is a Java annotation defined
as @Target({METHOD, FIELD, PARAMETER, TYPE}) and @Retention(RUNTIME).

For example, you could declare an @Informal qualifier type and apply it to another class that
extends the Greeting class. To declare this qualifier type, you would use the following code:

package greetings;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Informal {}

You can then define a bean class that extends the Greeting class and uses this qualifier:

package greetings;

@Informal

public class InformalGreeting extends Greeting {

public String greet(String name) {

return "Hi, " + name + "!";
}

}

Both implementations of the bean can now be used in the application.

If you define a bean with no qualifier, it automatically has the qualifier @Default. The
unannotated Greeting class could be declared as follows:

package greetings;

import javax.enterprise.inject.Default;

@Default

Using Qualifiers

Chapter 17 • Introduction to Contexts and Dependency Injection for the JavaTM EE Platform 317

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

Injecting Beans
In order to use the beans you create, you inject them into yet another bean that can then be used
by an application, such as a JavaServer Faces application. For example, you might create a bean
called Printer into which you would inject one of the Greeting beans:

import javax.inject.Inject;

public class Printer {

@Inject Greeting greeting;

...

This code injects the @Default Greeting implementation into the bean, while the following
code injects the @Informal implementation:

import javax.inject.Inject;

public class Printer {

@Inject @Informal Greeting greeting;

...

More is needed for the complete picture of this bean. Its use of scope needs to be understood. In
addition, for a JavaServer Faces application, the bean needs to be accessible through the unified
expression language (unified EL).

Using Scopes
For a web application to use a bean that injects another bean class, the bean needs to be able to
hold state over the duration of the user's interaction with the application. The way to define this
state is to give the bean a scope. You can give an object any of the scopes described in
Table 17–1, depending on how you are using it.

Injecting Beans

The Java EE 6 Tutorial, Volume I • December 2009318

TABLE 17–1 Scopes

Scope Annotation Duration

Request scope @RequestScoped A user's interaction with a web application in a single
HTTP request

Session scope @SessionScoped A user's interaction with a web application across
multiple HTTP requests

Application scope @ApplicationScoped Shared state across all users' interactions with a web
application

Dependent scope @Dependent The default scope if none is specified; it means that an
object exists to serve exactly one client (bean), and has
the same lifecycle as that client (bean)

Conversation scope @ConversationScoped A user's interaction with a JavaServer Faces application,
within explicit boundaries controlled by the developer
that extend the scope across multiple invocations of the
JavaServer Faces life cycle. All long-running
conversations are scoped to a particular HTTP servlet
session and may not cross session boundaries.

The first three scopes were originally defined by the Java Servlet specification. The last two are
defined by JSR-299.

You can also define and implement custom scopes, but that is an advanced topic. Custom
scopes are likely to be used by those who implement and extend the CDI specification.

A scope gives an object a well-defined lifecycle context. A scoped object can be automatically
created when it is needed and automatically destroyed when the context in which it was created
ends. Moreover, its state is automatically shared by any clients that execute in the same context.

JavaBeans components, and Java EE components such as servlets and enterprise beans, do not
by definition have a well-defined scope. These components are either:
■ Singletons, such as Enterprise JavaBeans singleton beans, whose state is shared between all

clients
■ Stateless objects, such as servlets and stateless session beans, which do not contain

client-visible state
■ Objects that must be explicitly created and destroyed by their client, such as JavaBeans

components and stateful session beans, whose state is shared by explicit reference passing
between clients

If, however, you create a Java EE component that is a managed bean, it becomes a scoped object,
which exists in a well-defined lifecycle context.

The web application for the Printer bean will use a simple request and response mechanism, so
the managed bean can be annotated as follows:

Using Scopes

Chapter 17 • Introduction to Contexts and Dependency Injection for the JavaTM EE Platform 319

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

Beans that use session, application, or conversation scope must be serializable, but beans that
use request scope do not have to be serializable.

Giving Beans EL Names
To make a bean accessible through the unified expression language (EL), use the @Named
built-in qualifier.

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

The @Named qualifier allows you to access the bean using the bean name, with the first letter in
lowercase. For example, a Facelets page would refer to the bean as printer.

You can specify an argument to the @Named qualifier to use a non-default name:

@Named("MyPrinter")

With this annotation, the Facelets page would refer to the bean as MyPrinter.

Adding Setter and Getter Methods
To make the state of the managed bean accessible, you need to add setter and getter methods for
that state. The createSalutation method calls the bean's greet method, and the
getSalutation method retrieves the result.

Once the setter and getter methods have been added, the bean is complete. The final code looks
like this:

Giving Beans EL Names

The Java EE 6 Tutorial, Volume I • December 2009320

package greetings;

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

private String name;

private String salutation;

public void createSalutation() {

this.salutation = greeting.greet(name);

}

public String getSalutation() {

return salutation;

}

public String setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

}

Using a Managed Bean in a Facelets Page
To use the managed bean in a Facelets page, you typically create a form that uses user interface
elements to call its methods and display their results. This example provides a button that asks
the user to type a name, retrieves the salutation, then displays the text in a paragraph below the
button:

<h:form id="greetme">
<p><h:outputLabel value="Enter your name: " for="name"/>

<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello" action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/></p>

</h:form>

Using a Managed Bean in a Facelets Page

Chapter 17 • Introduction to Contexts and Dependency Injection for the JavaTM EE Platform 321

Injecting Objects by Using Producer Methods
Producer methods provide a way to inject objects that are not beans, objects whose values may
vary at run time, and objects that require custom initialization.

For example, if you want to initialize a numeric value defined by a qualifier named @MaxNumber,
you can define the value in a managed bean and then define a producer method, getMaxNumber,
for it:

private int maxNumber = 100;

...

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

When you inject the object in another managed bean, the container automatically invokes the
producer method, initializing the value to 100:

@Inject @MaxNumber private int maxNumber;

If the value can vary at run time, the process is slightly different. For example, the following
code defines a producer method that generates a random number defined by a qualifier called
@Random:

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

}

When you inject this object in another managed bean, you declare a contextual instance of the
object:

@Inject @Random Instance<Integer> randomInt;

You then call the get method of the Instance:

this.number = randomInt.get();

Injecting Objects by Using Producer Methods

The Java EE 6 Tutorial, Volume I • December 2009322

Configuring a CDI Application
An application that uses CDI must have a file named beans.xml. The file can be completely
empty (it has content only in certain limited situations), but it must be present. For a web
application, the beans.xml file can be in either the WEB-INF directory or the
WEB-INF/classes/META-INF directory. For EJB modules or JAR files, the beans.xml file must
be in the META-INF directory.

Further Information
For more information about Contexts and Dependency Injection for the Java EE Platform, see:

■ Contexts and Dependency Injection for the Java EE Platform specification:
http://jcp.org/en/jsr/detail?id=299

■ An introduction to Contexts and Dependency Injection for the Java EE Platform:
http://docs.jboss.org/webbeans/reference/1.0.0.PREVIEW1/en-US/html/

■ Dependency Injection for Java specification:
http://jcp.org/en/jsr/detail?id=330

Further Information

Chapter 17 • Introduction to Contexts and Dependency Injection for the JavaTM EE Platform 323

http://jcp.org/en/jsr/detail?id=299
http://docs.jboss.org/webbeans/reference/1.0.0.PREVIEW1/en-US/html/
http://jcp.org/en/jsr/detail?id=330

324

Running the Basic Contexts and Dependency
Injection Examples

This chapter describes in detail how to build and run simple examples that use Contexts and
Dependency Injection for the JavaTM EE Platform (CDI).

The examples are in the following directory:

tut-install/examples/cdi/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use NetBeans IDE or the Ant tool to deploy the example.
3. Run the example in a web browser.

Each example has a build.xml file that refers to files in the following directory:

tut-install/examples/bp-project/

See Chapter 2, “Using the Tutorial Examples,” for basic information on installing, building, and
running the examples.

The simplegreeting Example
The simplegreeting example illustrates some of the most basic features of CDI: scopes,
qualifiers, bean injection, and accessing a managed bean in a JavaServerTM Faces application.

When you run the example, you click a button that presents either a formal or an informal
greeting, depending on how you edited one of the classes.

The example includes four source files, a Facelets page and template, and configuration files.

18C H A P T E R 1 8

325

The simplegreeting Source Files
The four source files for the simplegreeting example include the following:
■ The default Greeting class, shown in “Beans as Injectable Objects” on page 316
■ The @Informal qualifier interface definition and the InformalGreeting class that

implements the interface, both shown in “Using Qualifiers” on page 317
■ The Printer managed bean class that injects one of the two interfaces, shown in full in

“Adding Setter and Getter Methods” on page 320

The source files are located in the following directory:

tut-install/examples/cdi/simplegreeting/src/java/greetings

The Facelets Template and Page
To use the managed bean in a simple Facelets application, you can use a very simple template
file and index.xhtml page.

The template page, template.xhtml, looks like this:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h:head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link href="resources/css/default.css" rel="stylesheet" type="text/css"/>
<title><ui:insert name="title">Default Title</ui:insert></title>

</h:head>

<body>

<div id="container">
<div id="header">

<h2><ui:insert name="head">Head</ui:insert></h2>
</div>

<div id="space">
<p></p>

</div>

<div id="content">
<ui:insert name="content"/>

</div>

The simplegreeting Example

The Java EE 6 Tutorial, Volume I • December 2009326

</div>

</body>

</html>

To create the Facelets page, you can redefine the title and head, then add a small form to the
content:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Simple Greeting</ui:define>

<ui:define name="head">Simple Greeting</ui:define>

<ui:define name="content">
<h:form id="greetme">

<p><h:outputLabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>

<p><h:commandButton value="Say Hello" action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/> </p>

</h:form>

</ui:define>

</ui:composition>

</html>

The form asks the user to type a name. The button is labeled “Say Hello,” and the action defined
for it is to call the createSalutation method of the Printer managed bean. This method in
turn calls the greet method of the defined Greeting class.

The output text for the form is the value of the greeting returned by the setter method.
Depending on whether the default or the @Informal version of the greeting is injected, this is
either

Hello, name.

or

Hi, name!

where name is the name typed by the user.

The Facelets page and template are located in the following directory:

tut-install/examples/cdi/simplegreeting/web

The simplegreeting Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 327

The simple CSS file that is used by the Facelets page is in the following location:

tut-install/examples/cdi/simplegreeting/web/resources/css/default.css

Configuration Files
You must create an empty beans.xml file to indicate to Sun GlassFishTM Enterprise Server v3
that your application is a CDI application. This file can have content in some situations, but not
in simple applications like this one.

Your application also needs the basic web application deployment descriptors web.xml and
sun-web.xml.

These configuration files are located in the following directory:

tut-install/examples/cdi/simplegreeting/web/WEB-INF

Building, Packaging, Deploying, and Running the
simplegreeting Example
You can build, package, deploy, and run the simplegreeting application using either NetBeans
IDE or the Ant tool.

▼ Building and Deploying the simplegreeting Example Using NetBeans
IDE
Follow these instructions to build, package, and deploy the simplegreeting example to the
Enterprise Server using NetBeans IDE.

This procedure builds the application into the
tut-install/examples/cdi/simplegreeting/build/web directory and deploys the contents of
this directory to the Enterprise Server.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to tut-install/examples/cdi/.

Select the simplegreeting folder.

Select the Open as Main Project checkbox.

Click Open Project Folder.

1

2

3

4

5

The simplegreeting Example

The Java EE 6 Tutorial, Volume I • December 2009328

(Optional) To modify the Printer.java file, perform these steps:

a. Expand the Source Packages node.

b. Expand the greetingsnode.

c. Double-click the Printer.java file.

d. In the edit pane, comment out the @Informal annotation:
//@Informal

@Inject

Greeting greeting;

e. Save the file.

In the Projects tab, right-click the simplegreetingproject and select Deploy.

▼ Building, Packaging, and Deploying the simplegreetingExample
Using Ant
Follow these instructions to build, package, and deploy the simplegreeting example to the
Enterprise Server using Ant.

This procedure builds the application into the
tut-install/examples/cdi/simplegreeting/build/web directory and deploys the contents of
this directory to the Enterprise Server.

This procedure builds and packages the application into simplegreeting.war, located in
tut-install/examples/cdi/simplegreeting/dist/, and deploys this WAR file to the Enterprise
Server.

In a terminal window, go to this directory:
tut-install/examples/cdi/simplegreeting/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, simplegreeting.war, located in the dist directory.

Type the following command:
ant deploy

simplegreeting.war will be deployed to the Enterprise Server.

6

7

1

2

3

The simplegreeting Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 329

▼ Running the simplegreeting Example

In a web browser, type the following URL:
http://localhost:8080/simplegreeting

The Simple Greeting page opens.

Type a name in the text field.
For example, suppose you type Duke.

Click the Say Hello button.
If you did not modify the Printer.java file, the following text string appears below the button:
Hi, Duke!

If you commented out the @Informal annotation in the Printer.java file, the following text
string appears below the button:

Hello, Duke.

Figure 18–1 shows what the application looks like if you did not modify the Printer.java file.

The guessnumber Example
The guessnumber example is somewhat more complex than the simplegreeting example. It
illustrates the use of producer methods and of session and application scope.

The example is a game in which you try to guess a number in fewer than 10 attempts. It is
similar to the guessNumber example described in Chapter 5, “Introduction to Facelets,” except
that you can keep guessing until you get the right answer or until you use up your 10 attempts.

FIGURE 18–1 Simple Greeting Application

1

2

3

The guessnumber Example

The Java EE 6 Tutorial, Volume I • December 2009330

The example includes four source files, a Facelets page and template, and configuration files.
The configuration files and the template are the same as those used for the simplegreeting
example.

The guessnumber Source Files
The four source files for the guessnumber example include the following:
■ The @MaxNumber qualifier interface
■ The @Random qualifier interface
■ The Generator managed bean, which defines producer methods
■ The UserNumberBean managed bean

The source files are located in the following directory:

tut-install/examples/cdi/guessnumber/src/java/guessnumber

The @MaxNumber and @RandomQualifier Interfaces
The @MaxNumber qualifier interface is defined as follows.

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface MaxNumber {

}

The @Random qualifier interface is defined as follows.

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

The guessnumber Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 331

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface Random {

}

The GeneratorManaged Bean
The Generator managed bean contains the two producer methods for the application. The
bean has the @ApplicationScoped annotation to specify that its context extends for the
duration of the user's interaction with the application.

package guessnumber;

import java.io.Serializable;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

@ApplicationScoped

public class Generator implements Serializable {

private static final long serialVersionUID = -7213673465118041882L;

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

private int maxNumber = 100;

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

The guessnumber Example

The Java EE 6 Tutorial, Volume I • December 2009332

}

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

}

The UserNumberBeanManaged Bean
The UserNumberBean managed bean, the backing bean for the JavaServer Faces application,
provides the basic logic for the game. It implements setter and getter methods for the bean fields
and injects the two qualifier objects. It provides a reset method that allows you to begin a new
game after you complete one. It also provides a check method that determines whether the user
has guessed the number, and a validateNumberRange method that determines whether the
user's input is correct.

package guessnumber;

import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;

import javax.enterprise.inject.Instance;

import javax.inject.Inject;

import javax.inject.Named;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

@Named

@SessionScoped

public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;

private int number;

private Integer userNumber;

private int minimum;

private int remainingGuesses;

@MaxNumber

@Inject

private int maxNumber;

private int maximum;

@Random

The guessnumber Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 333

@Inject

Instance<Integer> randomInt;

public UserNumberBean() {

}

public int getNumber() {

return number;

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public int getMaximum() {

return (this.maximum);

}

public void setMaximum(int maximum) {

this.maximum = maximum;

}

public int getMinimum() {

return (this.minimum);

}

public void setMinimum(int minimum) {

this.minimum = minimum;

}

public int getRemainingGuesses() {

return remainingGuesses;

}

public String check() throws InterruptedException {

if (userNumber > number) {

maximum = userNumber - 1;

}

if (userNumber < number) {

minimum = userNumber + 1;

}

if (userNumber == number) {

FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage("Correct!"));

The guessnumber Example

The Java EE 6 Tutorial, Volume I • December 2009334

}

remainingGuesses--;

return null;

}

@PostConstruct

public void reset() {

this.minimum = 0;

this.userNumber = 0;

this.remainingGuesses = 10;

this.maximum = maxNumber;

this.number = randomInt.get();

}

public void validateNumberRange(FacesContext context, UIComponent toValidate,

Object value) {

if (remainingGuesses <= 0) {

FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);

((UIInput) toValidate).setValid(false);

return;

}

int input = (Integer) value;

if (input < minimum || input > maximum) {

((UIInput) toValidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientId(context), message);

}

}

}

The Facelets Page
This example uses the same template that the simplegreeting example uses. The index.xhtml
file, however, is more complex.

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

The guessnumber Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 335

<ui:define name="title">Guess My Number</ui:define>

<ui:define name="head">Guess My Number</ui:define>

<ui:define name="content">
<h:form id="GuessMain">

<div style="color: black; font-size: 24px;">
<p>I’m thinking of a number between

#{userNumberBean.minimum} and

#{userNumberBean.maximum}. You have

#{userNumberBean.remainingGuesses}
guesses.</p>

</div>

<h:panelGrid border="0" columns="5" style="font-size: 18px;">
Number:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">

</h:inputText>

<h:commandButton id="GuessButton" value="Guess"
action="#{userNumberBean.check}"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"/>

<h:commandButton id="RestartButton" value="Reset"
action="#{userNumberBean.reset}"
immediate="true" />

<h:outputText id="Higher" value="Higher!"
rendered="#{userNumberBean.number gt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"

style="color: red"/>
<h:outputText id="Lower" value="Lower!"

rendered="#{userNumberBean.number lt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"
style="color: red"/>

</h:panelGrid>

<div style="color: red; font-size: 14px;">
<h:messages id="messages" globalOnly="false"/>

</div>

</h:form>

</ui:define>

</ui:composition>

</html>

The Facelets page presents the user with the minimum and maximum values and the number of
guesses remaining. The user's interaction with the game takes place within the panelGrid table,
which contains an input field, Guess and Reset buttons, and a text field that appears if the guess
is higher or lower than the correct number. Every time the user clicks the Guess button, the
userNumberBean.check method is called to reset the maximum or minimum value or, if the
guess is correct, to generate a FacesMessage to that effect. The
userNumberBean.validateNumberRange method determines whether each guess is valid.

The guessnumber Example

The Java EE 6 Tutorial, Volume I • December 2009336

Building, Packaging, Deploying, and Running the
guessnumber Example
You can build, package, deploy, and run the guessnumber application using either NetBeans
IDE or the Ant tool.

▼ Building and Deploying the guessnumber Example Using NetBeans IDE
Follow these instructions to build, package, and deploy the guessnumber example to the
Enterprise Server using NetBeans IDE.

This procedure builds the application into the
tut-install/examples/cdi/guessnumber/build/web directory and deploys the contents of this
directory to the Enterprise Server.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to tut-install/examples/cdi/.

Select the guessnumber folder.

Select the Open as Main Project checkbox.

Click Open Project Folder.

In the Projects tab, right-click the guessnumberproject and select Deploy.

▼ Building, Packaging, and Deploying the guessnumber Example Using
Ant
Follow these instructions to build, package, and deploy the guessnumber example to the
Enterprise Server using Ant.

This procedure builds the application into the
tut-install/examples/cdi/guessnumber/build/web directory and deploys the contents of this
directory to the Enterprise Server.

This procedure builds and packages the application into guessnumber.war, located in
tut-install/examples/cdi/guessnumber/dist/, and deploys this WAR file to the Enterprise
Server.

In a terminal window, go to this directory:
tut-install/examples/cdi/guessnumber/

1

2

3

4

5

6

1

The guessnumber Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 337

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, guessnumber.war, located in the dist directory.

Type the following command:
ant deploy

The guessnumber.war file will be deployed to the Enterprise Server.

▼ Running the guessnumber Example

In a web browser, type the following URL:
http://localhost:8080/guessnumber

The Guess My Number page opens, as shown in Figure 18–2.

Type a number in the Number text field, then click Guess.
The minimum and maximum values are modified, along with the remaining number of
guesses.

Keep guessing numbers until you get the right answer or run out of guesses.
If you get the right answer, the input field and Guess button are grayed out, as shown in
Figure 18–3.

FIGURE 18–2 Guess My Number Example

2

3

1

2

3

The guessnumber Example

The Java EE 6 Tutorial, Volume I • December 2009338

Click the Reset button to play the game again with a new random number.

FIGURE 18–3 Guess My Number at End of Game

4

The guessnumber Example

Chapter 18 • Running the Basic Contexts and Dependency Injection Examples 339

340

Persistence
Part Six explores the Java Persistence API.

P A R T V I

341

342

Introduction to the Java Persistence API

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. Java Persistence consists of four areas:
■ The Java Persistence API
■ The query language
■ The Java Persistence Criteria API
■ Object/relational mapping metadata

Entities
An entity is a lightweight persistence domain object. Typically an entity represents a table in a
relational database, and each entity instance corresponds to a row in that table. The primary
programming artifact of an entity is the entity class, although entities can use helper classes.

The persistent state of an entity is represented either through persistent fields or persistent
properties. These fields or properties use object/relational mapping annotations to map the
entities and entity relationships to the relational data in the underlying data store.

Requirements for Entity Classes
An entity class must follow these requirements:
■ The class must be annotated with the javax.persistence.Entity annotation.
■ The class must have a public or protected, no-argument constructor. The class may have

other constructors.
■ The class must not be declared final. No methods or persistent instance variables must be

declared final.
■ If an entity instance is passed by value as a detached object, such as through a session bean’s

remote business interface, the class must implement the Serializable interface.

19C H A P T E R 1 9

343

■ Entities may extend both entity and non-entity classes, and non-entity classes may extend
entity classes.

■ Persistent instance variables must be declared private, protected, or package-private, and
can only be accessed directly by the entity class’s methods. Clients must access the entity’s
state through accessor or business methods.

Persistent Fields and Properties in Entity Classes
The persistent state of an entity can be accessed either through the entity’s instance variables or
through JavaBeans-style properties. The fields or properties must be of the following Java
language types:
■ Java primitive types
■ java.lang.String

■ Other serializable types including:
■ Wrappers of Java primitive types
■ java.math.BigInteger

■ java.math.BigDecimal

■ java.util.Date

■ java.util.Calendar

■ java.sql.Date

■ java.sql.Time

■ java.sql.TimeStamp

■ User-defined serializable types
■ byte[]

■ Byte[]

■ char[]

■ Character[]

■ Enumerated types
■ Other entities and/or collections of entities
■ Embeddable classes

Entities may use persistent fields, persistent properties, or a combination of both. If the
mapping annotations are applied to the entity’s instance variables, the entity uses persistent
fields. If the mapping annotations are applied to the entity’s getter methods for JavaBeans-style
properties, the entity uses persistent properties.

Persistent Fields
If the entity class uses persistent fields, the Persistence runtime accesses entity class instance
variables directly. All fields not annotated javax.persistence.Transient or not marked as
Java transient will be persisted to the data store. The object/relational mapping annotations
must be applied to the instance variables.

Entities

The Java EE 6 Tutorial, Volume I • December 2009344

Persistent Properties
If the entity uses persistent properties, the entity must follow the method conventions of
JavaBeans components. JavaBeans-style properties use getter and setter methods that are
typically named after the entity class’s instance variable names. For every persistent property
property of type Type of the entity, there is a getter method getProperty and setter method
setProperty. If the property is a boolean, you may use isProperty instead of getProperty. For
example, if a Customer entity uses persistent properties, and has a private instance variable
called firstName, the class defines a getFirstName and setFirstName method for retrieving
and setting the state of the firstName instance variable.

The method signature for single-valued persistent properties are as follows:

Type getProperty()

void setProperty(Type type)

The object/relational mapping annotations for persistent properties must be applied to the
getter methods. Mapping annotations cannot be applied to fields or properties annotated
@Transient or marked transient.

Using Collections in Entity Fields and Properties
Collection-valued persistent fields and properties must use the supported Java collection
interfaces regardless of whether the entity uses persistent fields or properties. The following
collection interfaces may be used:

■ java.util.Collection

■ java.util.Set

■ java.util.List

■ java.util.Map

If the entity class uses persistent fields, the type in the above method signatures must be one of
these collection types. Generic variants of these collection types may also be used. For example,
if the Customer entity has a persistent property that contains a set of phone numbers, it would
have the following methods:

Set<PhoneNumber> getPhoneNumbers() { ... }

void setPhoneNumbers(Set<PhoneNumber>) { ... }

If a field or property of an entity consists of a collection of basic types or embeddable classes, use
the javax.persistence.ElementCollection annotation on the field or property.

@ElementCollection has two attributes: targetClass and fetch. The targetClass attribute
specifies the class name of the basic or embeddable class, and is optional if the field or property
is defined using Java programming language generics. The optional fetch attribute is used to
specify whether the collection should be retrieved lazily or eagerly, using the
javax.persistence.FetchType constants of either LAZY or EAGER, respectively. By default, the
collection will be fetched lazily.

Entities

Chapter 19 • Introduction to the Java Persistence API 345

EXAMPLE 19–1 Specifying a Collection of Basic Types Using @ElementCollection

The following entity, Person, has a persistent field nicknames that is a collection of String
classes that will be fetched eagerly. The targetClass element is not required because it uses
generics to define the field.

@Entity

public class Person {

...

@ElementCollection(fetch=EAGER)

protected Set<String> nickname = new HashSet();

...

}

Using Map Collections in Entities
Collections of entity elements and relationships may be represented by java.util.Map
collections. A Map consists of a key and value.

When using Map elements or relationships, the following rules apply:

■ The Map key or value may be a basic Java programming language type, an embeddable class,
or an entity.

■ When the Map value is an embeddable class or basic type, use the @ElementCollection
annotation.

■ When the Map value is an entity use the @OneToMany or @ManyToMany annotation.
■ Only use the Map type on one side of a bidirectional relationship.

If the key type of a Map is a Java programming language basic type, use the
javax.persistence.MapKeyColumn annotation to set the column mapping for the key. By
default, the name attribute of @MapKeyColumn is of the form RELATIONSHIP FIELD/PROPERTY
NAME_KEY. For example, if the referencing relationship field name is image, the default name
attribute is IMAGE_KEY.

If the key type of a Map is an entity, use the javax.persistence.MapKeyJoinColumn annotation.
If the multiple columns are needed to set the mapping, use the
javax.persistence.MapKeyJoinColumns annotation to include multiple @MapKeyJoinColumn
annotations. If no @MapKeyJoinColumn is present, the mapping column name is by default set to
RELATIONSHIP FIELD/PROPERTY NAME_KEY. For example, if the relationship field name is
employee, the default name attribute is EMPLOYEE_KEY.

If Java programming language generic types are not used in the relationship field or property,
the key class must be explicitly set using the javax.persistence.MapKeyClass annotation.

If the Map key is the primary key, or a persistent field or property of the entity that is the Map
value, use the javax.persistence.MapKey annotation. The @MapKeyClass and @MapKey

annotations cannot be used on the same field or property.

Entities

The Java EE 6 Tutorial, Volume I • December 2009346

If Map value is a Java programming language basic type or an embeddable class, it will be
mapped as a collection table in the underlying database. If generic types are not used, the
@ElementCollection annotation's targetClass attribute must be set to the type of the Map
value.

If the Map value is an entity, and part of a many-to-many or one-to-many unidirectional
relationship, it will be mapped as a join table in the underlying database. A unidirectional
one-to-many relationship that uses a Map may also be mapped using the @JoinColumn
annotation.

If the entity is part of a one-to-many/many-to-one bidirectional relationship, it will be mapped
in the table of the entity that represents the value of the Map. If generic types are not used, the
targetEntity attribute of the @OneToMany and @ManyToMany annotations must be set to the
type of the Map value.

Primary Keys in Entities
Each entity has a unique object identifier. A customer entity, for example, might be identified by
a customer number. The unique identifier, or primary key, enables clients to locate a particular
entity instance. Every entity must have a primary key. An entity may have either a simple or a
composite primary key.

Simple primary keys use the javax.persistence.Id annotation to denote the primary key
property or field.

Composite primary keys are used when a primary key consists of more than one attribute,
which corresponds to a set of single persistent properties or fields. Composite primary keys
must be defined in a primary key class. Composite primary keys are denoted using the
javax.persistence.EmbeddedId and javax.persistence.IdClass annotations.

The primary key, or the property or field of a composite primary key, must be one of the
following Java language types:

■ Java primitive types
■ Java primitive wrapper types
■ java.lang.String

■ java.util.Date (the temporal type should be DATE)
■ java.sql.Date

■ java.math.BigDecimal

■ java.math.BigInteger

Floating point types should never be used in primary keys. If you use a generated primary key,
only integral types will be portable.

Entities

Chapter 19 • Introduction to the Java Persistence API 347

Primary Key Classes
A primary key class must meet these requirements:
■ The access control modifier of the class must be public.
■ The properties of the primary key class must be public or protected if property-based

access is used.
■ The class must have a public default constructor.
■ The class must implement the hashCode() and equals(Object other) methods.
■ The class must be serializable.
■ A composite primary key must be represented and mapped to multiple fields or properties

of the entity class, or must be represented and mapped as an embeddable class.
■ If the class is mapped to multiple fields or properties of the entity class, the names and types

of the primary key fields or properties in the primary key class must match those of the
entity class.

The following primary key class is a composite key, the orderId and itemId fields together
uniquely identify an entity.

public final class LineItemKey implements Serializable {

public Integer orderId;

public int itemId;

public LineItemKey() {}

public LineItemKey(Integer orderId, int itemId) {

this.orderId = orderId;

this.itemId = itemId;

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return (

(orderId==null?other.orderId==null:orderId.equals

(other.orderId)

)

&&

(itemId == other.itemId)

);

}

Entities

The Java EE 6 Tutorial, Volume I • December 2009348

public int hashCode() {

return (

(orderId==null?0:orderId.hashCode())

^

((int) itemId)

);

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

Multiplicity in Entity Relationships
There are four types of multiplicities: one-to-one, one-to-many, many-to-one, and
many-to-many.

One-to-one: Each entity instance is related to a single instance of another entity. For example, to
model a physical warehouse in which each storage bin contains a single widget, StorageBin and
Widget would have a one-to-one relationship. One-to-one relationships use the
javax.persistence.OneToOne annotation on the corresponding persistent property or field.

One-to-many: An entity instance can be related to multiple instances of the other entities. A
sales order, for example, can have multiple line items. In the order application, Order would
have a one-to-many relationship with LineItem. One-to-many relationships use the
javax.persistence.OneToMany annotation on the corresponding persistent property or field.

Many-to-one: Multiple instances of an entity can be related to a single instance of the other
entity. This multiplicity is the opposite of a one-to-many relationship. In the example just
mentioned, from the perspective of LineItem the relationship to Order is many-to-one.
Many-to-one relationships use the javax.persistence.ManyToOne annotation on the
corresponding persistent property or field.

Many-to-many: The entity instances can be related to multiple instances of each other. For
example, in college each course has many students, and every student may take several courses.
Therefore, in an enrollment application, Course and Student would have a many-to-many
relationship. Many-to-many relationships use the javax.persistence.ManyToMany
annotation on the corresponding persistent property or field.

Entities

Chapter 19 • Introduction to the Java Persistence API 349

Direction in Entity Relationships
The direction of a relationship can be either bidirectional or unidirectional. A bidirectional
relationship has both an owning side and an inverse side. A unidirectional relationship has only
an owning side. The owning side of a relationship determines how the Persistence runtime
makes updates to the relationship in the database.

Bidirectional Relationships
In a bidirectional relationship, each entity has a relationship field or property that refers to the
other entity. Through the relationship field or property, an entity class’s code can access its
related object. If an entity has a related field, then the entity is said to “know” about its related
object. For example, if Order knows what LineItem instances it has and if LineItem knows
what Order it belongs to, then they have a bidirectional relationship.

Bidirectional relationships must follow these rules:

■ The inverse side of a bidirectional relationship must refer to its owning side by using the
mappedBy element of the @OneToOne, @OneToMany, or @ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the
relationship.

■ The many side of many-to-one bidirectional relationships must not define the mappedBy
element. The many side is always the owning side of the relationship.

■ For one-to-one bidirectional relationships, the owning side corresponds to the side that
contains the corresponding foreign key.

■ For many-to-many bidirectional relationships either side may be the owning side.

Unidirectional Relationships
In a unidirectional relationship, only one entity has a relationship field or property that refers to
the other. For example, LineItem would have a relationship field that identifies Product, but
Product would not have a relationship field or property for LineItem. In other words, LineItem
knows about Product, but Product doesn’t know which LineItem instances refer to it.

Queries and Relationship Direction
Java Persistence query language and Criteria API queries often navigate across relationships.
The direction of a relationship determines whether a query can navigate from one entity to
another. For example, a query can navigate from LineItem to Product but cannot navigate in
the opposite direction. For Order and LineItem, a query could navigate in both directions,
because these two entities have a bidirectional relationship.

Entities

The Java EE 6 Tutorial, Volume I • December 2009350

Cascade Operations and Relationships
Entities that use relationships often have dependencies on the existence of the other entity in
the relationship. For example, a line item is part of an order, and if the order is deleted, then the
line item should also be deleted. This is called a cascade delete relationship.

The javax.persistence.CascadeType enumerated type defines the cascade operations that
are applied in the cascade element of the relationship annotations.

TABLE 19–1 Cascade Operations For Entities

Cascade Operation Description

ALL All cascade operations will be applied to the parent
entity's related entity. All is equivalent to specifying
cascade={DETACH, MERGE, PERSIST, REFRESH,

REMOVE}

DETACH If the parent entity is detached from the persistence
context, the related entity will also be detached.

MERGE If the parent entity is merged into the persistence
context, the related entity will also be merged.

PERSIST If the parent entity is persisted into the persistence
context, the related entity will also be persisted.

REFRESH If the parent entity is refreshed in the current
persistence context, the related entity will also be
refreshed.

REMOVE If the parent entity is removed from the current
persistence context, the related entity will also be
removed.

Cascade delete relationships are specified using the cascade=REMOVE element specification for
@OneToOne and @OneToMany relationships. For example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { return orders; }

Orphan Removal in Relationships
When a target entity in one-to-one or one-to-many relationship is removed from the
relationship, it is often desirable to cascade the remove operation to the target entity. Such
target entities are considered “orphans,” and the orphanRemoval attribute can be used to specify
that orphaned entities should be removed. For example, if an order has many line items, and
one of the line items is removed from the order, the removed line item is considered an orphan.
If orphanRemoval is set to true, the line item entity will be deleted when the line item is
removed from the order.

Entities

Chapter 19 • Introduction to the Java Persistence API 351

The orphanRemoval attribute in @OneToMany and @oneToOne takes a boolean value, and is by
default false.

EXAMPLE 19–2 Enabling Orphan Removal in @OneToManyRelationship

The following example will cascade the remove operation to the orphaned customer entity
when it is removed from the relationship.

@OneToMany(mappedBy="customer", orphanRemoval="true")
public List<Order> getOrders() { ... }

Embeddable Classes in Entities
Embeddable classes are used to represent the state of an entity, but don't have a persistent
identity of their own, unlike entity classes. Instances of an embeddable class share the identity of
the entity that owns it. Embeddable classes only exist as the state of another entity. An entity
may have single-valued or collection-valued embeddable class attributes.

Embeddable classes have the same rules as entity classes, except that they are annotated with the
javax.persistence.Embeddable annotation instead of @Entity.

EXAMPLE 19–3 Embeddable Class Example

The following embeddable class, ZipCode has two fields, zip and plusFour.

@Embeddable

public class ZipCode {

String zip;

String plusFour;

...

}

This embeddable class is used by the Address entity.

@Entity

public class Address {

@Id

protected long id

String street1;

String street2;

String city;

String province;

@Embedded

ZipCode zipCode;

String country;

...

Entities

The Java EE 6 Tutorial, Volume I • December 2009352

EXAMPLE 19–3 Embeddable Class Example (Continued)

}

Entities that own embeddable classes as part of their persistent state may annotate the field or
property with the javax.persitence.Embedded annotation, but are not required to do so.

Embeddable classes may themselves use other embeddable classes to represent their state. They
may also contain collections of basic Java programming language types, or other embeddable
classes. Embeddable classes may also contain relationships to other entities or collections of
entities. If the embeddable class has such a relationship, the relationship is from the target entity
or collection of entities to the entity that owns the embeddable class.

Entity Inheritance
Entities support class inheritance, polymorphic associations, and polymorphic queries. They
can extend non-entity classes, and non-entity classes can extend entity classes. Entity classes
can be both abstract and concrete.

The roster example application demonstrates entity inheritance, and is described in “Entity
Inheritance in the roster Application” on page 378.

Abstract Entities
An abstract class may be declared an entity by decorating the class with @Entity. Abstract
entities differ from concrete entities only in that they cannot be instantiated.

Abstract entities can be queried just like concrete entities. If an abstract entity is the target of a
query, the query operates on all the concrete subclasses of the abstract entity.

@Entity

public abstract class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

}

Entities

Chapter 19 • Introduction to the Java Persistence API 353

Mapped Superclasses
Entities may inherit from superclasses that contain persistent state and mapping information,
but are not entities. That is, the superclass is not decorated with the @Entity annotation, and is
not mapped as an entity by the Java Persistence provider. These superclasses are most often
used when you have state and mapping information common to multiple entity classes.

Mapped superclasses are specified by decorating the class with the
javax.persistence.MappedSuperclass annotation.

@MappedSuperclass

public class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

...

}

Mapped superclasses cannot be queried, and can’t be used in EntityManager or Query
operations. You must use entity subclasses of the mapped superclass in EntityManager or
Query operations. Mapped superclasses can’t be targets of entity relationships. Mapped
superclasses can be abstract or concrete.

Mapped superclasses do not have any corresponding tables in the underlying datastore. Entities
that inherit from the mapped superclass define the table mappings. For instance, in the code
sample above the underlying tables would be FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE, but
there is no EMPLOYEE table.

Non-Entity Superclasses
Entities may have non-entity superclasses, and these superclasses can be either abstract or
concrete. The state of non-entity superclasses is non-persistent, and any state inherited from
the non-entity superclass by an entity class is non-persistent. Non-entity superclasses may not
be used in EntityManager or Query operations. Any mapping or relationship annotations in
non-entity superclasses are ignored.

Entities

The Java EE 6 Tutorial, Volume I • December 2009354

Entity Inheritance Mapping Strategies
You can configure how the Java Persistence provider maps inherited entities to the underlying
datastore by decorating the root class of the hierarchy with the
javax.persistence.Inheritance annotation. There are three mapping strategies that are
used to map the entity data to the underlying database:

■ A single table per class hierarchy
■ A table per concrete entity class
■ A “join” strategy, where fields or properties that are specific to a subclass are mapped to a

different table than the fields or properties that are common to the parent class

The strategy is configured by setting the strategy element of @Inheritance to one of the
options defined in the javax.persistence.InheritanceType enumerated type:

public enum InheritanceType {

SINGLE_TABLE,

JOINED,

TABLE_PER_CLASS

};

The default strategy is InheritanceType.SINGLE_TABLE, and is used if the @Inheritance
annotation is not specified on the root class of the entity hierarchy.

The Single Table per Class Hierarchy Strategy

With this strategy, which corresponds to the default InheritanceType.SINGLE_TABLE, all
classes in the hierarchy are mapped to a single table in the database. This table has a
discriminator column, a column that contains a value that identifies the subclass to which the
instance represented by the row belongs.

The discriminator column can be specified by using the
javax.persistence.DiscriminatorColumn annotation on the root of the entity class
hierarchy.

TABLE 19–2 @DiscriminatorColumnElements

Type Name Description

String name The name of the column in the table to be used as
the discriminator column. The default is DTYPE.
This element is optional.

Entities

Chapter 19 • Introduction to the Java Persistence API 355

TABLE 19–2 @DiscriminatorColumnElements (Continued)
Type Name Description

DiscriminatorType discriminatorType The type of the column to be used as a
discriminator column. The default is
DiscriminatorType.STRING. This element is
optional.

String columnDefinition The SQL fragment to use when creating the
discriminator column. The default is generated by
the Persistence provider, and is
implementation-specific. This element is
optional.

String length The column length for String-based
discriminator types. This element is ignored for
non-String discriminator types. The default is
31. This element is optional.

The javax.persistence.DiscriminatorType enumerated type is used to set the type of the
discriminator column in the database by setting the discriminatorType element of
@DiscriminatorColumn to one of the defined types. DiscriminatorType is defined as:

public enum DiscriminatorType {

STRING,

CHAR,

INTEGER

};

If @DiscriminatorColumn is not specified on the root of the entity hierarchy and a
discriminator column is required, the Persistence provider assumes a default column name of
DTYPE, and column type of DiscriminatorType.STRING.

The javax.persistence.DiscriminatorValue annotation may be used to set the value
entered into the discriminator column for each entity in a class hierarchy. You may only
decorate concrete entity classes with @DiscriminatorValue.

If @DiscriminatorValue is not specified on an entity in a class hierarchy that uses a
discriminator column, the Persistence provider will provide a default, implementation-specific
value. If the discriminatorType element of @DiscriminatorColumn is
DiscriminatorType.STRING, the default value is the name of the entity.

This strategy provides good support for polymorphic relationships between entities and queries
that cover the entire entity class hierarchy. However, it requires the columns that contain the
state of subclasses to be nullable.

Entities

The Java EE 6 Tutorial, Volume I • December 2009356

The Table per Concrete Class Strategy

In this strategy, which corresponds to InheritanceType.TABLE_PER_CLASS, each concrete class
is mapped to a separate table in the database. All fields or properties in the class, including
inherited fields or properties, are mapped to columns in the class’s table in the database.

This strategy provides poor support for polymorphic relationships, and usually requires either
SQL UNION queries or separate SQL queries for each subclass for queries that cover the entire
entity class hierarchy.

Support for this strategy is optional, and may not be supported by all Java Persistence API
providers. The default Java Persistence API provider in the Enterprise Server does not support
this strategy.

The Joined Subclass Strategy

In this strategy, which corresponds to InheritanceType.JOINED, the root of the class hierarchy
is represented by a single table, and each subclass has a separate table that only contains those
fields specific to that subclass. That is, the subclass table does not contain columns for inherited
fields or properties. The subclass table also has a column or columns that represent its primary
key, which is a foreign key to the primary key of the superclass table.

This strategy provides good support for polymorphic relationships, but requires one or more
join operations to be performed when instantiating entity subclasses. This may result in poor
performance for extensive class hierarchies. Similarly, queries that cover the entire class
hierarchy require join operations between the subclass tables, resulting in decreased
performance.

Some Java Persistence API providers, including the default provider in the Enterprise Server,
require a discriminator column in the table that corresponds to the root entity when using the
joined subclass strategy. If you are not using automatic table creation in your application, make
sure the database table is set up correctly for the discriminator column defaults, or use the
@DiscriminatorColumn annotation to match your database schema. For information on
discriminator columns, see “The Single Table per Class Hierarchy Strategy” on page 355.

Managing Entities
Entities are managed by the entity manager. The entity manager is represented by
javax.persistence.EntityManager instances. Each EntityManager instance is associated
with a persistence context. A persistence context defines the scope under which particular entity
instances are created, persisted, and removed.

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 357

The Persistence Context
A persistence context is a set of managed entity instances that exist in a particular data store.
The EntityManager interface defines the methods that are used to interact with the persistence
context.

The EntityManager Interface
The EntityManager API creates and removes persistent entity instances, finds entities by the
entity’s primary key, and allows queries to be run on entities.

Container-Managed Entity Managers
With a container-managed entity manager, an EntityManager instance’s persistence context is
automatically propagated by the container to all application components that use the
EntityManager instance within a single Java Transaction Architecture (JTA) transaction.

JTA transactions usually involve calls across application components. To complete a JTA
transaction, these components usually need access to a single persistence context. This occurs
when an EntityManager is injected into the application components by means of the
javax.persistence.PersistenceContext annotation. The persistence context is
automatically propagated with the current JTA transaction, and EntityManager references that
are mapped to the same persistence unit provide access to the persistence context within that
transaction. By automatically propagating the persistence context, application components
don’t need to pass references to EntityManager instances to each other in order to make
changes within a single transaction. The Java EE container manages the life cycle of
container-managed entity managers.

To obtain an EntityManager instance, inject the entity manager into the application
component:

@PersistenceContext

EntityManager em;

Application-Managed Entity Managers
With application-managed entity managers, on the other hand, the persistence context is not
propagated to application components, and the life cycle of EntityManager instances is
managed by the application.

Application-managed entity managers are used when applications need to access a persistence
context that is not propagated with the JTA transaction across EntityManager instances in a
particular persistence unit. In this case, each EntityManager creates a new, isolated persistence
context. The EntityManager, and its associated persistence context, is created and destroyed
explicitly by the application. They are also used when directly injecting EntityManager

Managing Entities

The Java EE 6 Tutorial, Volume I • December 2009358

instances can't be done because EntityManager instances are not thread-safe.
EntityManagerFactory instances are thread-safe.

Applications create EntityManager instances in this case by using the createEntityManager
method of javax.persistence.EntityManagerFactory.

To obtain an EntityManager instance, you first must obtain an EntityManagerFactory

instance by injecting it into the application component by means of the
javax.persistence.PersistenceUnit annotation:

@PersistenceUnit

EntityManagerFactory emf;

Then, obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

Application-managed entity managers don't automatically propagate the JTA transaction
context. Such applications need to manually gain access to the JTA transaction manager and
add transaction demarcation information when performing entity operations. The
javax.transaction.UserTransaction interface defines methods to begin, commit, and
rollback transactions. Inject an instance of UserTransaction by creating an instance variable
annotated with @Resource.

@Resource

UserTransaction utx;

To begin a transaction, call the UserTransaction.begin method. When all the entity
operations are complete, call the UserTransaction.commit method to commit the transaction.
The UserTransaction.rollback method is used to roll back the current transaction.

EXAMPLE 19–4 User-Managed Transactions

The following example shows how to manage transactions in an application that uses an
application-managed entity manager.

@PersistenceContext

EntityManagerFactory emf;

EntityManager em;

@Resource

UserTransaction utx;

...

em = emf.createEntityManager();

try {

utx.begin();

em.persist(SomeEntity);

em.merge(AnotherEntity);

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 359

EXAMPLE 19–4 User-Managed Transactions (Continued)

em.remove(ThirdEntity);

utx.commit();

} catch (Exception e) {

utx.rollback();

}

Finding Entities Using the EntityManager
The EntityManager.find method is used to look up entities in the data store by the entity’s
primary key.

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder) {

Customer cust = em.find(Customer.class, custID);

cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);

}

Managing an Entity Instance’s Life Cycle
You manage entity instances by invoking operations on the entity by means of an
EntityManager instance. Entity instances are in one of four states: new, managed, detached, or
removed.

New entity instances have no persistent identity and are not yet associated with a persistence
context.

Managed entity instances have a persistent identity and are associated with a persistence
context.

Detached entity instances have a persistent identify and are not currently associated with a
persistence context.

Removed entity instances have a persistent identity, are associated with a persistent context,
and are scheduled for removal from the data store.

Persisting Entity Instances

New entity instances become managed and persistent either by invoking the persist method,
or by a cascading persist operation invoked from related entities that have the
cascade=PERSIST or cascade=ALL elements set in the relationship annotation. This means the
entity’s data is stored to the database when the transaction associated with the persist
operation is completed. If the entity is already managed, the persist operation is ignored,
although the persist operation will cascade to related entities that have the cascade element

Managing Entities

The Java EE 6 Tutorial, Volume I • December 2009360

set to PERSIST or ALL in the relationship annotation. If persist is called on a removed entity
instance, it becomes managed. If the entity is detached, persist will throw an
IllegalArgumentException, or the transaction commit will fail.

@PersistenceContext

EntityManager em;

...

public LineItem createLineItem(Order order, Product product,

int quantity) {

LineItem li = new LineItem(order, product, quantity);

order.getLineItems().add(li);

em.persist(li);

return li;

}

The persist operation is propagated to all entities related to the calling entity that have the
cascade element set to ALL or PERSIST in the relationship annotation.

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Removing Entity Instances

Managed entity instances are removed by invoking the remove method, or by a cascading
remove operation invoked from related entities that have the cascade=REMOVE or cascade=ALL
elements set in the relationship annotation. If the remove method is invoked on a new entity,
the remove operation is ignored, although remove will cascade to related entities that have the
cascade element set to REMOVE or ALL in the relationship annotation. If remove is invoked on a
detached entity it will throw an IllegalArgumentException, or the transaction commit will
fail. If remove is invoked on an already removed entity, it will be ignored. The entity’s data will
be removed from the data store when the transaction is completed, or as a result of the flush
operation.

public void removeOrder(Integer orderId) {

try {

Order order = em.find(Order.class, orderId);

em.remove(order);

}...

In this example, all LineItem entities associated with the order are also removed, as
Order.getLineItems has cascade=ALL set in the relationship annotation.

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 361

Synchronizing Entity Data to the Database

The state of persistent entities is synchronized to the database when the transaction with which
the entity is associated commits. If a managed entity is in a bidirectional relationship with
another managed entity, the data will be persisted based on the owning side of the relationship.

To force synchronization of the managed entity to the data store, invoke the flush method of
the EntityManager instance. If the entity is related to another entity, and the relationship
annotation has the cascade element set to PERSIST or ALL, the related entity’s data will be
synchronized with the data store when flush is called.

If the entity is removed, calling flush will remove the entity data from the data store.

Persistence Units
A persistence unit defines a set of all entity classes that are managed by EntityManager
instances in an application. This set of entity classes represents the data contained within a
single data store.

Persistence units are defined by the persistence.xml configuration file. The JAR file or
directory whose META-INF directory contains persistence.xml is called the root of the
persistence unit. The scope of the persistence unit is determined by the persistence unit’s root.

Each persistence unit must be identified with a name that is unique to the persistence unit’s
scope.

Persistent units can be packaged as part of a WAR or EJB JAR file, or can be packaged as a JAR
file that can then be included in an WAR or EAR file.

If you package the persistent unit as a set of classes in an EJB JAR file, persistence.xml should
be put in the EJB JAR’s META-INF directory.

If you package the persistence unit as a set of classes in a WAR file, persistence.xml should be
located in the WAR file’s WEB-INF/classes/META-INF directory.

If you package the persistence unit in a JAR file that will be included in a WAR or EAR file, the
JAR file should be located:

■ In the WEB-INF/lib directory of a WAR.
■ In the EAR file’s library directory.

Note – In the Java Persistence API 1.0, JAR files could be located at the root of an EAR file as
the root of the persistence unit. This is no longer supported. Portable applications should
use the EAR file's library directory as the root of the persistence unit.

Managing Entities

The Java EE 6 Tutorial, Volume I • December 2009362

The persistence.xml File
persistence.xml defines one or more persistence units. The following is an example
persistence.xml file.

<persistence>

<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.

It does not rely on any vendor-specific features and can

therefore be deployed to any persistence provider.

</description>

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

<jar-file>MyOrderApp.jar</jar-file>

<class>com.widgets.Order</class>

<class>com.widgets.Customer</class>

</persistence-unit>

</persistence>

This file defines a persistence unit named OrderManagement, which uses a JTA-aware data
source jdbc/MyOrderDB. The jar-file and class elements specify managed persistence
classes: entity classes, embeddable classes, and mapped superclasses. The jar-file element
specifies JAR files that are visible to the packaged persistence unit that contain managed
persistence classes, while the class element explicitly names managed persistence classes.

The jta-data-source (for JTA-aware data sources) and non-jta-data-source

(non-JTA-aware data sources) elements specify the global JNDI name of the data source to be
used by the container.

Querying Entities
There are two methods of querying entities using the Java Persistence API. The Java Persistence
query language (JPQL) is a simple, string-based language similar to SQL used to query entities
and their relationships. See Chapter 21, “The Java Persistence Query Language,” for more
information on the Java Persistence query language. The Criteria API is used to create type-safe
queries using Java programming language APIs to query for entities and their relationships. See
Chapter 22, “Creating Queries Using the Criteria API,” for more information on the Criteria
API.

Each approach, JPQL and the Criteria API, has advantages and disadvantages.

JPQL queries are typically more concise compared to Criteria queries, just a few lines long. They
also tend to be more readable compared to Criteria queries, and developers familiar with SQL
will find it easy to learn the syntax of JPQL. JPQL named queries can be defined in the entity
class using a Java programming language annotation, or in the application's deployment
descriptor. JPQL queries are not type-safe, however, and require a cast when retrieving the
query result from the entity manager. This means that type casting errors may not be caught at
compile-time. JPQL queries don't support open-ended parameters.

Querying Entities

Chapter 19 • Introduction to the Java Persistence API 363

Criteria queries allow you to define the query in the business tier of the application. While this is
also possible using JPQL dynamic queries, Criteria queries provide better performance because
JPQL dynamic queries must be parsed each time they are called. Criteria queries are type-safe,
and therefore don't require casting like JPQL queries. The Criteria API is just another Java
programming language API, and doesn't require developers to learn the syntax of another
query language. Criteria queries are typically more verbose compared to JPQL queries, and
require the developer to create several objects and perform operations on those objects before
submitting the query to the entity manager.

Querying Entities

The Java EE 6 Tutorial, Volume I • December 2009364

Running the Persistence Examples

This chapter describes how to use the Java Persistence API in different example applications.
The material here focuses on the source code and settings of three examples. The first example
called order is an application that uses a stateful session bean to manage entities related to an
ordering system. The second example is roster, an application that manages a community
sports system. This chapter assumes that you are familiar with the concepts detailed in
Chapter 19, “Introduction to the Java Persistence API.”

The orderApplication
The order application is a simple inventory and ordering application for maintaining a catalog
of parts and placing an itemized order of those parts. It has entities that represent parts,
vendors, orders, and line items. These entities are accessed using a stateful session bean that
holds the business logic of the application. A simple singleton session bean creates the initial
entities on application deployment. A Facelets web application manipulates the data, and
displays data from the catalog.

The information contained in an order can be divided into different elements. What is the order
number? What parts are included in the order? What parts make up that part? Who makes the
part? What are the specifications for the part? Are there any schematics for the part? order is a
simplified version of an ordering system that has all these elements.

The order application consists of a single WAR module that includes the enterprise bean
classes, the entities, the support classes, and the Facelets XHTML and class files.

Entity Relationships in the orderApplication
The order application demonstrates several types of entity relationships: one-to-many,
many-to-one, one-to-one, unidirectional, and self-referential relationships.

20C H A P T E R 2 0

365

Self-Referential Relationships
A self-referential relationship is a relationship between relationship fields in the same entity.
Part has a field bomPart that has a one-to-many relationship with the field parts, which is also
in Part. That is, a part can be made up of many parts, and each of those parts has exactly one
bill-of-material part.

The primary key for Part is a compound primary key, a combination of the partNumber and
revision fields. It is mapped to the PARTNUMBER and REVISION columns in the EJB_ORDER_PART
table.

...

@ManyToOne

@JoinColumns({

@JoinColumn(name="BOMPARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="BOMREVISION",
referencedColumnName="REVISION")

})

public Part getBomPart() {

return bomPart;

}

...

@OneToMany(mappedBy="bomPart")
public Collection<Part> getParts() {

return parts;

}

...

One-to-One Relationships
Part has a field, vendorPart, that has a one-to-one relationship with VendorPart’s part field.
That is, each part has exactly one vendor part, and vice versa.

Here is the relationship mapping in Part:

@OneToOne(mappedBy="part")
public VendorPart getVendorPart() {

return vendorPart;

}

Here is the relationship mapping in VendorPart:

@OneToOne

@JoinColumns({

@JoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="PARTREVISION",

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009366

referencedColumnName="REVISION")
})

public Part getPart() {

return part;

}

Note that, because Part uses a compound primary key, the @JoinColumns annotation is used to
map the columns in the PERSISTENCE_ORDER_VENDOR_PART table to the columns in
PERSISTENCE_ORDER_PART. PERSISTENCE_ORDER_VENDOR_PART’s PARTREVISION column refers
to PERSISTENCE_ORDER_PART’s REVISION column.

One-to-Many Relationship Mapped to Overlapping Primary and
Foreign Keys
Order has a field, lineItems, that has a one-to-many relationship with LineItem’s field order.
That is, each order has one or more line item.

LineItem uses a compound primary key that is made up of the orderId and itemId fields. This
compound primary key maps to the ORDERID and ITEMID columns in the
PERSISTENCE_ORDER_LINEITEM database table. ORDERID is a foreign key to the ORDERID column
in the PERSISTENCE_ORDER_ORDER table. This means that the ORDERID column is mapped twice:
once as a primary key field, orderId; and again as a relationship field, order.

Here’s the relationship mapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

Unidirectional Relationships
LineItem has a field, vendorPart, that has a unidirectional many-to-one relationship with
VendorPart. That is, there is no field in the target entity in this relationship.

@ManyToOne

public VendorPart getVendorPart() {

return vendorPart;

}

The orderApplication

Chapter 20 • Running the Persistence Examples 367

Primary Keys in the orderApplication
The order application uses several types of primary keys: single-valued primary keys,
compound primary keys, and generated primary keys.

Generated Primary Keys
VendorPart uses a generated primary key value. That is, the application does not assign primary
key values for the entities, but instead relies on the persistence provider to generate the primary
key values. The @GeneratedValue annotation is used to specify that an entity will use a
generated primary key.

In VendorPart, the following code specifies the settings for generating primary key values:

@TableGenerator(

name="vendorPartGen",
table="PERSISTENCE_ORDER_SEQUENCE_GENERATOR",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="VENDOR_PART_ID",
allocationSize=10)

@Id

@GeneratedValue(strategy=GenerationType.TABLE,

generator="vendorPartGen")
public Long getVendorPartNumber() {

return vendorPartNumber;

}

The @TableGenerator annotation is used in conjunction with @GeneratedValue’s
strategy=TABLE element. That is, the strategy used to generate the primary keys is use a table in
the database. @TableGenerator is used to configure the settings for the generator table. The
name element sets the name of the generator, which is vendorPartGen in VendorPart.

The EJB_ORDER_SEQUENCE_GENERATOR table, which has two columns GEN_KEY and GEN_VALUE,
will store the generated primary key values. This table could be used to generate other entity’s
primary keys, so the pkColumnValue element is set to VENDOR_PART_ID to distinguish this
entity’s generated primary keys from other entity’s generated primary keys. The
allocationSize element specifies the amount to increment when allocating primary key
values In this case, each VendorPart’s primary key will increment by 10.

The primary key field vendorPartNumber is of type Long, as the generated primary key’s field
must be an integral type.

Compound Primary Keys
A compound primary key is made up of multiple fields and follows the requirements described
in “Primary Key Classes” on page 348. To use a compound primary key, you must create a
wrapper class.

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009368

In order, two entities use compound primary keys: Part and LineItem.

Part uses the PartKey wrapper class. Part’s primary key is a combination of the part number
and the revision number. PartKey encapsulates this primary key.

LineItem uses the LineItemKey class. LineItem’s primary key is a combination of the order
number and the item number. LineItemKey encapsulates this primary key. This is the
LineItemKey compound primary key wrapper class:

package order.entity;

public final class LineItemKey implements

java.io.Serializable {

private Integer orderId;

private int itemId;

public int hashCode() {

return ((this.getOrderId()==null

?0:this.getOrderId().hashCode())

^ ((int) this.getItemId()));

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return ((this.getOrderId()==null

?other.orderId==null:this.getOrderId().equals

(other.orderId)) && (this.getItemId ==

other.itemId));

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

The @IdClass annotation is used to specify the primary key class in the entity class. In
LineItem, @IdClass is used as follows:

@IdClass(order.entity.LineItemKey.class)

@Entity

...

The orderApplication

Chapter 20 • Running the Persistence Examples 369

public class LineItem {

...

}

The two fields in LineItem are tagged with the @Id annotation to mark those fields as part of the
compound primary key:

@Id

public int getItemId() {

return itemId;

}

...

@Id

@Column(name="ORDERID", nullable=false,

insertable=false, updatable=false)

public Integer getOrderId() {

return orderId;

}

For orderId, you also use the @Column annotation to specify the column name in the table, and
that this column should not be inserted or updated, as it is an overlapping foreign key pointing
at the PERSISTENCE_ORDER_ORDER table’s ORDERID column (see “One-to-Many Relationship
Mapped to Overlapping Primary and Foreign Keys” on page 367). That is, orderId will be set by
the Order entity.

In LineItem’s constructor, the line item number (LineItem.itemId) is set using the
Order.getNextId method.

public LineItem(Order order, int quantity, VendorPart

vendorPart) {

this.order = order;

this.itemId = order.getNextId();

this.orderId = order.getOrderId();

this.quantity = quantity;

this.vendorPart = vendorPart;

}

Order.getNextId counts the number of current line items, adds one, and returns that number.

public int getNextId() {

return this.lineItems.size() + 1;

}

Part doesn’t require the @Column annotation on the two fields that comprise Part’s compound
primary key. This is because Part’s compound primary key is not an overlapping primary
key/foreign key.

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009370

@IdClass(order.entity.PartKey.class)

@Entity

...

public class Part {

...

@Id

public String getPartNumber() {

return partNumber;

}

...

@Id

public int getRevision() {

return revision;

}

...

}

Entity Mapped to More Than One Database Table
Part’s fields map to more than one database table: PERSISTENCE_ORDER_PART and
PERSISTENCE_ORDER_PART_DETAIL. The PERSISTENCE_ORDER_PART_DETAIL table holds the
specification and schematics for the part. The @SecondaryTable annotation is used to specify
the secondary table.

...

@Entity

@Table(name="PERSISTENCE_ORDER_PART")
@SecondaryTable(name="PERSISTENCE_ORDER_PART_DETAIL", pkJoinColumns={

@PrimaryKeyJoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@PrimaryKeyJoinColumn(name="REVISION",
referencedColumnName="REVISION")

})

public class Part {

...

}

PERSISTENCE_ORDER_PART_DETAIL shares the same primary key values as
PERSISTENCE_ORDER_PART. The pkJoinColumns element of @SecondaryTable is used to specify
that PERSISTENCE_ORDER_PART_DETAIL’s primary key columns are foreign keys to
PERSISTENCE_ORDER_PART. The @PrimaryKeyJoinColumn annotation sets the primary key
column names and specifies which column in the primary table the column refers to. In this
case, the primary key column names for both PERSISTENCE_ORDER_PART_DETAIL and
PERSISTENCE_ORDER_PART are the same: PARTNUMBER and REVISION, respectively.

The orderApplication

Chapter 20 • Running the Persistence Examples 371

Cascade Operations in the orderApplication
Entities that have relationships to other entities often have dependencies on the existence of the
other entity in the relationship. For example, a line item is part of an order, and if the order is
deleted, then the line item should also be deleted. This is called a cascade delete relationship.

In order, there are two cascade delete dependencies in the entity relationships. If the Order to
which a LineItem is related is deleted, then the LineItem should also be deleted. If the Vendor to
which a VendorPart is related is deleted, then the VendorPart should also be deleted.

You specify the cascade operations for entity relationships by setting the cascade element in the
inverse (non-owning) side of the relationship. The cascade element is set to ALL in the case of
Order.lineItems. This means that all persistence operations (deletes, updates, and so on) are
cascaded from orders to line items.

Here is the relationship mapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

BLOB and CLOB Database Types in the order
Application
The PARTDETAIL table in the database has a column, DRAWING, of type BLOB. BLOB stands for
binary large objects, which are used for storing binary data such as an image. The DRAWING
column is mapped to the field Part. drawing of type java.io.Serializable. The @Lob
annotation is used to denote that the field is large object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public Serializable getDrawing() {

return drawing;

}

PERSISTENCE_ORDER_PART_DETAIL also has a column, SPECIFICATION, of type CLOB. CLOB
stands for character large objects, which are used to store string data too large to be stored in a

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009372

VARCHAR column. SPECIFICATION is mapped to the field Part.specification of type
java.lang.String. The @Lob annotation is also used here to denote that the field is a large
object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public String getSpecification() {

return specification;

}

Both of these fields use the @Column annotation and set the table element to the secondary
table.

Temporal Types in the orderApplication
The Order.lastUpdate persistent property, which is of type java.util.Date, is mapped to the
PERSISTENCE_ORDER_ORDER.LASTUPDATE database field, which is of the SQL type TIMESTAMP.
To ensure the proper mapping between these types, you must use the @Temporal annotation
with the proper temporal type specified in @Temporal’s element. @Temporal’s elements are of
type javax.persistence.TemporalType. The possible values are:

■ DATE, which maps to java.sql.Date

■ TIME, which maps to java.sql.Time

■ TIMESTAMP, which maps to java.sql.Timestamp

Here is the relevant section of Order:

@Temporal(TIMESTAMP)

public Date getLastUpdate() {

return lastUpdate;

}

Managing the orderApplication’s Entities
The RequestBean stateful session bean contains the business logic and manages the entities of
order.

RequestBean uses the @PersistenceContext annotation to retrieve an entity manager instance
which is used to manage order’s entities in RequestBean’s business methods.

@PersistenceContext

private EntityManager em;

This EntityManager instance is a container-managed entity manager, so the container takes
care of all the transactions involved in the managing order’s entities.

The orderApplication

Chapter 20 • Running the Persistence Examples 373

Creating Entities
The RequestBean.createPart business method creates a new Part entity. The
EntityManager.persist method is used to persist the newly created entity to the database.

Part part = new Part(partNumber,

revision,

description,

revisionDate,

specification,

drawing);

em.persist(part);

The ConfigBean singleton session bean is used to initialize the data in order. ConfigBean is
annotated with @Startup, which indicates that the EJB container should create ConfigBean
when order is deployed. The createData method is annotated with @PostConstruct, and it
creates the initial entities used by order by calling RequestsBean's business methods.

Finding Entities
The RequestBean.getOrderPrice business method returns the price of a given order, based on
the orderId. The EntityManager.find method is used to retrieve the entity from the database.

Order order = em.find(Order.class, orderId);

The first argument of EntityManager.find is the entity class, and the second is the primary
key.

Setting Entity Relationships
The RequestBean.createVendorPart business method creates a VendorPart associated with a
particular Vendor. The EntityManager.persist method is used to persist the newly created
VendorPart entity to the database, and the VendorPart.setVendor and
Vendor.setVendorPart methods are used to associate the VendorPart with the Vendor.

PartKey pkey = new PartKey();

pkey.partNumber = partNumber;

pkey.revision = revision;

Part part = em.find(Part.class, pkey);

VendorPart vendorPart = new VendorPart(description, price,

part);

em.persist(vendorPart);

Vendor vendor = em.find(Vendor.class, vendorId);

vendor.addVendorPart(vendorPart);

vendorPart.setVendor(vendor);

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009374

Using Queries
The RequestBean.adjustOrderDiscount business method updates the discount applied to all
orders. It uses the findAllOrders named query, defined in Order:

@NamedQuery(

name="findAllOrders",
query="SELECT o FROM Order o"

)

The EntityManager.createNamedQuery method is used to run the query. Because the query
returns a List of all the orders, the Query.getResultList method is used.

List orders = em.createNamedQuery(

"findAllOrders")
.getResultList();

The RequestBean.getTotalPricePerVendor business method returns the total price of all the
parts for a particular vendor. It uses a named parameter, id, defined in the named query
findTotalVendorPartPricePerVendor defined in VendorPart.

@NamedQuery(

name="findTotalVendorPartPricePerVendor",
query="SELECT SUM(vp.price) " +

"FROM VendorPart vp " +

"WHERE vp.vendor.vendorId = :id"
)

When running the query, the Query.setParameter method is used to set the named parameter
id to the value of vendorId, the parameter to RequestBean.getTotalPricePerVendor.

return (Double) em.createNamedQuery(

"findTotalVendorPartPricePerVendor")
.setParameter("id", vendorId)

.getSingleResult();

The Query.getSingleResult method is used for this query because the query returns a single
value.

Removing Entities
The RequestBean.removeOrder business method deletes a given order from the database. It
uses the EntityManager.remove method to delete the entity from the database.

Order order = em.find(Order.class, orderId);

em.remove(order);

The orderApplication

Chapter 20 • Running the Persistence Examples 375

Building and Running the orderApplication
This section describes how to build, package, deploy, and run the order application. To do this,
you will create the database tables in the JavaDB server, then build, deploy, and run the
example.

Building, Packaging, Deploying, and Running order In NetBeans IDE
Follow these instructions to build, package, deploy, and run the order example to your
Enterprise Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/examples/persistence/.
3. Select the order folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the order project and select Run.

NetBeans will open a web browser to http://localhost:8080/order/.

Building, Packaging, Deploying, and Running orderUsing Ant
To build the application components of order, enter the following command:

ant

This runs the default task, which compiles the source files and packages the application into an
WAR file located at tut-install/examples/persistence/order/dist/order.war.

To deploy the WAR, make sure the Enterprise Server is started, then enter the following
command:

ant deploy

Open a web browser to http://localhost:8080/order/ to create and update the order data.

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

Undeploying order

To undeploy order.war, enter the following command:

ant undeploy

The orderApplication

The Java EE 6 Tutorial, Volume I • December 2009376

The rosterApplication
The roster application maintains the team rosters for players in recreational sports leagues.
The application has four components: Java Persistence API entities (Player, Team, and League),
a stateful session bean (RequestBean), an application client (RosterClient), and three helper
classes (PlayerDetails, TeamDetails, and LeagueDetails).

Functionally, roster is similar to the order application described earlier in this chapter with
three new features that order does not have: many-to-many relationships, entity inheritance,
and automatic table creation at deployment time.

Relationships in the rosterApplication
A recreational sports system has the following relationships:

■ A player can be on many teams.
■ A team can have many players.
■ A team is in exactly one league.
■ A league has many teams.

In roster this is reflected by the following relationships between the Player, Team, and League

entities:

■ There is a many-to-many relationship between Player and Team.
■ There is a many-to-one relationship between Team and League.

The Many-To-Many Relationship in roster

The many-to-many relationship between Player and Team is specified by using the
@ManyToMany annotation.

In Team.java, the @ManyToMany annotation decorates the getPlayers method:

@ManyToMany

@JoinTable(

name="EJB_ROSTER_TEAM_PLAYER",
joinColumns=

@JoinColumn(name="TEAM_ID", referencedColumnName="ID"),
inverseJoinColumns=

@JoinColumn(name="PLAYER_ID", referencedColumnName="ID")
)

public Collection<Player> getPlayers() {

return players;

}

The rosterApplication

Chapter 20 • Running the Persistence Examples 377

The @JoinTable annotation is used to specify a table in the database that will associate player
IDs with team IDs. The entity that specifies the @JoinTable is the owner of the relationship, so
in this case the Team entity is the owner of the relationship with the Player entity. Because
roster uses automatic table creation at deployment time, the container will create a join table
in the database named EJB_ROSTER_TEAM_PLAYER.

Player is the inverse, or non-owning side of the relationship with Team. As one-to-one and
many-to-one relationships, the non-owning side is marked by the mappedBy element in the
relationship annotation. Because the relationship between Player and Team is bidirectional, the
choice of which entity is the owner of the relationship is arbitrary.

In Player.java, the @ManyToMany annotation decorates the getTeams method:

@ManyToMany(mappedBy="players")
public Collection<Team> getTeams() {

return teams;

}

Entity Inheritance in the rosterApplication
The roster application demonstrates how to use entity inheritance, as described in “Entity
Inheritance” on page 353.

The League entity in roster is an abstract entity with two concrete subclasses: SummerLeague
and WinterLeague. Because League is an abstract class it cannot be instantiated:

...

@Entity

@Table(name = "EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

Instead, SummerLeague or WinterLeague are used by clients when creating a league.
SummerLeague and WinterLeague inherit the persistent properties defined in League, and only
add a constructor that verifies that the sport parameter matches the type of sport allowed in that
seasonal league. For example, here is the SummerLeague entity:

...

@Entity

public class SummerLeague extends League

implements java.io.Serializable {

/** Creates a new instance of SummerLeague */

public SummerLeague() {

}

The rosterApplication

The Java EE 6 Tutorial, Volume I • December 2009378

public SummerLeague(String id, String name,

String sport) throws IncorrectSportException {

this.id = id;

this.name = name;

if (sport.equalsIgnoreCase("swimming") ||

sport.equalsIgnoreCase("soccer") ||

sport.equalsIgnoreCase("basketball") ||

sport.equalsIgnoreCase("baseball")) {

this.sport = sport;

} else {

throw new IncorrectSportException(

"Sport is not a summer sport.");
}

}

}

The roster application uses the default mapping strategy of InheritanceType.SINGLE_TABLE,
so the @Inheritance annotation is not required. If you wanted to use a different mapping
strategy, decorate League with @Inheritance and specify the mapping strategy in the strategy
element:

@Entity

@Inheritance(strategy=JOINED)

@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

roster uses the default discriminator column name, so the @DiscriminatorColumn annotation
is not required. Because you are using automatic table generation in roster the Persistence
provider will create a discriminator column in the EJB_ROSTER_LEAGUE table called DTYPE,
which will store the name of the inherited entity used to create the league. If you want to use a
different name for the discriminator column, decorate League with @DiscriminatorColumn

and set the name element:

@Entity

@DiscriminatorColumn(name="DISCRIMINATOR")
@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

The rosterApplication

Chapter 20 • Running the Persistence Examples 379

Criteria Queries in the rosterApplication
The roster application uses Criteria API queries, as opposed to the JPQL queries used in
order. Criteria queries are Java programming language, type-safe queries defined in the
business tier of roster, in the RequestBean stateless session bean.

Metamodel Classes in the rosterApplication
Metamodel classes are classes that model an entities attributes, and are used by Criteria queries
to navigate to an entities attributes. Each entity class in roster has a corresponding Metamodel
class, generated at compile-time, with the same package name as the entity, and appended with
an underscore character (_). For example, the roster.entity.Person entity has a
corresponding Metamodel class, roster.entity.Person_.

Each persistent field or property in the entity class has a corresponding attribute in the entity's
Metamodel class. For the Person entity, the corresponding Metamodel class is:

@StaticMetamodel(Person.class)

public class Person_ {

public static volatile SingularAttribute<Player, String> id;

public static volatile SingularAttribute<Player, String> name;

public static volatile SingularAttribute<Player, String> position;

public static volatile SingularAttribute<Player, Double> salary;

public static volatile CollectionAttribute<Player, Team> teams;

}

Obtaining a CriteriaBuilder Instance in RequestBean

The CrtiteriaBuilder interface defines methods to create criteria query objects, create
expressions for modifying those query objects. RequestBean creates an instance of
CriteriaBuilder by using a @PostConstruct method, init.

@PersistenceContext

private EntityManager em;

private CriteriaBuilder cb;

@PostConstruct

private void init() {

cb = em.getCriteriaBuilder();

}

The EntityManager instance is injected at runtime, and then that EntityManager object is used
to create the CriteriaBuilder instance by calling getCriteriaBuilder. The
CriteriaBuilder instance is created in a @PostConstruct method to ensure that the
EntityManager instance has been injected by the enterprise bean container.

The rosterApplication

The Java EE 6 Tutorial, Volume I • December 2009380

Creating Criteria Queries in RequestBean's Business Methods
Many of the business methods in RequestBean define Criteria queries. One business method,
getPlayersByPosition, returns a list of players that play a particular position on a team.

public List<PlayerDetails> getPlayersByPosition(String position) {

logger.info("getPlayersByPosition");
List<Player> players = null;

try {

CriteriaQuery<Player> cq = cb.createQuery(Player.class);

if (cq != null) {

Root<Player> player = cq.from(Player.class);

// set the where clause

cq.where(cb.equal(player.get(Player_.position), position));

cq.select(player);

TypedQuery<Player> q = em.createQuery(cq);

players = q.getResultList();

}

return copyPlayersToDetails(players);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

A query is object is created by calling the CriteriaBuilder object's createQuery method, with
the type set to Player because the query will return a list of players.

The query root is the base entity from which the query will navigate to find the entity's attributes
and related entities, and is created by calling the from method of the query object. This sets the
from clause of the query.

The where clause, set by calling the where method on the query object, restricts the results of the
query according to the conditions of an expression. The CriteriaBuilder.equal method
compares the two expressions. In getPlayersByPosition, the position attribute of the
Player_ Metamodel class, accessed by calling the get method of the query root, is compared to
the position parameter passed to getPlayersByPosition.

The select clause of the query is set by calling the select method of the query object. The query
will return Player entities, so the query root object is passed as a parameter to select.

The query object is prepared for execution by calling EntityManager.createQuery, which
returns a TypedQuery<T> object with the type of the query, in this case Player. This typed query
object is used to execute the query, which occurs when the getResultList method is called,
and a List<Player> collection is returned.

The rosterApplication

Chapter 20 • Running the Persistence Examples 381

Automatic Table Generation in the rosterApplication
At deployment time the Enterprise Server will automatically drop and create the database tables
used by roster. This is done by setting the toplink.ddl-generation property to
drop-and-create-tables in persistence.xml.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="em" transaction-type="JTA">
<jta-data-source>jdbc/__default</jta-data-source>

<properties>

<property name="toplink.ddl-generation"
value="drop-and-create-tables"/>

</properties>

</persistence-unit>

</persistence>

This feature is specific to the Java Persistence API provider used by the Enterprise Server, and is
non-portable across Java EE servers. Automatic table creation is useful for development
purposes, however, and the toplink.ddl-generation property may be removed from
persistence.xml when preparing the application for production use, or when deploying to
other Java EE servers.

Building and Running the rosterApplication
This section describes how to build, package, deploy, and run the roster application. You can
do this using either NetBeans IDE or Ant.

Building, Packaging, Deploying, and Running roster in NetBeans IDE
Follow these instructions to build, package, deploy, and run the roster example to your
Enterprise Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/examples/persistence/.
3. Select the roster folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the roster project and select Run.

You will see the following partial output from the application client in the Output tab:

The rosterApplication

The Java EE 6 Tutorial, Volume I • December 2009382

List all players in team T2:

P6 Ian Carlyle goalkeeper 555.0

P7 Rebecca Struthers midfielder 777.0

P8 Anne Anderson forward 65.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

List all teams in league L1:

T1 Honey Bees Visalia

T2 Gophers Manteca

T5 Crows Orland

List all defenders:

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

P25 Frank Fletcher defender 399.0

...

Building, Packaging, Deploying, and Running rosterUsing Ant
To build the application components of roster, enter the following command:

ant

This runs the default task, which compiles the source files and packages the application into an
EAR file located at tut-install/examples/persistence/roster/dist/roster.ear.

To deploy the EAR, make sure the Enterprise Server is started, then enter the following
command:

ant deploy

The build system will check to see if the JavaDB database server is running and start it if it is not
running, then deploy roster.ear. The Enterprise Server will then drop and create the database
tables during deployment, as specified in persistence.xml.

After roster.ear is deployed, a client JAR, rosterClient.jar, is retrieved. This contains the
application client.

To run the application client, enter the following command:

ant run

You will see the output, which begins:

The rosterApplication

Chapter 20 • Running the Persistence Examples 383

[echo] running application client container.

[exec] List all players in team T2:

[exec] P6 Ian Carlyle goalkeeper 555.0

[exec] P7 Rebecca Struthers midfielder 777.0

[exec] P8 Anne Anderson forward 65.0

[exec] P9 Jan Wesley defender 100.0

[exec] P10 Terry Smithson midfielder 100.0

[exec] List all teams in league L1:

[exec] T1 Honey Bees Visalia

[exec] T2 Gophers Manteca

[exec] T5 Crows Orland

[exec] List all defenders:

[exec] P2 Alice Smith defender 505.0

[exec] P5 Barney Bold defender 100.0

[exec] P9 Jan Wesley defender 100.0

[exec] P22 Janice Walker defender 857.0

[exec] P25 Frank Fletcher defender 399.0

...

The all Task

As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

Undeploying order

To undeploy roster.ear, enter the following command:

ant undeploy

The rosterApplication

The Java EE 6 Tutorial, Volume I • December 2009384

The Java Persistence Query Language

The Java Persistence query language defines queries for entities and their persistent state. The
query language allows you to write portable queries that work regardless of the underlying data
store.

The query language uses the abstract persistence schemas of entities, including their
relationships, for its data model, and it defines operators and expressions based on this data
model. The scope of a query spans the abstract schemas of related entities that are packaged in
the same persistence unit. The query language uses a SQL-like syntax to select objects or values
based on entity abstract schema types and relationships among them.

This chapter relies on the material presented in earlier chapters. For conceptual information,
see Chapter 19, “Introduction to the Java Persistence API.” For code examples, see Chapter
Chapter 20, “Running the Persistence Examples.”

Query Language Terminology
The following list defines some of the terms referred to in this chapter.
■ Abstract schema: The persistent schema abstraction (persistent entities, their state, and

their relationships) over which queries operate. The query language translates queries over
this persistent schema abstraction into queries that are executed over the database schema
to which entities are mapped.

■ Abstract schema type: All expressions evaluate to a type. The abstract schema type of an
entity is derived from the entity class and the metadata information provided by Java
language annotations.

■ Backus-Naur Form (BNF): A notation that describes the syntax of high-level languages.
The syntax diagrams in this chapter are in BNF notation.

■ Navigation: The traversal of relationships in a query language expression. The navigation
operator is a period.

■ Path expression: An expression that navigates to a entity’s state or relationship field.

21C H A P T E R 2 1

385

■ State field: A persistent field of an entity.
■ Relationship field: A persistent relationship field of an entity whose type is the abstract

schema type of the related entity.

Creating Queries Using the Java Persistence Query Language
The EntityManager.createQuery and EntityManager.createNamedQuery methods are used
to query the datastore using Java Persistence query language queries.

The createQuery method is used to create dynamic queries, which are queries that are defined
directly within an application’s business logic.

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.setMaxResults(10)

.getResultList();

}

The createNamedQuery method is used to create static queries, or queries that are defined in
metadata using the javax.persistence.NamedQuery annotation. The name element of
@NamedQuery specifies the name of the query that will be used with the createNamedQuery
method. The query element of @NamedQuery is the query.

@NamedQuery(

name="findAllCustomersWithName",
query="SELECT c FROM Customer c WHERE c.name LIKE :custName"

)

Here’s an example of createNamedQuery, which uses the @NamedQuery defined above.

@PersistenceContext

public EntityManager em;

...

customers = em.createNamedQuery("findAllCustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

Named Parameters in Queries
Named parameters are parameters in a query that are prefixed with a colon (:). Named
parameters in a query are bound to an argument by the
javax.persistence.Query.setParameter(String name, Object value) method. In the

Creating Queries Using the Java Persistence Query Language

The Java EE 6 Tutorial, Volume I • December 2009386

following example, the name argument to the findWithName business method is bound to the
:custName named parameter in the query by calling Query.setParameter.

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.getResultList();

}

Named parameters are case-sensitive, and may be used by both dynamic and static queries.

Positional Parameters in Queries
You may alternately use positional parameters in queries, instead of named parameters.
Positional parameters are prefixed with a question mark (?) followed the numeric position of
the parameter in the query. The Query.setParameter(integer position, Object value)

method is used to set the parameter values.

In the following example, the findWithName business method is rewritten to use input
parameters:

public List findWithName(String name) {

return em.createQuery(

“SELECT c FROM Customer c WHERE c.name LIKE ?1”)

.setParameter(1, name)

.getResultList();

}

Input parameters are numbered starting from 1. Input parameters are case-sensitive, and may
be used by both dynamic and static queries.

Simplified Query Language Syntax
This section briefly describes the syntax of the query language so that you can quickly move on
to the next section, “Example Queries” on page 388. When you are ready to learn about the
syntax in more detail, see the section “Full Query Language Syntax” on page 394.

Select Statements
A select query has six clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. The
SELECT and FROM clauses are required, but the WHERE, GROUP BY, HAVING, and ORDER BY clauses
are optional. Here is the high-level BNF syntax of a query language query:

Simplified Query Language Syntax

Chapter 21 • The Java Persistence Query Language 387

QL_statement ::= select_clause from_clause

[where_clause][groupby_clause][having_clause][orderby_clause]

The SELECT clause defines the types of the objects or values returned by the query.

The FROM clause defines the scope of the query by declaring one or more identification variables,
which can be referenced in the SELECT and WHERE clauses. An identification variable represents
one of the following elements:
■ The abstract schema name of an entity
■ An element of a collection relationship
■ An element of a single-valued relationship
■ A member of a collection that is the multiple side of a one-to-many relationship

The WHERE clause is a conditional expression that restricts the objects or values retrieved by the
query. Although it is optional, most queries have a WHERE clause.

The GROUP BY clause groups query results according to a set of properties.

The HAVING clause is used with the GROUP BY clause to further restrict the query results
according to a conditional expression.

The ORDER BY clause sorts the objects or values returned by the query into a specified order.

Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities. They have the
following syntax:

update_statement :: = update_clause [where_clause] delete_statement :: =

delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The
WHERE clause may be used to restrict the scope of the update or delete operation.

Example Queries
The following queries are from the Player entity of the roster application, which is
documented in “The roster Application” on page 377.

Simple Queries
If you are unfamiliar with the query language, these simple queries are a good place to start.

Example Queries

The Java EE 6 Tutorial, Volume I • December 2009388

A Basic Select Query
SELECT p

FROM Player p

Data retrieved: All players.

Description: The FROM clause declares an identification variable named p, omitting the optional
keyword AS. If the AS keyword were included, the clause would be written as follows:

FROM Player AS

p

The Player element is the abstract schema name of the Player entity.

See also: “Identification Variables” on page 400

Eliminating Duplicate Values
SELECT DISTINCT

p

FROM Player p

WHERE p.position = ?1

Data retrieved: The players with the position specified by the query’s parameter.

Description: The DISTINCT keyword eliminates duplicate values.

The WHERE clause restricts the players retrieved by checking their position, a persistent field of
the Player entity. The ?1 element denotes the input parameter of the query.

See also: “Input Parameters” on page 405, “The DISTINCT Keyword” on page 415

Using Named Parameters
SELECT DISTINCT p

FROM Player p

WHERE p.position = :position AND p.name = :name

Data retrieved: The players having the specified positions and names.

Description: The position and name elements are persistent fields of the Player entity. The
WHERE clause compares the values of these fields with the named parameters of the query, set
using the Query.setNamedParameter method. The query language denotes a named input
parameter using colon (:) followed by an identifier. The first input parameter is :position, the
second is :name.

Example Queries

Chapter 21 • The Java Persistence Query Language 389

Queries That Navigate to Related Entities
In the query language, an expression can traverse (or navigate) to related entities. These
expressions are the primary difference between the Java Persistence query language and SQL.
Queries navigates to related entities, whereas SQL joins tables.

A Simple Query with Relationships
SELECT DISTINCT p

FROM Player p, IN(p.teams) t

Data retrieved: All players who belong to a team.

Description: The FROM clause declares two identification variables: p and t. The p variable
represents the Player entity, and the t variable represents the related Team entity. The
declaration for t references the previously declared p variable. The IN keyword signifies that
teams is a collection of related entities. The p.teams expression navigates from a Player to its
related Team. The period in the p.teams expression is the navigation operator.

You may also use the JOIN statement to write the same query:

SELECT DISTINCT p

FROM Player p JOIN p.teams t

This query could also be rewritten as:

SELECT DISTINCT p

FROM Player p

WHERE p.team IS NOT EMPTY

Navigating to Single-Valued Relationship Fields
Use the JOIN clause statement to navigate to a single-valued relationship field:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = ’soccer’ OR l.sport =’football’

In this example, the query will return all teams that are in either soccer or football leagues.

Traversing Relationships with an Input Parameter
SELECT DISTINCT p

FROM Player p, IN (p.teams) AS t

WHERE t.city = :city

Data retrieved: The players whose teams belong to the specified city.

Example Queries

The Java EE 6 Tutorial, Volume I • December 2009390

Description: This query is similar to the previous example, but it adds an input parameter. The
AS keyword in the FROM clause is optional. In the WHERE clause, the period preceding the
persistent variable city is a delimiter, not a navigation operator. Strictly speaking, expressions
can navigate to relationship fields (related entities), but not to persistent fields. To access a
persistent field, an expression uses the period as a delimiter.

Expressions cannot navigate beyond (or further qualify) relationship fields that are collections.
In the syntax of an expression, a collection-valued field is a terminal symbol. Because the teams
field is a collection, the WHERE clause cannot specify p.teams.city (an illegal expression).

See also: “Path Expressions” on page 403

Traversing Multiple Relationships
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league = :league

Data retrieved: The players that belong to the specified league.

Description: The expressions in this query navigate over two relationships. The p.teams
expression navigates the Player-Team relationship, and the t.league expression navigates the
Team-League relationship.

In the other examples, the input parameters are String objects, but in this example the
parameter is an object whose type is a League. This type matches the league relationship field
in the comparison expression of the WHERE clause.

Navigating According to Related Fields
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Data retrieved: The players who participate in the specified sport.

Description: The sport persistent field belongs to the League entity. To reach the sport field,
the query must first navigate from the Player entity to Team (p.teams) and then from Team to
the League entity (t.league). Because the league relationship field is not a collection, it can be
followed by the sport persistent field.

Queries with Other Conditional Expressions
Every WHERE clause must specify a conditional expression, of which there are several kinds. In
the previous examples, the conditional expressions are comparison expressions that test for
equality. The following examples demonstrate some of the other kinds of conditional
expressions. For descriptions of all conditional expressions, see the section “WHERE Clause” on
page 404.

Example Queries

Chapter 21 • The Java Persistence Query Language 391

The LIKE Expression
SELECT p

FROM Player p

WHERE p.name LIKE ’Mich%’

Data retrieved: All players whose names begin with “Mich.”

Description: The LIKE expression uses wildcard characters to search for strings that match the
wildcard pattern. In this case, the query uses the LIKE expression and the % wildcard to find all
players whose names begin with the string “Mich.” For example, “Michael” and “Michelle” both
match the wildcard pattern.

See also: “LIKE Expressions” on page 407

The IS NULL Expression
SELECT t

FROM Team t

WHERE t.league IS NULL

Data retrieved: All teams not associated with a league.

Description: The IS NULL expression can be used to check if a relationship has been set
between two entities. In this case, the query checks to see if the teams are associated with any
leagues, and returns the teams that do not have a league.

See also: “NULL Comparison Expressions” on page 408, “NULL Values” on page 412

The IS EMPTY Expression
SELECT p

FROM Player p

WHERE p.teams IS EMPTY

Data retrieved: All players who do not belong to a team.

Description: The teams relationship field of the Player entity is a collection. If a player does
not belong to a team, then the teams collection is empty and the conditional expression is TRUE.

See also: “Empty Collection Comparison Expressions” on page 408

The BETWEEN Expression
SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Data retrieved: The players whose salaries fall within the range of the specified salaries.

Example Queries

The Java EE 6 Tutorial, Volume I • December 2009392

Description: This BETWEEN expression has three arithmetic expressions: a persistent field
(p.salary) and the two input parameters (:lowerSalary and :higherSalary). The following
expression is equivalent to the BETWEEN expression:

p.salary >= :lowerSalary AND p.salary <= :higherSalary

See also: “BETWEEN Expressions” on page 406

Comparison Operators
SELECT DISTINCT p1

FROM Player p1, Player p2

WHERE p1.salary > p2.salary AND p2.name = :name

Data retrieved: All players whose salaries are higher than the salary of the player with the
specified name.

Description: The FROM clause declares two identification variables (p1 and p2) of the same type
(Player). Two identification variables are needed because the WHERE clause compares the salary
of one player (p2) with that of the other players (p1).

See also: “Identification Variables” on page 400

Bulk Updates and Deletes
The following examples show how to use the UPDATE and DELETE expressions in queries. UPDATE
and DELETE operate on multiple entities according to the condition or conditions set in the
WHERE clause. The WHERE clause in UPDATE and DELETE queries follows the same rules as SELECT
queries.

Update Queries
UPDATE Player p

SET p.status = ’inactive’
WHERE p.lastPlayed < :inactiveThresholdDate

Description: This query sets the status of a set of players to inactive if the player’s last game
was longer than the date specified in inactiveThresholdDate.

Delete Queries
DELETE

FROM Player p

WHERE p.status = ’inactive’
AND p.teams IS EMPTY

Description: This query deletes all inactive players who are not on a team.

Example Queries

Chapter 21 • The Java Persistence Query Language 393

Full Query Language Syntax
This section discusses the query language syntax, as defined in the Java Persistence
specification. Much of the following material paraphrases or directly quotes the specification.

BNF Symbols
Table 21–1 describes the BNF symbols used in this chapter.

TABLE 21–1 BNF Symbol Summary

Symbol Description

::= The element to the left of the symbol is defined by the constructs on the right.

* The preceding construct may occur zero or more times.

{...} The constructs within the curly braces are grouped together.

[...] The constructs within the square brackets are optional.

| An exclusive OR.

BOLDFACE A keyword (although capitalized in the BNF diagram, keywords are not case-sensitive).

White space A white space character can be a space, a horizontal tab, or a line feed.

BNF Grammar of the Java Persistence Query Language
Here is the entire BNF diagram for the query language:

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::=

FROM identification_variable_declaration

{, {identification_variable_declaration |

collection_member_declaration}}*

identification_variable_declaration ::=

range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS]

identification_variable

join ::= join_spec join_association_path_expression [AS]

identification_variable

fetch_join ::= join_specFETCH join_association_path_expression

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009394

association_path_expression ::=

collection_valued_path_expression |

single_valued_association_path_expression

join_spec::= [LEFT [OUTER] |INNER] JOIN

join_association_path_expression ::=

join_collection_valued_path_expression |

join_single_valued_association_path_expression

join_collection_valued_path_expression::=

identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=

identification_variable.single_valued_association_field

collection_member_declaration ::=

IN (collection_valued_path_expression) [AS]

identification_variable

single_valued_path_expression ::=

state_field_path_expression |

single_valued_association_path_expression

state_field_path_expression ::=

{identification_variable |

single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=

identification_variable.{single_valued_association_field.}*

single_valued_association_field

collection_valued_path_expression ::=

identification_variable.{single_valued_association_field.}*

collection_valued_association_field

state_field ::=

{embedded_class_state_field.}*simple_state_field

update_clause ::=UPDATE abstract_schema_name [[AS]

identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field |

single_valued_association_field} = new_value

new_value ::=

simple_arithmetic_expression |

string_primary |

datetime_primary |

boolean_primary |

enum_primary simple_entity_expression |

NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS]

identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {,

select_expression}*

select_expression ::=

single_valued_path_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 395

constructor_expression

constructor_expression ::=

NEW constructor_name(constructor_item {,

constructor_item}*)

constructor_item ::= single_valued_path_expression |

aggregate_expression

aggregate_expression ::=

{AVG |MAX |MIN |SUM} ([DISTINCT]

state_field_path_expression) |

COUNT ([DISTINCT] identification_variable |

state_field_path_expression |

single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression [ASC |DESC]

subquery ::= simple_select_clause subquery_from_clause

[where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::=

FROM subselect_identification_variable_declaration

{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=

identification_variable_declaration |

association_path_expression [AS] identification_variable |

collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT]

simple_select_expression

simple_select_expression::=

single_valued_path_expression |

aggregate_expression |

identification_variable

conditional_expression ::= conditional_term |

conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND

conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(

conditional_expression)

simple_cond_expression ::=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009396

exists_expression

between_expression ::=

arithmetic_expression [NOT] BETWEEN

arithmetic_expressionAND arithmetic_expression |

string_expression [NOT] BETWEEN string_expression AND

string_expression |

datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression

in_expression ::=

state_field_path_expression [NOT] IN (in_item {, in_item}*

| subquery)

in_item ::= literal | input_parameter

like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE

escape_character]

null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT]

NULL

empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= {ALL |ANY |SOME} (subquery)

comparison_expression ::=

string_expression comparison_operator {string_expression |

all_or_any_expression} |

boolean_expression {= |<> } {boolean_expression |

all_or_any_expression} |

enum_expression {= |<> } {enum_expression |

all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= |<> } {entity_expression |

all_or_any_expression} |

arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |

(subquery)

simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression {+ |- }

arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }

arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::=

state_field_path_expression |

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 397

numeric_literal |

(simple_arithmetic_expression) |

input_parameter |

functions_returning_numerics |

aggregate_expression

string_expression ::= string_primary | (subquery)

string_primary ::=

state_field_path_expression |

string_literal |

input_parameter |

functions_returning_strings |

aggregate_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::=

state_field_path_expression |

input_parameter |

functions_returning_datetime |

aggregate_expression

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::=

state_field_path_expression |

boolean_literal |

input_parameter

enum_expression ::= enum_primary | (subquery)

enum_primary ::=

state_field_path_expression |

enum_literal |

input_parameter

entity_expression ::=

single_valued_association_path_expression |

simple_entity_expression

simple_entity_expression ::=

identification_variable |

input_parameter

functions_returning_numerics::=

LENGTH(string_primary) |

LOCATE(string_primary, string_primary[,

simple_arithmetic_expression]) |

ABS(simple_arithmetic_expression) |

SQRT(simple_arithmetic_expression) |

MOD(simple_arithmetic_expression,

simple_arithmetic_expression) |

SIZE(collection_valued_path_expression)

functions_returning_datetime ::=

CURRENT_DATE |

CURRENT_TIME |

CURRENT_TIMESTAMP

functions_returning_strings ::=

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009398

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

simple_arithmetic_expression,

simple_arithmetic_expression)|

TRIM([[trim_specification] [trim_character] FROM]

string_primary) |

LOWER(string_primary) |

UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

FROMClause
The FROM clause defines the domain of the query by declaring identification variables.

Identifiers
An identifier is a sequence of one or more characters. The first character must be a valid first
character (letter, $, _) in an identifier of the Java programming language (hereafter in this
chapter called simply “Java”). Each subsequent character in the sequence must be a valid
non-first character (letter, digit, $, _) in a Java identifier. (For details, see the Java SE API
documentation of the isJavaIdentifierStart and isJavaIdentifierPart methods of the
Character class.) The question mark (?) is a reserved character in the query language and
cannot be used in an identifier.

A query language identifier is case-sensitive with two exceptions:

■ Keywords
■ Identification variables

An identifier cannot be the same as a query language keyword. Here is a list of query language
keywords:

ABS ALL AND ANY AS

ASC AVG BETWEEN BIT_LENGTH BOTH

BY CASE CHAR_LENGTH CHARACTER_LENGTH CLASS

COALESCE CONCAT COUNT CURRENT_DATE CURRENT_TIMESTAMP

DELETE DESC DISTINCT ELSE EMPTY

END ENTRY ESCAPE EXISTS FALSE

FETCH FROM GROUP HAVING IN

INDEX INNER IS JOIN KEY

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 399

LEADING LEFT LENGTH LIKE LOCATE

LOWER MAX MEMBER MIN MOD

NEW NOT NULL NULLIF OBJECT

OF OR ORDER OUTER POSITION

SELECT SET SIZE SOME SQRT

SUBSTRING SUM THEN TRAILING TRIM

TRUE TYPE UNKNOWN UPDATE UPPER

VALUE WHEN WHERE

It is not recommended that you use a SQL keyword as an identifier, because the list of keywords
may expand to include other reserved SQL words in the future.

Identification Variables
An identification variable is an identifier declared in the FROM clause. Although the SELECT and
WHERE clauses can reference identification variables, they cannot declare them. All identification
variables must be declared in the FROM clause.

Because an identification variable is an identifier, it has the same naming conventions and
restrictions as an identifier with the exception that an identification variables is case-insensitive.
For example, an identification variable cannot be the same as a query language keyword. (See
the preceding section for more naming rules.) Also, within a given persistence unit, an
identification variable name must not match the name of any entity or abstract schema.

The FROM clause can contain multiple declarations, separated by commas. A declaration can
reference another identification variable that has been previously declared (to the left). In the
following FROM clause, the variable t references the previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if an identification variable is not used in the WHERE clause, its declaration can affect the
results of the query. For an example, compare the next two queries. The following query returns
all players, whether or not they belong to a team:

SELECT p

FROM Player p

In contrast, because the next query declares the t identification variable, it fetches all players
that belong to a team:

SELECT p

FROM Player p, IN (p.teams) AS t

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009400

The following query returns the same results as the preceding query, but the WHERE clause makes
it easier to read:

SELECT p

FROM Player p

WHERE p.teams IS NOT EMPTY

An identification variable always designates a reference to a single value whose type is that of
the expression used in the declaration. There are two kinds of declarations: range variable and
collection member.

Range Variable Declarations

To declare an identification variable as an abstract schema type, you specify a range variable
declaration. In other words, an identification variable can range over the abstract schema type
of an entity. In the following example, an identification variable named p represents the abstract
schema named Player:

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

In most cases, to obtain objects a query uses path expressions to navigate through the
relationships. But for those objects that cannot be obtained by navigation, you can use a range
variable declaration to designate a starting point (or root).

If the query compares multiple values of the same abstract schema type, then the FROM clause
must declare multiple identification variables for the abstract schema:

FROM Player p1, Player p2

For a sample of such a query, see “Comparison Operators” on page 393.

Collection Member Declarations

In a one-to-many relationship, the multiple side consists of a collection of entities. An
identification variable can represent a member of this collection. To access a collection
member, the path expression in the variable’s declaration navigates through the relationships in
the abstract schema. (For more information on path expressions, see the following section.)
Because a path expression can be based on another path expression, the navigation can traverse
several relationships. See “Traversing Multiple Relationships” on page 391.

A collection member declaration must include the IN operator, but it can omit the optional AS
operator.

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 401

In the following example, the entity represented by the abstract schema named Player has a
relationship field called teams. The identification variable called t represents a single member
of the teams collection.

FROM Player p, IN (p.tea

ms) t

Joins

The JOIN operator is used to traverse over relationships between entities, and is functionally
similar to the IN operator.

In the following example, the query joins over the relationship between customers and orders:

SELECT c

FROM Customer c JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

The INNER keyword is optional:

SELECT c

FROM Customer c INNER JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

These examples are equivalent to the following query, which uses the IN operator:

SELECT c

FROM Customer c, IN(c.orders) o

WHERE c.status = 1 AND o.totalPrice > 10000

You can also join a single-valued relationship.

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = :sport

A LEFT JOIN or LEFT OUTER JOIN retrieves a set of entities where matching values in the join
condition may be absent. The OUTER keyword is optional.

SELECT c.name, o.totalPrice

FROM Order o LEFT JOIN o.customer c

A FETCH JOIN is a join operation that returns associated entities as a side-effect of running the
query. In the following example, the query returns a set of departments, and as a side-effect, the
associated employees of the departments, even though the employees were not explicitly
retrieved by the SELECT clause.

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009402

SELECT d

FROM Department d LEFT JOIN FETCH d.employees

WHERE d.deptno = 1

Path Expressions
Path expressions are important constructs in the syntax of the query language, for several
reasons. First, they define navigation paths through the relationships in the abstract schema.
These path definitions affect both the scope and the results of a query. Second, they can appear
in any of the main clauses of a query (SELECT, DELETE, HAVING, UPDATE, WHERE, FROM, GROUP BY,
ORDER BY). Finally, although much of the query language is a subset of SQL, path expressions
are extensions not found in SQL.

Examples of Path Expressions
Here, the WHERE clause contains a single_valued_path_expression. The p is an identification
variable, and salary is a persistent field of Player.

SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Here, the WHERE clause also contains a single_valued_path_expression. The t is an
identification variable, league is a single-valued relationship field, and sport is a persistent
field of league.

SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Here, the WHERE clause contains a collection_valued_path_expression. The p is an
identification variable, and teams designates a collection-valued relationship field.

SELECT DISTINCT p

FROM Player p

WHERE p.teams IS EMPTY

Expression Types
The type of a path expression is the type of the object represented by the ending element, which
can be one of the following:

■ Persistent field
■ Single-valued relationship field
■ Collection-valued relationship field

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 403

For example, the type of the expression p.salary is double because the terminating persistent
field (salary) is a double.

In the expression p.teams, the terminating element is a collection-valued relationship field
(teams). This expression’s type is a collection of the abstract schema type named Team. Because
Team is the abstract schema name for the Team entity, this type maps to the entity. For more
information on the type mapping of abstract schemas, see the section “Return Types” on
page 414.

Navigation
A path expression enables the query to navigate to related entities. The terminating elements of
an expression determine whether navigation is allowed. If an expression contains a
single-valued relationship field, the navigation can continue to an object that is related to the
field. However, an expression cannot navigate beyond a persistent field or a collection-valued
relationship field. For example, the expression p.teams.league.sport is illegal, because teams
is a collection-valued relationship field. To reach the sport field, the FROM clause could define an
identification variable named t for the teams field:

FROM Player AS p, IN (p.teams) t

WHERE t.league.sport = ’soccer’

WHEREClause
The WHERE clause specifies a conditional expression that limits the values returned by the query.
The query returns all corresponding values in the data store for which the conditional
expression is TRUE. Although usually specified, the WHERE clause is optional. If the WHERE clause
is omitted, then the query returns all values. The high-level syntax for the WHERE clause follows:

where_clause ::= WHERE conditional_expression

Literals
There are four kinds of literals: string, numeric, Boolean, and enum.

String Literals

A string literal is enclosed in single quotes:

’Duke’

If a string literal contains a single quote, you indicate the quote by using two single quotes:

’Duke’’s’

Like a Java String, a string literal in the query language uses the Unicode character encoding.

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009404

Numeric Literals
There are two types of numeric literals: exact and approximate.

An exact numeric literal is a numeric value without a decimal point, such as 65,– 233, and +12.
Using the Java integer syntax, exact numeric literals support numbers in the range of a Java
long.

An approximate numeric literal is a numeric value in scientific notation, such as 57.,– 85.7, and
+2.1. Using the syntax of the Java floating-point literal, approximate numeric literals support
numbers in the range of a Java double.

Boolean Literals
A Boolean literal is either TRUE or FALSE. These keywords are not case-sensitive.

Enum Literals
The Java Persistence Query Language supports the use of enum literals using the Java enum
literal syntax. The enum class name must be specified as fully qualified class name.

SELECT e

FROM Employee e

WHERE e.status = com.xyz.EmployeeStatus.FULL_TIME

Input Parameters
An input parameter can be either a named parameter or a positional parameter.

A named input parameter is designated by a colon (:) followed by a string. For example, :name.

A positional input parameter is designated by a question mark (?) followed by an integer. For
example, the first input parameter is ?1, the second is ?2, and so forth.

The following rules apply to input parameters:

■ They can be used only in a WHERE or HAVING clause.
■ Positional parameters must be numbered, starting with the integer 1.
■ Named parameters and positional parameters may not be mixed in a single query.
■ Named parameters are case-sensitive.

Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left to right within
a precedence level. You can change the order of evaluation by using parentheses.

Operators and Their Precedence
Table 21–2 lists the query language operators in order of decreasing precedence.

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 405

TABLE 21–2 Query Language Order Precedence

Type Precedence Order

Navigation . (a period)

Arithmetic + – (unary)

* / (multiplication and division)

+ – (addition and subtraction)

Comparison =

>

>=

<

<=

<> (not equal)

[NOT] BETWEEN

[NOT] LIKE

[NOT] IN

IS [NOT] NULL

IS [NOT] EMPTY

[NOT] MEMBER OF

Logical NOT

AND

OR

BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within a range of
values.

These two expressions are equivalent:

p.age BETWEEN 15 AND 19

p.age >= 15 AND p.age <= 19

The following two expressions are also equivalent:

p.age NOT BETWEEN 15 AND 19

p.age < 15 OR p.age > 19

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009406

If an arithmetic expression has a NULL value, then the value of the BETWEEN expression is
unknown.

IN Expressions
An IN expression determines whether or not a string belongs to a set of string literals, or
whether a number belongs to a set of number values.

The path expression must have a string or numeric value. If the path expression has a NULL
value, then the value of the IN expression is unknown.

In the following example, if the country is UK the expression is TRUE. If the country is Peru it is
FALSE.

o.country IN (’UK’, ’US’, ’France’)

You may also use input parameters:

o.country IN (’UK’, ’US’, ’France’, :country)

LIKE Expressions
A LIKE expression determines whether a wildcard pattern matches a string.

The path expression must have a string or numeric value. If this value is NULL, then the value of
the LIKE expression is unknown. The pattern value is a string literal that can contain wildcard
characters. The underscore (_) wildcard character represents any single character. The percent
(%) wildcard character represents zero or more characters. The ESCAPE clause specifies an escape
character for the wildcard characters in the pattern value. Table 21–3 shows some sample LIKE
expressions.

TABLE 21–3 LIKEExpression Examples

Expression TRUE FALSE

address.phone LIKE ’12%3’ ’123’

’12993’

’1234’

asentence.word LIKE ’l_se’ ’lose’ ’loose’

aword.underscored LIKE ’_%’ ESCAPE ’\’ ’_foo’ ’bar’

address.phone NOT LIKE ’12%3’ ’1234’ ’123’

’12993’

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 407

NULLComparison Expressions
A NULL comparison expression tests whether a single-valued path expression or an input
parameter has a NULL value. Usually, the NULL comparison expression is used to test whether or
not a single-valued relationship has been set.

SELECT t

FROM Team t

WHERE t.league IS NULL

This query selects all teams where the league relationship is not set. Please note, the following
query is not equivalent:

SELECT t

FROM Team t

WHERE t.league = NULL

The comparison with NULL using the equals operator (=) always returns an unknown value,
even if the relationship is not set. The second query will always return an empty result.

Empty Collection Comparison Expressions
The IS [NOT] EMPTY comparison expression tests whether a collection-valued path expression
has no elements. In other words, it tests whether or not a collection-valued relationship has
been set.

If the collection-valued path expression is NULL, then the empty collection comparison
expression has a NULL value.

Here is an example that finds all orders that do not have any line items:

SELECT o

FROM Order o

WHERE o.lineItems IS EMPTY

Collection Member Expressions
The [NOT] MEMBER [OF] collection member expression determines whether a value is a member
of a collection. The value and the collection members must have the same type.

If either the collection-valued or single-valued path expression is unknown, then the collection
member expression is unknown. If the collection-valued path expression designates an empty
collection, then the collection member expression is FALSE.

The OF keyword is optional.

The following example tests whether a line item is part of an order:

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009408

SELECT o

FROM Order o

WHERE :lineItem MEMBER OF o.lineItems

Subqueries
Subqueries may be used in the WHERE or HAVING clause of a query. Subqueries must be
surrounded by parentheses.

The following example find all customers who have placed more than 10 orders:

SELECT c

FROM Customer c

WHERE (SELECT COUNT(o) FROM c.orders o) > 10

EXISTS Expressions
The [NOT] EXISTS expression is used with a subquery, and is true only if the result of the
subquery consists of one or more values and is false otherwise.

The following example finds all employees whose spouse is also an employee:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (

SELECT spouseEmp

FROM Employee spouseEmp

WHERE spouseEmp = emp.spouse)

ALL and ANY Expressions
The ALL expression is used with a subquery, and is true if all the values returned by the subquery
are true, or if the subquery is empty.

The ANY expression is used with a subquery, and is true if some of the values returned by the
subquery are true. An ANY expression is false if the subquery result is empty, or if all the values
returned are false. The SOME keyword is synonymous with ANY.

The ALL and ANY expressions are used with the =, <, <=, >, >=, <> comparison operators.

The following example finds all employees whose salary is higher than the salary of the
managers in the employee’s department:

SELECT emp

FROM Employee emp

WHERE emp.salary > ALL (

SELECT m.salary

FROM Manager m

WHERE m.department = emp.department)

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 409

Functional Expressions
The query language includes several string, arithmetic, and date/time functions which may be
used in the SELECT, WHERE, or HAVING clause of a query. The functions are listed in the following
tables. In Table 21–4, the start and length arguments are of type int. They designate positions
in the String argument. The first position in a string is designated by 1. In Table 21–5, the
number argument can be either an int, a float, or a double.

TABLE 21–4 String Expressions

Function Syntax Return Type

CONCAT(String, String) String

LENGTH(String) int

LOCATE(String, String [, start]) int

SUBSTRING(String, start, length) String

TRIM([[LEADING|TRAILING|BOTH] char) FROM] (String) String

LOWER(String) String

UPPER(String) String

The CONCAT function concatenates two strings into one string.

The LENGTH function returns the length of a string in characters as an integer.

The LOCATE function returns the position of a given string within a string. It returns the first
position at which the string was found as an integer. The first argument is the string to be
located. The second argument is the string to be searched. The optional third argument is an
integer that represents the starting string position. By default, LOCATE starts at the beginning of
the string. The starting position of a string is 1. If the string cannot be located, LOCATE returns 0.

The SUBSTRING function returns a string that is a substring of the first argument based on the
starting position and length.

The TRIM function trims the specified character from the beginning and/or end of a string. If no
character is specified, TRIM removes spaces or blanks from the string. If the optional LEADING
specification is used, TRIM removes only the leading characters from the string. If the optional
TRAILING specification is used, TRIM removes only the trailing characters from the string. The
default is BOTH, which removes the leading and trailing characters from the string.

The LOWER and UPPER functions convert a string to lower or upper case, respectively.

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009410

TABLE 21–5 Arithmetic Expressions

Function Syntax Return Type

ABS(number) int, float, or double

MOD(int, int) int

SQRT(double) double

SIZE(Collection) int

The ABS function takes a numeric expression and returns a number of the same type as the
argument.

The MOD function returns the remainder of the first argument divided by the second.

The SQRT function returns the square root of a number.

The SIZE function returns an integer of the number of elements in the given collection.

Date/time functions return the date, time, or timestamp on the database server.

TABLE 21–6 Date/Time Expressions

Function Syntax Return Type

CURRENT_DATE java.sql.Date

CURRENT_TIME java.sql.Time

CURRENT_TIMESTAMP java.sql.Timestamp

Case Expressions
Case expressions are expressions that change based on a condition, similar to the case keyword
of the Java programming language. The CASE keyword indicates the start of a case expression,
and the expression is terminated by the END keyword. The WHEN and THEN keyword define
individual conditions, and the ELSE keyword defines the default condition should none of the
other conditions be satisfied.

EXAMPLE 21–1 Using Case Expressions in the Query Language

The following query selects the name of a person and a conditional string, depending on the
subtype of the Person entity. If the subtype is Student, it returns the string kid. If the subtype is
Guardian or Staff, it returns adult. If the entity is some other subtype of Person, the string
unknown is returned.

SELECT p.name

CASE TYPE(p)

WHEN Student THEN ’kid’

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 411

EXAMPLE 21–1 Using Case Expressions in the Query Language (Continued)

WHEN Guardian THEN ’adult’

WHEN Staff THEN ’adult’

ELSE ’unknown’

END

FROM Person p

The following query sets a discount for different types of customers. Gold-level customers get a
20% discount, silver-level customers get a 15% discount, bronze-level customers get a 10%
discount, and everyone else gets a 5% discount.

UPDATE Customer c

SET c.discount =

CASE c.level

WHEN ’Gold’ THEN 20

WHEN ’SILVER’ THEN 15

WHEN ’Bronze’ THEN 10

ELSE 5

END

NULL Values
If the target of a reference is not in the persistent store, then the target is NULL. For conditional
expressions containing NULL, the query language uses the semantics defined by SQL92. Briefly,
these semantics are as follows:

■ If a comparison or arithmetic operation has an unknown value, it yields a NULL value.
■ Two NULL values are not equal. Comparing two NULL values yields an unknown value.
■ The IS NULL test converts a NULL persistent field or a single-valued relationship field to TRUE.

The IS NOT NULL test converts them to FALSE.
■ Boolean operators and conditional tests use the three-valued logic defined by Table 21–7

and Table 21–8. (In these tables, T stands for TRUE, F for FALSE, and U for unknown.)

TABLE 21–7 ANDOperator Logic

AND T F U

T T F U

F F F F

U U F U

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009412

TABLE 21–8 OROperator Logic

OR T F U

T T T T

F T F U

U T U U

Equality Semantics
In the query language, only values of the same type can be compared. However, this rule has one
exception: Exact and approximate numeric values can be compared. In such a comparison, the
required type conversion adheres to the rules of Java numeric promotion.

The query language treats compared values as if they were Java types and not as if they
represented types in the underlying data store. For example, if a persistent field could be either
an integer or a NULL, then it must be designated as an Integer object and not as an int

primitive. This designation is required because a Java object can be NULL but a primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trailing blanks are
significant; for example, the strings ’abc’ and ’abc ’ are not equal.

Two entities of the same abstract schema type are equal only if their primary keys have the same
value. Table 21–9 shows the operator logic of a negation, and Table 21–10 shows the truth
values of conditional tests.

TABLE 21–9 NOTOperator Logic

NOT Value Value

T F

F T

U U

TABLE 21–10 Conditional Test

Conditional Test T F U

Expression IS TRUE T F F

Expression IS FALSE F T F

Expression is unknown F F T

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 413

SELECTClause
The SELECT clause defines the types of the objects or values returned by the query.

Return Types
The return type of the SELECT clause is defined by the result types of the select expressions
contained within it. If multiple expressions are used, the result of the query is an Object[], and
the elements in the array correspond to the order of the expressions in the SELECT clause, and in
type to the result types of each expression.

A SELECT clause cannot specify a collection-valued expression. For example, the SELECT clause
p.teams is invalid because teams is a collection. However, the clause in the following query is
valid because the t is a single element of the teams collection:

SELECT t

FROM Player p, IN (p.teams) t

The following query is an example of a query with multiple expressions in the select clause:

SELECT c.name, c.country.name

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

It returns a list of Object[] elements where the first array element is a string denoting the
customer name and the second array element is a string denoting the name of the customer’s
country.

Aggregate Functions in the SELECTClause

The result of a query may be the result of an aggregate function, listed in Table 21–11.

TABLE 21–11 Aggregate Functions in Select Statements

Name Return Type Description

AVG Double Returns the mean average of the fields.

COUNT Long Returns the total number of results.

MAX the type of the field Returns the highest value in the result
set.

MIN the type of the field Returns the lowest value in the result
set.

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009414

TABLE 21–11 Aggregate Functions in Select Statements (Continued)
Name Return Type Description

SUM Long (for integral fields)Double (for floating
point fields)BigInteger (for BigInteger
fields)BigDecimal (for BigDecimal fields)

Returns the sum of all the values in the
result set.

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or SUM) in the
SELECT clause, the following rules apply:

■ For the AVG, MAX, MIN, and SUM functions, the functions return null if there are no values to
which the function can be applied.

■ For the COUNT function, if there are no values to which the function can be applied, COUNT
returns 0.

The following example returns the average order quantity:

SELECT AVG(o.quantity)

FROM Order o

The following example returns the total cost of the items ordered by Roxane Coss:

SELECT SUM(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

The following example returns the total number of orders:

SELECT COUNT(o)

FROM Order o

The following example returns the total number of items in Hal Incandenza’s order that have
prices:

SELECT COUNT(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Incandenza’ AND c.firstname = ’Hal’

The DISTINCTKeyword
The DISTINCT keyword eliminates duplicate return values. If a query returns a
java.util.Collection, which allows duplicates, then you must specify the DISTINCT keyword
to eliminate duplicates.

Constructor Expressions
Constructor expressions allow you to return Java instances that store a query result element
instead of an Object[].

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 415

The following query creates a CustomerDetail instance per Customer matching the WHERE
clause. A CustomerDetail stores the customer name and customer’s country name. So the
query returns a List of CustomerDetail instances:

SELECT NEW com.xyz.CustomerDetail(c.name, c.country.name)

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

ORDER BY Clause
As its name suggests, the ORDER BY clause orders the values or objects returned by the query.

If the ORDER BY clause contains multiple elements, the left-to-right sequence of the elements
determines the high-to-low precedence.

The ASC keyword specifies ascending order (the default), and the DESC keyword indicates
descending order.

When using the ORDER BY clause, the SELECT clause must return an orderable set of objects or
values. You cannot order the values or objects for values or objects not returned by the SELECT
clause. For example, the following query is valid because the ORDER BY clause uses the objects
returned by the SELECT clause:

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = ’CA’
ORDER BY o.quantity, o.totalcost

The following example is not valid because the ORDER BY clause uses a value not returned by the
SELECT clause:

SELECT p.product_name

FROM Order o, IN(o.lineItems) l JOIN o.customer c

WHERE c.lastname = ’Faehmel’ AND c.firstname = ’Robert’
ORDER BY o.quantity

The GROUP BY Clause
The GROUP BY clause allows you to group values according to a set of properties.

The following query groups the customers by their country and returns the number of
customers per country:

SELECT c.country, COUNT(c)

FROM Customer c GROUP BY c.country

Full Query Language Syntax

The Java EE 6 Tutorial, Volume I • December 2009416

The HAVINGClause
The HAVING clause is used with the GROUP BY clause to further restrict the returned result of a
query.

The following query groups orders by the status of their customer and returns the customer
status plus the average totalPrice for all orders where the corresponding customers has the
same status. In addition, it considers only customers with status 1, 2, or 3, so orders of other
customers are not taken into account:

SELECT c.status, AVG(o.totalPrice)

FROM Order o JOIN o.customer c

GROUP BY c.status HAVING c.status IN (1, 2, 3)

Full Query Language Syntax

Chapter 21 • The Java Persistence Query Language 417

418

Creating Queries Using the Criteria API

The Criteria API is used to define queries for entities and their persistent state by creating
query-defining objects. Criteria queries are written using Java programming language APIs, are
type-safe, and are portable queries that work regardless of the underlying data store.

Overview of the Criteria and Metamodel APIs
Similar to JPQL, the Criteria API is based on the abstract schema of persistent entities, their
relationships, and embedded objects. The Criteria API operates on this abstract schema to allow
developers to find, modify, and delete persistent entities by invoking Java Persistence API entity
operations.

The Metamodel API works in concert with the Criteria API to model persistent entity classes
for Criteria queries.

The Criteria API and JPQL are closely related, and designed to allow similar operations in their
queries. Developers familiar with JPQL syntax will find equivalent object-level operations in the
Criteria API.

EXAMPLE 22–1 A Simple Criteria Query

The following simple Criteria query returns all instances of the Pet entity in the data source.

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

TypeQuery<Pet> q = em.createQuery(cq);

List<Pet> allPets = q.getResultList();

The equivalent JPQL query is:

22C H A P T E R 2 2

419

EXAMPLE 22–1 A Simple Criteria Query (Continued)

SELECT p

FROM Pet p

This query demonstrates the basic steps to create a Criteria query:
■ Use an EntityManager instance to create a CriteriaBuilder object.
■ Create a query object by creating an instance of the CriteriaQuery interface. This query

object's attributes will be modified with the details of the query.
■ Set the query root by calling the from method on the CriteriaQuery object.
■ Specify what the type of the query result will be by calling the select method of the

CriteriaQuery object.
■ Prepare the query for execution by creating a TypedQuery<T> instance, specifying the type of

the query result.
■ Execute the query by calling the getResultList method on the TypedQuery<T> object.

Because this query returns a collection of entities, the result is stored in a List.

The tasks associated with each step are discussed in detail in this chapter.

To create a CriteriaBuilder instance call the getCriteriaBuilder method on the
EntityManager instance:

CriteriaBuilder cb = em.getCriteriaBuilder();

The actual query object is created using the CriteriaBuilder instance:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The query will return instances of the Pet entity, so the type of the query is specified when the
CriteriaQuery object is created to create a type-safe query.

The from clause of the query is set, and the root of the query specified, by calling the from
method of the query object:

Root<Pet> pet = cq.from(Pet.class);

The select clause of the query is set by calling the select method of the query object, and
passing in the query root:

cq.select(pet);

The query object is now used to create a TypedQuery<T> object that can be executed against the
data source. The modifications to the query object are captured to create a ready-to-execute
query.

TypeQuery<Pet> q = em.createQuery(cq);

Overview of the Criteria and Metamodel APIs

The Java EE 6 Tutorial, Volume I • December 2009420

EXAMPLE 22–1 A Simple Criteria Query (Continued)

This typed query object is executed by calling its getResultList method, because this query
will return multiple entity instances. The results are stored in a List<Pet> collection-valued
object.

List<Pet> allPets = q.getResultList();

Modeling Entity Classes with the Metamodel API
The Metamodel API is used to create a metamodel of the managed entities in a particular
persistence unit. For each entity class in a particular package, a metamodel class is created with
a trailing underscore, and with attributes that correspond to the persistent fields or properties of
the entity class.

EXAMPLE 22–2 Example Entity Class and Corresponding Metamodel Class

The following entity class com.example.Pet has four persistent fields, id, name, color, and
owners.

package com.example;

...

@Entity

public class Pet {

@Id

protected Long id;

protected String name;

protected String color;

@ManyToOne

protected Set<Person> owners;

...

}

The corresponding Metamodel class is:

package com.example;

...

@Static Metamodel(Pet.class)

public class Pet_ {

public static volatile SingularAttribute<Pet, Long> id;

public static volatile SingularAttribute<Pet, String> name;

Modeling Entity Classes with the Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 421

EXAMPLE 22–2 Example Entity Class and Corresponding Metamodel Class (Continued)

public static volatile SingularAttribute<Pet, String> color;

public static volatile SetAttribute<Pet, Person> owners;

}

The metamodel class and its attributes are used in Criteria queries to refer to the managed entity
classes and their persistent state and relationships.

Using Metamodel Classes
Metamodel classes that correspond to entity classes are of type
javax.persistence.metamodel.EntityType<T>, and are typically generated by annotation
processors either at development time or at runtime. Developers of applications that use
Criteria queries may generate static metamodel classes using the persistence provider's
annotation processor, or may obtain the metamodel class either by calling the getModel
method on the query root object or first obtaining an instance of the Metamodel interface and
then passing the entity type to the instance's entity method.

EXAMPLE 22–3 Obtaining a Metamodel Class Dynamically Using the Root<T>.getModelMethod

The following code snippet shows how to obtain the Pet entity's metamodel class by calling
Root<T>.getModel.

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

EntityType<Pet> Pet_ = pet.getModel();

EXAMPLE 22–4 Obtaining a Metamodel Class Dynamically Using the Metamodel.getMetamodel Method

The following code snippet shows how to obtain the Pet entity's metamodel class by first
obtaining a metamodel instance using EntityManager.getMetamodel, and then calling entity
on the metamodel instance.

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Modeling Entity Classes with the Metamodel API

The Java EE 6 Tutorial, Volume I • December 2009422

Basic Type-Safe Queries Using the Criteria API and Metamodel
API

The basic semantics of a Criteria query consists of a select clause, a from clause, and an optional
where clause, similar to a JPQL query. Criteria queries set these clauses using Java programming
language objects, so the query can be created in a type-safe manner.

Creating a Criteria Query
The javax.persistence.criteria.CriteriaBuilder interface is used to construct:

■ Criteria queries
■ selections
■ expressions
■ predicates
■ ordering

To obtain an instance of the CriteriaBuilder interface, call the getCriteriaBuilder method
on either an EntityManager or EntityManagerFactory instance.

EXAMPLE 22–5 Obtaining a CriteriaBuilder Instance Using the EntityManager.getCriteriaManager
Method

The following code shows how to obtain a CriteriaBuilder instance using the
EntityManager.getCriteriaBuilder method.

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

Criteria queries are constructed by obtaining an instance of the
javax.persistence.criteria.CriteriaQuery interface. CriteriaQuery objects define a
particular query that will navigate over one or more entities. Obtain CriteriaQuery instances
by calling one of the CrtieriaBuilder.createQuery methods. For creating type-safe queries,
call the CriteriaBuilder.createQuery method as follows:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The CriteriaQuery object's type should be set to the expected result type of the query. In the
code above, the object's type is set to CriteriaQuery<Pet> for a query which will find instances
of the Pet entity.

Basic Type-Safe Queries Using the Criteria API and Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 423

EXAMPLE 22–6 Creating a CriteriaQuery Instance for a Query that Returns a String

In the following code snippet, a CriteriaQuery object is created for a query that returns a
string.

CriteriaQuery<String> cq = cb.createQuery(String.class);

Query Roots
For a particular CriteriaQueryobject, the root entity of the query, from which all navigation
originates, is called the query root. It is similar to the FROM clause in a JPQL query.

Create the query root by calling the from method on the CriteriaQuery instance. The
argument to the from method is either the entity class, or an EntityType<T> instance for the
entity.

EXAMPLE 22–7 Setting the Query Root Using the Entity Class

The following code sets the query root to the Pet entity.

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

EXAMPLE 22–8 Setting the Query Root Using a Metamodel EntityType<T> Instance

The following code sets the query root to the Pet class using an EntityType<T> instance.

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet_);

Criteria queries may have more than one query root. This usually occurs when the query
navigates from several entities.

EXAMPLE 22–9 Creating a Query with Multiple Query Roots

The following code has two Root instances.

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet1 = cq.from(Pet.class);

Root<Pet> pet2 = cq.from(Pet.class);

Basic Type-Safe Queries Using the Criteria API and Metamodel API

The Java EE 6 Tutorial, Volume I • December 2009424

Querying Relationships Using Joins
For queries that navigate to related entity classes, the query must define a join to the related
entity by calling one of the From.join methods on the query root object, or another join object.
The join methods are similar to the JOIN keyword in JPQL.

The target of the join uses the Metamodel class of type EntityType<T> to specify the persistent
field or property of the joined entity.

The join methods return an object of type Join<X, Y>, where X is the source entity and Y is the
target of the join.

EXAMPLE 22–10 Joining a Query

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = pet.join(Pet_.owners);

Joins can be chained together to navigate to related entities of the target entity without having to
create a Join<X, Y> instance for each join.

EXAMPLE 22–11 Chaining Joins Together in a Query

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

EntityType<Owner> Owner_ = m.entity(Owner.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.addresses);

Path Navigation in Criteria Queries
Path objects are used in the select and where clauses of a Criteria query, and can be query root
entities, join entities, or other Path objects. The Path.get method is used to navigate to
attributes of the entities of a query.

The argument to the get method is the corresponding attribute of the entity's Metamodel class.
The attribute can either be a single-valued attribute (specified by @SingularAttribute in the
Metamodel class) or a collection-valued attribute (specified by one of @CollectionAttribute,
@SetAttribute, @ListAttribute, or @MapAttribute).

Basic Type-Safe Queries Using the Criteria API and Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 425

EXAMPLE 22–12 Using PathObjects in the Select Clause of a Query

CriteriaQuery<String> cq = cb.createQuery(String.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet.get(Pet_.name));

This query returns the names of all the pets in the data store. The get method is called on the
query root, pet, with the name attribute of the Pet entity's Metamodel class, Pet_ as the
argument.

Restricting Criteria Query Results
The results of a query can be restricted on the CriteriaQuery object according to conditions set
by calling the CriteriaQuery.where method. Calling the where method is analogous to setting
the WHERE clause in a JPQL query.

The where method evaluates instances of the Expression interface to restrict the results
according to the conditions of the expressions. Expression instances are created using methods
defined in the Expression and CriteriaBuilder interfaces.

The Expression Interface Methods
An Expression object is used to in a query's select, where, or having clause

TABLE 22–1 Conditional Methods in the Expression Interface

Method Description

isNull Tests whether an expression is null.

isNotNull Tests whether an expression is not null.

in Tests whether an expression is within a list of values.

EXAMPLE 22–13 Using the Expression.isNullMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).isNull());

This query finds all pets where the color attribute is null.

Basic Type-Safe Queries Using the Criteria API and Metamodel API

The Java EE 6 Tutorial, Volume I • December 2009426

EXAMPLE 22–14 Using the Expression.inMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).in("brown", "black");

This query finds all brown and black pets.

The in method also can check whether an attribute is a member of a collection.

Expression Methods in the CriteriaBuilder Interface
The CriteriaBuilder interface defines additional methods for creating expressions. These
methods correspond to the arithmetic, string, date, time, and case operators and functions of
JPQL.

TABLE 22–2 Conditional Methods in the CriteriaBuilder Interface

Conditional Method Description

equal Tests whether two expressions are equal.

notEqual Tests whether two expressions are not equal.

gt Tests whether the first numeric expression is greater
than the second numeric expression.

ge Tests whether the first numeric expression is greater
than or equal to the second numeric expression.

lt Tests whether the first numeric expression is less than
the second numeric expression.

le Tests whether the first numeric expression is less than
or equal to the second numeric expression.

between Tests whether the first expression is between the
second and third expression in value.

like Tests whether the expression matches a given pattern.

EXAMPLE 22–15 Using the CriteriaBuilder.equalMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Basic Type-Safe Queries Using the Criteria API and Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 427

EXAMPLE 22–15 Using the CriteriaBuilder.equalMethod (Continued)

cq.where(cb.equal(pet.get(Pet_.name)), "Fido");
...

EXAMPLE 22–16 Using the CriteriaBuilder.gtMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date someDate = new Date(...);

cq.where(cb.gt(pet.get(Pet_.birthday)), date);

EXAMPLE 22–17 Using the CriteriaBuilder.betweenMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date firstDate = new Date(...);

Date secondDate = new Date(...);

cq.where(cb.between(pet.get(Pet_.birthday)), firstDate, secondDate);

EXAMPLE 22–18 Using the CriteriaBuilder.likeMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.like(pet.get(Pet_.name)), "*do");

Multiple conditional predicates can be specified by using the compound predicate methods of
the CriteriaBuilder interface.

TABLE 22–3 Compound Predicate Methods in the CriteriaBuilder Interface

Method Description

and A logical conjunction of two boolean expressions.

or A logical disjunction of two boolean expressions.

not A logical negation of the given boolean expression.

Basic Type-Safe Queries Using the Criteria API and Metamodel API

The Java EE 6 Tutorial, Volume I • December 2009428

EXAMPLE 22–19 Using Compound Predicates in Queries

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet_.name), "Fido")
.and(cb.equal(pet.get(Pet_.color), "brown");

Managing Criteria Query Results
For queries that return more than one result, it's often helpful to organize those results. The
CriteriaQuery interface defines the orderBymethod to order query results according to
attributes of an entity. The CriteriaQuery interface also defines the groupBy method to group
the results of a query together according to attributes of an entity, and the and having method
to restrict those groups according to a condition.

Ordering Results
The order of the results of a query can be set by calling the CriteriaQuery.orderBy method
and passing in an Order object. Order objects are created by calling either the
CriteriaBuilder.asc or CriteriaBuilder.desc methods. The asc method is used to order
the results by ascending value of the passed expression parameter. The desc method is used to
order the results by descending value of the passed expression parameter.

EXAMPLE 22–20 Ordering Results in Descending Order

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

cq.orderBy(cb.desc(pet.get(Pet_.birthday));

In this query, the results will be ordered by the pet's birthday from highest to lowest. That is,
pets born in December will appear before pets born in May.

EXAMPLE 22–21 Ordering Results in Ascending Order

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.address);

cq.select(pet);

cq.orderBy(cb.asc(address.get(Address_.postalCode));

In this query, the results will be ordered by the pet owner's postal code from lowest to highest.
That is, pets whose owner lives in the 10001 zip code will appear before pets whose owner lives
in the 91000 zip code.

Basic Type-Safe Queries Using the Criteria API and Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 429

If more than one Order object is passed to orderBy, the precedence is determined by the order
in which they appear in the argument list of orderBy. The first Order object has precedence.

EXAMPLE 22–22 Ordering Results By More than One Criteria

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = cq.join(Pet_.owners);

cq.select(pet);

cq.orderBy(cb.asc(owner.get(Owner_.lastName), owner.get(Owner_.firstName));

The results of this query will be ordered alphabetically by the pet owner's last name, then first
name.

Grouping Results
The CriteriaQuery.groupBy method partitions the query results into groups. These groups
are set by passing an expression to groupBy.

EXAMPLE 22–23 Grouping Results Using the CriteriaQuery.groupByMethod

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

This query returns all Pet entities, and groups the results by pet's color.

The CriteriaQuery.having method is used in conjunction with groupBy to filter over the
groups. The having method takes a conditional expression as a parameter. By calling the
having method, the query result is restricted according to the conditional expression.

EXAMPLE 22–24 Grouping Results Using the CriteriaQuery.groupBy and CriteriaQuery.having

Methods

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

cq.having(cb.in(pet.get(Pet_.color)).value("brown").value("blonde");

In this example, the query groups the returned Pet entities by color, as in the example above.
However, the only returned groups will be Pet entities where the color attribute is set to brown

or blonde. That is, no grey colored pets will be returned in this query.

Executing Queries
To prepare a query for execution, create a TypedQuery<T> object with the type of the query
result by passing the CriteriaQuery object to EntityManager.createQuery.

Basic Type-Safe Queries Using the Criteria API and Metamodel API

The Java EE 6 Tutorial, Volume I • December 2009430

Queries are executed by calling either getSingleResult or getResultList on the
TypedQuery<T> object.

Single-Valued Query Results
The TypedQuery<T>.getSingleResult method is used for executing queries that return a
single result.

EXAMPLE 22–25 Retrieving Single-Valued Query Result

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

Pet result = q.getSingleResult();

Collection-Valued Query Results
The TypedQuery<T>.getResultList method is used for executing queries that return a
collection of objects.

EXAMPLE 22–26 Retrieving Collection-Valued Query Results

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

List<Pet> results = q.getResultList();

Basic Type-Safe Queries Using the Criteria API and Metamodel API

Chapter 22 • Creating Queries Using the Criteria API 431

432

Security
Part Seven introduces basic security concepts and examples.

P A R T V I I

433

434

Introduction to Security in the Java EE Platform

This and subsequent chapters discuss how to address security requirements in Java EE, web,
and web services applications. Every enterprise that has sensitive resources that can be accessed
by many users, or resources that traverse unprotected, open, networks, such as the Internet,
needs to be protected.

This chapter introduces basic security concepts and security implementation mechanisms.
More information on these concepts and mechanisms can be found in the Security chapter of
the Java EE 6 specification. This document is available for download online at
http://www.jcp.org/en/jsr/detail?id=316.

Other chapters in this tutorial that address security requirements include the following:

■ Chapter 24, “Getting Started Securing Enterprise Applications,” discusses adding security to
Java EE components such as enterprise beans and application clients.

■ Chapter 25, “Getting Started Securing Web Applications,” discusses and provides examples
for adding security to web components such as servlets, and to web services such as
JAX-WS.

Some of the material in this chapter assumes that you understand basic security concepts. To
learn more about these concepts, you should explore the Java SE security web site before you
begin this chapter. The URL for this site is http://java.sun.com/javase/6/docs/
technotes/guides/security/.

This tutorial assumes deployment onto the Sun GlassFishEnterprise Server v3 and provides
some information regarding configuration of the Enterprise Server. The best source for
information regarding configuration of the Enterprise Server, however, is the Sun GlassFish
Enterprise Server v3 Administration Guide. The best source for development tips specific to the
Enterprise Server is the Sun GlassFish Enterprise Server v3 Application Development Guide. The
best source for tips on deploying applications to the Enterprise Server is the Sun GlassFish
Enterprise Server v3 Application Deployment Guide.

23C H A P T E R 2 3

435

http://www.jcp.org/en/jsr/detail?id=316
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7693

Overview of Java EE Security
Java EE, web, and web services applications are made up of components that can be deployed
into different containers. These components are used to build a multi-tier enterprise
application. Security for components is provided by their containers. A container provides two
kinds of security: declarative and programmatic security.

■ Declarative security expresses an application component’s security requirements using
deployment descriptors. Deployment descriptors are external to an application, and include
information that specifies how security roles and access requirements are mapped into
environment-specific security roles, users, and policies. For this volume of the tutorial,
deployment descriptors are used to secure web applications. For more information about
deployment descriptors, read “Using Deployment Descriptors for Declarative Security” on
page 444.
Annotations (also called metadata) are used to specify information about security within a
class file. When the application is deployed, this information can either be used by or
overridden by the application deployment descriptor. Annotations save you from having to
write declarative information inside XML descriptors. Instead, you just put annotations on
the code and the required information gets generated. For this tutorial, annotations are used
for securing enterprise applications. For more information about annotations, read “Using
Annotations” on page 445.

■ Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application. For more information about programmatic security,
read “Using Programmatic Security” on page 446.

A Simple Security Example
The security behavior of a Java EE environment may be better understood by examining what
happens in a simple application with a web client, a JSP user interface, and enterprise bean
business logic.

In the following example, which is taken from JSR-316, the Java EE 6 Specification , the web
client relies on the web server to act as its authentication proxy by collecting user authentication
data from the client and using it to establish an authenticated session.

Step 1: Initial Request
In the first step of this example, the web client requests the main application URL. This action is
shown in Figure 23–1.

Overview of Java EE Security

The Java EE 6 Tutorial, Volume I • December 2009436

http://www.jcp.org/en/jsr/detail?id=316

Since the client has not yet authenticated itself to the application environment, the server
responsible for delivering the web portion of the application (hereafter referred to as web server)
detects this and invokes the appropriate authentication mechanism for this resource. For more
information on these mechanisms, read “Security Implementation Mechanisms” on page 441.

Step 2: Initial Authentication
The web server returns a form that the web client uses to collect authentication data (for
example, user name and password) from the user. The web client forwards the authentication
data to the web server, where it is validated by the web server, as shown in Figure 23–2.

The validation mechanism may be local to a server, or it may leverage the underlying security
services. On the basis of the validation, the web server sets a credential for the user.

Step 3: URL Authorization
The credential is used for future determinations of whether the user is authorized to access
restricted resources it may request. The web server consults the security policy (derived from
the deployment descriptor) associated with the web resource to determine the security roles
that are permitted access to the resource. The web container then tests the user’s credential
against each role to determine if it can map the user to the role. Figure 23–3 shows this process.

Web Client Web Server

Request access
to protected

resource

FIGURE 23–1 Initial Request

Web Client
Form

Authentication
data

Web Server

credential

FIGURE 23–2 Initial Authentication

Overview of Java EE Security

Chapter 23 • Introduction to Security in the Java EE Platform 437

The web server’s evaluation stops with an “is authorized” outcome when the web server is able
to map the user to a role. A “not authorized” outcome is reached if the web server is unable to
map the user to any of the permitted roles.

Step 4: Fulfilling the Original Request
If the user is authorized, the web server returns the result of the original URL request, as shown
in Figure 23–4.

In our example, the response URL of a JSP page is returned, enabling the user to post form data
that needs to be handled by the business logic component of the application. Read Chapter 25,
“Getting Started Securing Web Applications,” for more information on protecting web
applications.

Step 5: Invoking Enterprise Bean Business Methods
The JSP page performs the remote method call to the enterprise bean, using the user’s credential
to establish a secure association between the JSP page and the enterprise bean (as shown in
Figure 23–5). The association is implemented as two related security contexts, one in the web
server and one in the EJB container.

Web Client

Web Server

credential JSP/servlet
Object

Request access
to protected

resource

Session
Context

A
uthorization

FIGURE 23–3 URL Authorization

Web Client

Result
of request

Post to
business logic

Web Server

credential JSP/servlet

Session
Context

FIGURE 23–4 Fulfilling the Original Request

Overview of Java EE Security

The Java EE 6 Tutorial, Volume I • December 2009438

The EJB container is responsible for enforcing access control on the enterprise bean method. It
consults the security policy (derived from the deployment descriptor) associated with the
enterprise bean to determine the security roles that are permitted access to the method. For
each role, the EJB container uses the security context associated with the call to determine if it
can map the caller to the role.

The container’s evaluation stops with an “is authorized” outcome when the container is able to
map the caller’s credential to a role. A “not authorized” outcome is reached if the container is
unable to map the caller to any of the permitted roles. A “not authorized” result causes an
exception to be thrown by the container, and propagated back to the calling JSP page.

If the call is authorized, the container dispatches control to the enterprise bean method. The
result of the bean’s execution of the call is returned to the JSP, and ultimately to the user by the
web server and the web client.

Security Functions
A properly implemented security mechanism will provide the following functionality:
■ Prevent unauthorized access to application functions and business or personal data

(authentication)
■ Hold system users accountable for operations they perform (non-repudiation)
■ Protect a system from service interruptions and other breaches that affect quality of service

(QoS)

Ideally, properly implemented security mechanisms will also provide the following
functionality:
■ Easy to administer
■ Transparent to system users

Web Client

Web Server

credential JSP/servlet
Object

Session
Context

Security
Context

EJB Container

Security
Context

Credential used to
establish security

association

A
uthorization

EJB
Remote

call

FIGURE 23–5 Invoking an Enterprise Bean Business Method

Overview of Java EE Security

Chapter 23 • Introduction to Security in the Java EE Platform 439

■ Interoperable across application and enterprise boundaries

Characteristics of Application Security
Java EE applications consist of components that can contain both protected and unprotected
resources. Often, you need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recognition of an entity
by a system, and authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as unauthenticated or
anonymous access.

The characteristics of application security that, when properly addressed, help to minimize the
security threats faced by an enterprise, include the following:

■ Authentication: The means by which communicating entities (for example, client and
server) prove to one another that they are acting on behalf of specific identities that are
authorized for access. This ensures that users are who they say they are.

■ Authorization, or Access Control: The means by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing integrity,
confidentiality, or availability constraints. This ensures that users have permission to
perform operations or access data.

■ Data integrity: The means used to prove that information has not been modified by a third
party (some entity other than the source of the information). For example, a recipient of
data sent over an open network must be able to detect and discard messages that were
modified after they were sent. This ensures that only authorized users can modify data.

■ Confidentiality or Data Privacy: The means used to ensure that information is made
available only to users who are authorized to access it. This ensures that only authorized
users can view sensitive data.

■ Non-repudiation: The means used to prove that a user performed some action such that the
user cannot reasonably deny having done so. This ensures that transactions can be proven to
have happened.

■ Quality of Service (QoS): The means used to provide better service to selected network
traffic over various technologies.

■ Auditing: The means used to capture a tamper-resistant record of security-related events
for the purpose of being able to evaluate the effectiveness of security policies and
mechanisms. To enable this, the system maintains a record of transactions and security
information.

Overview of Java EE Security

The Java EE 6 Tutorial, Volume I • December 2009440

Security Implementation Mechanisms
The characteristics of an application should be considered when deciding the layer and type of
security to be provided for applications. The following sections discuss the characteristics of the
common mechanisms that can be used to secure Java EE applications. Each of these
mechanisms can be used individually or with others to provide protection layers based on the
specific needs of your implementation.

Java SE Security Implementation Mechanisms
Java SE provides support for a variety of security features and mechanisms, including:

■ Java Authentication and Authorization Service (JAAS): JAAS is a set of APIs that enable
services to authenticate and enforce access controls upon users. JAAS provides a pluggable
and extensible framework for programmatic user authentication and authorization. JAAS is
a core Java SE API and is an underlying technology for Java EE security mechanisms.

■ Java Generic Security Services (Java GSS-API): Java GSS-API is a token-based API used to
securely exchange messages between communicating applications. The GSS-API offers
application programmers uniform access to security services atop a variety of underlying
security mechanisms, including Kerberos.

■ Java Cryptography Extension (JCE): JCE provides a framework and implementations for
encryption, key generation and key agreement, and Message Authentication Code (MAC)
algorithms. Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. Block ciphers operate on groups of bytes while stream ciphers operate on one byte
at a time. The software also supports secure streams and sealed objects.

■ Java Secure Sockets Extension (JSSE): JSSE provides a framework and an implementation
for a Java version of the SSL and TLS protocols and includes functionality for data
encryption, server authentication, message integrity, and optional client authentication to
enable secure Internet communications.

■ Simple Authentication and Security Layer (SASL): SASL is an Internet standard (RFC
2222) that specifies a protocol for authentication and optional establishment of a security
layer between client and server applications. SASL defines how authentication data is to be
exchanged but does not itself specify the contents of that data. It is a framework into which
specific authentication mechanisms that specify the contents and semantics of the
authentication data can fit.

Java SE also provides a set of tools for managing keystores, certificates, and policy files;
generating and verifying JAR signatures; and obtaining, listing, and managing Kerberos tickets.

For more information on Java SE security, visit its web page at http://java.sun.com/javase/
6/docs/technotes/guides/security/.

Security Implementation Mechanisms

Chapter 23 • Introduction to Security in the Java EE Platform 441

http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/security/

Java EE Security Implementation Mechanisms
Java EE security services are provided by the component container and can be implemented
using declarative or programmatic techniques (container security is discussed more in
“Securing Containers” on page 444). Java EE security services provide a robust and easily
configured security mechanism for authenticating users and authorizing access to application
functions and associated data at many different layers. Java EE security services are separate
from the security mechanisms of the operating system.

Application-Layer Security
In Java EE, component containers are responsible for providing application-layer security.
Application-layer security provides security services for a specific application type tailored to
the needs of the application. At the application layer, application firewalls can be employed to
enhance application protection by protecting the communication stream and all associated
application resources from attacks.

Java EE security is easy to implement and configure, and can offer fine-grained access control to
application functions and data. However, as is inherent to security applied at the application
layer, security properties are not transferable to applications running in other environments
and only protect data while it is residing in the application environment. In the context of a
traditional application, this is not necessarily a problem, but when applied to a web services
application, where data often travels across several intermediaries, you would need to use the
Java EE security mechanisms along with transport-layer security and message-layer security for
a complete security solution.

The advantages of using application-layer security include the following:
■ Security is uniquely suited to the needs of the application.
■ Security is fine-grained, with application-specific settings.

The disadvantages of using application-layer security include the following:
■ The application is dependent on security attributes that are not transferable between

application types.
■ Support for multiple protocols makes this type of security vulnerable.
■ Data is close to or contained within the point of vulnerability.

For more information on providing security at the application layer, read “Securing
Containers” on page 444.

Transport-Layer Security
Transport-layer security is provided by the transport mechanisms used to transmit information
over the wire between clients and providers, thus transport-layer security relies on secure
HTTP transport (HTTPS) using Secure Sockets Layer (SSL). Transport security is a

Security Implementation Mechanisms

The Java EE 6 Tutorial, Volume I • December 2009442

point-to-point security mechanism that can be used for authentication, message integrity, and
confidentiality. When running over an SSL-protected session, the server and client can
authenticate one another and negotiate an encryption algorithm and cryptographic keys before
the application protocol transmits or receives its first byte of data. Security is “live” from the
time it leaves the consumer until it arrives at the provider, or vice versa, even across
intermediaries. The problem is that it is not protected once it gets to its destination. One
solution is to encrypt the message before sending.

Transport-layer security is performed in a series of phases, which are listed here:
■ The client and server agree on an appropriate algorithm.
■ A key is exchanged using public-key encryption and certificate-based authentication.
■ A symmetric cipher is used during the information exchange.

Digital certificates are necessary when running secure HTTP transport (HTTPS) using Secure
Sockets Layer (SSL). The HTTPS service of most web servers will not run unless a digital
certificate has been installed. Digital certificates have already been created for the Enterprise
Server. If you are using a different server, check to see if it has digital certificates, and, if not, use
the procedure outlined in “Working with Digital Certificates” on page 459 to set up a digital
certificate that can be used by your web or application server to enable SSL.

The advantages of using transport-layer security include the following:
■ Relatively simple, well understood, standard technology.
■ Applies to message body and attachments.

The disadvantages of using transport-layer security include the following:
■ Tightly-coupled with transport-layer protocol.
■ All or nothing approach to security. This implies that the security mechanism is unaware of

message contents, and as such, you cannot selectively apply security to portions of the
message as you can with message-layer security.

■ Protection is transient. The message is only protected while in transit. Protection is removed
automatically by the endpoint when it receives the message.

■ Not an end-to-end solution, simply point-to-point.

For more information on transport-layer security, read “Establishing a Secure Connection
Using SSL” on page 456.

Message-Layer Security
In message-layer security, security information is contained within the SOAP message and/or
SOAP message attachment, which allows security information to travel along with the message
or attachment. For example, a portion of the message may be signed by a sender and encrypted
for a particular receiver. When the message is sent from the initial sender, it may pass through
intermediate nodes before reaching its intended receiver. In this scenario, the encrypted

Security Implementation Mechanisms

Chapter 23 • Introduction to Security in the Java EE Platform 443

portions continue to be opaque to any intermediate nodes and can only be decrypted by the
intended receiver. For this reason, message-layer security is also sometimes referred to as
end-to-end security.

The advantages of message-layer security include the following:

■ Security stays with the message over all hops and after the message arrives at its destination.
■ Security can be selectively applied to different portions of a message (and to attachments if

using XWSS).
■ Message security can be used with intermediaries over multiple hops.
■ Message security is independent of the application environment or transport protocol.

The disadvantage of using message-layer security is that it is relatively complex and adds some
overhead to processing.

The Enterprise Server supports message security using Metro, a web services stack that uses
Web Services Security (WSS) to secure messages. Because this message security is specific to
Metro and is not a part of the Java EE platform, this tutorial does not discuss using WSS to
secure messages. See the Metro User's Guide at https://metro.dev.java.net/guide/. Other
sources of information for message security include Sun GlassFish Enterprise Server v3
Administration Guide and Sun GlassFish Enterprise Server v3 Application Development Guide.

Securing Containers
In Java EE, the component containers are responsible for providing application security. A
container provides two types of security: declarative and programmatic. The following sections
discuss these concepts in more detail.

■ “Using Deployment Descriptors for Declarative Security” on page 444
■ “Using Annotations” on page 445
■ “Using Programmatic Security” on page 446

Using Deployment Descriptors for Declarative
Security
Declarative security expresses an application component’s security requirements using
deployment descriptors. A deployment descriptor is an XML document with an .xml extension
that describes the deployment settings of an application, a module, or a component. Because
deployment descriptor information is declarative, it can be changed without the need to modify
the source code. At runtime, the Java EE server reads the deployment descriptor and acts upon
the application, module, or component accordingly.

Securing Containers

The Java EE 6 Tutorial, Volume I • December 2009444

https://metro.dev.java.net/guide/
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7695

This tutorial does not document how to write the deployment descriptors from scratch, only
what configurations each example requires its deployment descriptors to define. For help with
writing deployment descriptors, you can view the provided deployment descriptors in a text
editor. Another way to learn how to write deployment descriptors is to read the specification in
which the deployment descriptor elements are defined.

Deployment descriptors must provide certain structural information for each component if this
information has not been provided in annotations or is not to be defaulted.

Different types of components use different formats, or schema, for their deployment
descriptors. The security elements of deployment descriptors which are discussed in this
tutorial include the following:

■ Enterprise JavaBeans components may use an EJB deployment descriptor named
META-INF/ejb-jar.xml and would be contained in the EJB JAR file.
The schema for enterprise bean deployment descriptors is provided in the EJB 3.1
Specification (JSR-318), Chapter 9, Deployment Descriptor, which can be downloaded from
http://jcp.org/en/jsr/detail?id=318.

■ Deployment descriptor elements for web services components are defined in JSR–109. This
deployment descriptor provides deployment-time mapping functionality between Java and
WSDL. In conjunction with JSR–181, JAX-WS 2.2 complements this mapping functionality
with development-time Java annotations that control mapping between Java and WSDL.
The schema for web services deployment descriptors is provided in Web Services for Java EE
(JSR-109), section 7.1, Web Services Deployment Descriptor XML Schema, which can be
downloaded from http://jcp.org/en/jsr/detail?id=109.
Schema elements for web application deployment descriptors are discussed in this tutorial
in the section “Introduction to Web Application Deployment Descriptors” on page 492.

■ Web components use a web application deployment descriptor named web.xml.
The schema for web component deployment descriptors is provided in the Java Servlet 3.0
Specification (JSR-315), chapter 14, Deployment Descriptor, which can be downloaded from
http://jcp.org/en/jsr/detail?id=315.
Security elements for web application deployment descriptors are discussed in this tutorial
in the section “Introduction to Web Application Deployment Descriptors” on page 492.

Using Annotations
Annotations enable a declarative style of programming, and so encompass both the declarative
and programmatic security concepts. Users can specify information about security within a
class file using annotations. When the application is deployed, this information is used by the
Enterprise Server. Not all security information can be specified using annotations, however.
Some information must be specified in the application deployment descriptors.

Securing Containers

Chapter 23 • Introduction to Security in the Java EE Platform 445

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=315

Annotations let you avoid writing boilerplate code under many circumstances by enabling tools
to generate it from annotations in the source code. This leads to a declarative programming
style, where the programmer says what should be done and tools emit the code to do it. It also
eliminates the need for maintaining side files that must be kept up to date with changes in
source files. Instead the information can be maintained in the source file.

In this tutorial, specific annotations that can be used to specify security information within a
class file are described in “Securing an Enterprise Bean Using Declarative Security and
Annotations” on page 469. In this version of the tutorial, annotations are not shown for securing
web applications. This is because the use of annotations vary between web components, and
deployment descriptors are the common method of securing web applications.

The following are sources for more information on annotations:
■ JSR 175: A Metadata Facility for the Java Programming Language
■ JSR 181: Web Services Metadata for the Java Platform
■ JSR 250: Common Annotations for the Java Platform
■ The Java SE discussion of annotations

Links to this information are provided in “Further Information about Security” on page 462.

Using Programmatic Security
Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express the
security model of an application. The API for programmatic security consists of two methods of
the EJBContext interface and six methods of the servlet HttpServletRequest interface. These
methods allow components to make business logic decisions based on the security role of the
caller or remote user.

Programmatic security is discussed in more detail in the following sections:
■ “Securing an Enterprise Bean Programmatically” on page 477
■ “Using Programmatic Security with Web Applications” on page 510

Securing the Enterprise Server
This tutorial describes deployment to the Sun GlassFish Enterprise Server v3, which provides
highly secure, interoperable, and distributed component computing based on the Java EE
security model. The Enterprise Server supports the Java EE 6 security model. You can configure
the Enterprise Server for the following purposes:
■ Adding, deleting, or modifying authorized users. For more information on this topic, read

“Working with Realms, Users, Groups, and Roles” on page 448.
■ Configuring secure HTTP and IIOP listeners.

Securing the Enterprise Server

The Java EE 6 Tutorial, Volume I • December 2009446

■ Configuring secure Java Management Extensions (JMX) connectors.
■ Adding, deleting, or modifying existing or custom realms.

A discussion of this topic is available in “Realm Configuration” in Sun GlassFish Enterprise
Server v3 Application Development Guide.

■ Defining an interface for pluggable authorization providers using Java Authorization
Contract for Containers (JACC).
Java Authorization Contract for Containers (JACC) defines security contracts between the
Enterprise Server and authorization policy modules. These contracts specify how the
authorization providers are installed, configured, and used in access decisions. JACC is
discussed in “JACC Support” in Sun GlassFish Enterprise Server v3 Application Development
Guide.

■ Using pluggable audit modules.
A discussion of using pluggable audit modules can be found in “Pluggable Audit Module
Support” in Sun GlassFish Enterprise Server v3 Application Development Guide

■ Customizing authentication mechanisms
All implementations of Java EE 6–compatible Servlet containers are required to support the
Servlet Profile of JSR–196, which offers an avenue for customizing the authentication
mechanism applied by the web container on behalf of one or more applications. Some
discussion of using the JSR–196 contract to configure a custom container authentication
mechanism is discussed in “Adding Authentication Mechanisms to the Servlet Container”
in Sun GlassFish Enterprise Server v3 Application Development Guide.

■ Setting and changing policy permissions for an application.
You can read more about changing policy permissions in “The server.policy File” in Sun
GlassFish Enterprise Server v3 Application Development Guide.

The following features are specific to the Enterprise Server:

■ Message security
Message security is discussed in “Configuring Message Security for Web Services” in Sun
GlassFish Enterprise Server v3 Application Development Guide.

■ Single sign-on across all Enterprise Server applications within a single security domain.
You can learn more about single sign-on in “User Authentication for Single Sign-on” in Sun
GlassFish Enterprise Server v3 Application Development Guide.

■ Programmatic login
You can learn more about programmatic login in “Programmatic Login” in Sun GlassFish
Enterprise Server v3 Application Development Guide.

For more information about configuring the Enterprise Server, read the Sun GlassFish
Enterprise Server v3 Application Development Guide and Sun GlassFish Enterprise Server v3
Administration Guide.

Securing the Enterprise Server

Chapter 23 • Introduction to Security in the Java EE Platform 447

http://docs.sun.com/doc/820-7695/beabo?a=view
http://docs.sun.com/doc/820-7695/beabo?a=view
http://docs.sun.com/doc/820-7695/beabt?a=view
http://docs.sun.com/doc/820-7695/beabt?a=view
http://docs.sun.com/doc/820-7695/beabu?a=view
http://docs.sun.com/doc/820-7695/beabu?a=view
http://docs.sun.com/doc/820-7695/gizel?a=view
http://docs.sun.com/doc/820-7695/gizel?a=view
http://docs.sun.com/doc/820-7695/beabx?a=view
http://docs.sun.com/doc/820-7695/beabx?a=view
http://docs.sun.com/doc/820-7695/beaca?a=view
http://docs.sun.com/doc/820-7695/beaca?a=view
http://docs.sun.com/doc/820-7695/beacq?a=view
http://docs.sun.com/doc/820-7695/beacq?a=view
http://docs.sun.com/doc/820-7695/beacm?a=view
http://docs.sun.com/doc/820-7695/beacm?a=view
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692

Working with Realms, Users, Groups, and Roles
You often need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recognition of an entity
by a system, and authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.
These concepts are discussed in more detail in “Characteristics of Application Security” on
page 440.

This section discusses setting up users so that they can be correctly identified and either given
access to protected resources, or denied access if the user is not authorized to access the
protected resources. To authenticate a user, you need to follow these basic steps:

1. The Application Developer writes code to prompt the user for their user name and
password. The different methods of authentication are discussed in “Specifying an
Authentication Mechanism” on page 499.

2. The Application Developer communicates how to set up security for the deployed
application by use of a deployment descriptor or metadata annotation. This step is discussed
in “Setting Up Security Roles” on page 453.

3. The Server Administrator sets up authorized users and groups on the Enterprise Server.
This is discussed in “Managing Users and Groups on the Enterprise Server” on page 451.

4. The Application Deployer maps the application’s security roles to users, groups, and
principals defined on the Enterprise Server. This topic is discussed in “Mapping Roles to
Users and Groups” on page 455.

What Are Realms, Users, Groups, and Roles?
A realm is a security policy domain defined for a web or application server. It is also a string,
passed as part of an HTTP request during basic authentication, that defines a protection space.
The protected resources on a server can be partitioned into a set of protection spaces, each with
its own authentication scheme and/or authorization database containing a collection of users,
which may or may not be assigned to a group. Managing users on the Enterprise Server is
discussed in “Managing Users and Groups on the Enterprise Server” on page 451.

An application will often prompt a user for their user name and password before allowing
access to a protected resource. After the user has entered their user name and password, that
information is passed to the server, which either authenticates the user and sends the protected
resource, or does not authenticate the user, in which case access to the protected resource is
denied. This type of user authentication is discussed in “Specifying an Authentication
Mechanism” on page 499.

In some applications, authorized users are assigned to roles. In this situation, the role assigned
to the user in the application must be mapped to a principal or group defined on the application

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial, Volume I • December 2009448

server. Figure 23–6 shows this. More information on mapping roles to users and groups can be
found in “Setting Up Security Roles” on page 453.

Note – The concepts of users, groups, principals, and realms exist in most application or web
servers, but might use different names in different products. If you are using a server other than
Enterprise Server, consult your product's documentation for the terminology specific to that
server.

The following sections provide more information on realms, users, groups, and roles.

What Is a Realm?
A realm is a security policy domain defined for a web or application server. It is also a string,
passed as part of an HTTP request during basic authentication, that defines a protection space.
The protected resources on a server can be partitioned into a set of protection spaces, each with
its own authentication scheme and/or authorization database containing a collection of users,

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Application

Role 1

Role 2

Application

Role 1

Role 2

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

FIGURE 23–6 Mapping Roles to Users and Groups

Working with Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 449

which may or may not be assigned to a group. For a web application, a realm is a complete
database of users and groups that identify valid users of a web application (or a set of web
applications) and are controlled by the same authentication policy.

The Java EE server authentication service can govern users in multiple realms. In this release of
the Enterprise Server, the file, admin-realm, and certificate realms come preconfigured for
the Enterprise Server.

In the file realm, the server stores user credentials locally in a file named keyfile. You can use
the Admin Console to manage users in the file realm. When using the file realm, the server
authentication service verifies user identity by checking the file realm. This realm is used for
the authentication of all clients except for web browser clients that use the HTTPS protocol and
certificates.

In the certificate realm, the server stores user credentials in a certificate database. When
using the certificate realm, the server uses certificates with the HTTPS protocol to
authenticate web clients. To verify the identity of a user in the certificate realm, the
authentication service verifies an X.509 certificate. For step-by-step instructions for creating
this type of certificate, see “Working with Digital Certificates” on page 459. The common name
field of the X.509 certificate is used as the principal name.

The admin-realm is also a FileRealm and stores administrator user credentials locally in a file
named admin-keyfile. You can use the Admin Console to manage users in this realm in the
same way you manage users in the file realm. For more information, see “Managing Users and
Groups on the Enterprise Server” on page 451.

What Is a User?
A user is an individual (or application program) identity that has been defined in the Enterprise
Server. In a web application, a user can have a set of roles associated with that identity, which
entitles them to access all resources protected by those roles. Users can be associated with a
group.

A Java EE user is similar to an operating system user. Typically, both types of users represent
people. However, these two types of users are not the same. The Java EE server authentication
service has no knowledge of the user name and password you provide when you log on to the
operating system. The Java EE server authentication service is not connected to the security
mechanism of the operating system. The two security services manage users that belong to
different realms.

What Is a Group?
A group is a set of authenticated users, classified by common traits, defined in the Enterprise
Server.

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial, Volume I • December 2009450

A Java EE user of the file realm can belong to an Enterprise Server group. (A user in the
certificate realm cannot.) An Enterprise Server group is a category of users classified by
common traits, such as job title or customer profile. For example, most customers of an
e-commerce application might belong to the CUSTOMER group, but the big spenders would
belong to the PREFERRED group. Categorizing users into groups makes it easier to control the
access of large numbers of users.

An Enterprise Server group has a different scope from a role. An Enterprise Server group is
designated for the entire Enterprise Server, whereas a role is associated only with a specific
application in the Enterprise Server.

What Is a Role?
A role is an abstract name for the permission to access a particular set of resources in an
application. A role can be compared to a key that can open a lock. Many people might have a
copy of the key. The lock doesn’t care who you are, only that you have the right key.

Some Other Terminology
The following terminology is also used to describe the security requirements of the Java EE
platform:

■ Principal: A principal is an entity that can be authenticated by an authentication protocol in
a security service that is deployed in an enterprise. A principal is identified using a principal
name and authenticated using authentication data.

■ Security policy domain (also known as security domain or realm): A security policy
domain is a scope over which a common security policy is defined and enforced by the
security administrator of the security service.

■ Security attributes: A set of security attributes is associated with every principal. The
security attributes have many uses, for example, access to protected resources and auditing
of users. Security attributes can be associated with a principal by an authentication protocol.

■ Credential: A credential contains or references information (security attributes) used to
authenticate a principal for Java EE product services. A principal acquires a credential upon
authentication, or from another principal that allows its credential to be used.

Managing Users and Groups on the Enterprise Server
Managing users on the Enterprise Server is discussed in more detail in the Sun GlassFish
Enterprise Server v3 Administration Guide.

This tutorial provides steps for managing users that will need to be completed to work through
the tutorial examples.

Working with Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 451

http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692

Adding Users to the Enterprise Server
To add users to the Enterprise Server, follow these steps:

1. Start the Enterprise Server if you haven’t already done so. Information on starting the
Enterprise Server is available in “Starting and Stopping the Enterprise Server” on page 58.

2. Start the Admin Console if you haven’t already done so. You can start the Admin Console by
starting a web browser and entering the URL http://localhost:4848/asadmin. If you
changed the default Admin port during installation, enter the correct port number in place
of 4848.

3. To log in to the Admin Console, enter the user name and password of a user in the
admin-realm who belongs to the asadmin group. The name and password entered during
installation will work, as will any users added to this realm and group subsequent to
installation.

4. Expand the Configuration node in the Admin Console tree.
5. Expand the Security node in the Admin Console tree.
6. Expand the Realms node.

■ Select the file realm to add users you want to access applications running in this realm.
(For the example security applications, select the file realm.)

■ Select the admin-realm to add users you want to enable as system administrators of the
Enterprise Server.

■ You cannot enter users into the certificate realm using the Admin Console. You can
only add certificates to the certificate realm. For information on adding (importing)
certificates to the certificate realm, read “Adding Users to the Certificate Realm” on
page 453.

7. Click the Manage Users button.
8. Click New to add a new user to the realm.
9. Enter the correct information into the User ID, Password, and Group(s) fields.

■ If you are adding a user to the file realm, enter a name to identify the user, a password
to allow the user access to the realm, and a group to which this user belongs. For more
information on these properties, read “Working with Realms, Users, Groups, and Roles”
on page 448.
For the example security applications, enter a user with any name and password you like,
but make sure that the user is assigned to the group of TutorialUser. The user name and
password are case-sensitive. Keep a record of the user name and password for working
with examples later in this tutorial.

■ If you are adding a user to the admin-realm, enter the name to identify the user, a
password to allow the user access to the Enterprise Server, and enter asadmin in the
Group field. Restart the Enterprise Server and Admin Console after making this change.

10. Click OK to add this user to the list of users in the realm.

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial, Volume I • December 2009452

11. Click Logout when you have completed this task.

Adding Users to the Certificate Realm
In the certificate realm, user identity is set up in the Enterprise Server security context and
populated with user data obtained from cryptographically-verified client certificates. For
step-by-step instructions for creating this type of certificate, see “Working with Digital
Certificates” on page 459.

Setting Up Security Roles
When you design an enterprise bean or web component, you should always think about the
kinds of users who will access the component. For example, a web application for a human
resources department might have a different request URL for someone who has been assigned
the role of DEPT_ADMIN than for someone who has been assigned the role of DIRECTOR. The
DEPT_ADMIN role may let you view employee data, but the DIRECTOR role enables you to modify
employee data, including salary data. Each of these security roles is an abstract logical grouping
of users that is defined by the person who assembles the application. When an application is
deployed, the deployer will map the roles to security identities in the operational environment,
as shown in Figure 23–6.

For enterprise applications, you define security roles using the @DeclareRoles and
@RolesAllowed metadata annotations. For web applications, you define roles in the application
deployment descriptor, web.xml.

For applications, you define security roles in the Java EE deployment descriptor file
application.xml, and the corresponding role mappings in the Enterprise Server deployment
descriptor file sun-application.xml. For individually deployed web or EJB modules, you
define roles in the Java EE deployment descriptor files web.xml or ejb-jar.xml and the
corresponding role mappings in the Enterprise Server deployment descriptor files sun-web.xml
or sun-ejb-jar.xml.

The following is an example of an application where the role of DEPT-ADMIN is authorized for
methods that review employee payroll data and the role of DIRECTOR is authorized for methods
that change employee payroll data.

The enterprise bean would be annotated as shown in the following code:

@DeclareRoles({"DEPT-ADMIN", "DIRECTOR"})
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

@RolesAllowed("DEPT-ADMIN")
public void reviewEmployeeInfo(EmplInfo info) {

Working with Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 453

oldInfo = ... read from database;

/ ...

}

@RolesAllowed("DIRECTOR")
public void updateEmployeeInfo(EmplInfo info) {

newInfo = ... update database;

...

}

...

}

The deployment descriptor would include security constraints, as shown in the following
example:

<security-constraint>

<web-resource-collection>

<web-resource-name>view dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DEPT_ADMIN</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

<web-resource-name>change dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>PUT</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DIRECTOR</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial, Volume I • December 2009454

The web.xml application deployment descriptor is described in more detail in “Introduction to
Web Application Deployment Descriptors” on page 492.

These annotations are discussed in more detail in “Securing an Enterprise Bean Using
Declarative Security and Annotations” on page 469.

After users have provided their login information, and the application has declared what roles
are authorized to access protected parts of an application, the next step is to map the security
role to the name of a user, or principal. This step is discussed in the following section.

Mapping Roles to Users and Groups
When you are developing a Java EE application, you don’t need to know what categories of
users have been defined for the realm in which the application will be run. In the Java EE
platform, the security architecture provides a mechanism for mapping the roles defined in the
application to the users or groups defined in the runtime realm. To map a role name permitted
by the application or module to principals (users) and groups defined on the server, use the
security-role-mapping element in the runtime deployment descriptor
(sun-application.xml, sun-web.xml, or sun-ejb-jar.xml) file. The entry needs to declare a
mapping between a security role used in the application and one or more groups or principals
defined for the applicable realm of the Enterprise Server. An example for the sun-web.xml file is
shown below:

<sun-web-app>

<security-role-mapping>

<role-name>DIRECTOR</role-name>

<principal-name>schwartz</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>DEPT-ADMIN</role-name>

<group-name>dept-admins</group-name>

</security-role-mapping>

</sun-web-app>

The role name can be mapped to either a specific principal (user), a group, or both. The
principal or group names referenced must be valid principals or groups in the current default
realm of the Enterprise Server. The role-name in this example must exactly match the
role-name in the security-role element of the corresponding web.xml file or the role name
defined in the @DeclareRoles and/or @RolesAllowed annotations.

Sometimes the role names used in the application are the same as the group names defined on
the Enterprise Server. Under these circumstances, you can enable a default principal-to-role
mapping on the Enterprise Server using the Admin Console. From the Admin Console, select
Configuration, then Security, then check the enable box beside Default Principal to Role
Mapping. If you need more information about using the Admin Console, see “Adding Users to
the Enterprise Server” on page 452 or its online help.

Working with Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 455

Establishing a Secure Connection Using SSL
Secure Socket Layer (SSL) technology is security that is implemented at the transport layer (see
“Transport-Layer Security” on page 442, for more information about transport layer security).
SSL allows web browsers and web servers to communicate over a secure connection. In this
secure connection, the data that is being sent is encrypted before being sent and then is
decrypted upon receipt and before processing. Both the browser and the server encrypt all
traffic before sending any data. SSL addresses the following important security considerations.

■ Authentication: During your initial attempt to communicate with a web server over a
secure connection, that server will present your web browser with a set of credentials in the
form of a server certificate. The purpose of the certificate is to verify that the site is who and
what it claims to be. In some cases, the server may request a certificate that the client is who
and what it claims to be (which is known as client authentication).

■ Confidentiality: When data is being passed between the client and the server on a network,
third parties can view and intercept this data. SSL responses are encrypted so that the data
cannot be deciphered by the third party and the data remains confidential.

■ Integrity: When data is being passed between the client and the server on a network, third
parties can view and intercept this data. SSL helps guarantee that the data will not be
modified in transit by that third party.

Installing and Configuring SSL Support
An SSL HTTPS connector is already enabled in the Enterprise Server. For more information on
configuring SSL for the Enterprise Server, refer to the Sun GlassFish Enterprise Server v3
Administration Guide.

If you are using a different application server or web server, an SSL HTTPS connector might or
might not be enabled. If you are using a server that needs its SSL connector to be configured,
consult the documentation for that server.

As a general rule, to enable SSL for a server, you must address the following issues:

■ There must be a Connector element for an SSL connector in the server deployment
descriptor.

■ There must be valid keystore and certificate files.
■ The location of the keystore file and its password must be specified in the server deployment

descriptor.

You can verify whether or not SSL is enabled by following the steps in “Verifying SSL Support”
on page 458.

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial, Volume I • December 2009456

http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692

Specifying a Secure Connection in Your Application
Deployment Descriptor
To specify a requirement that protected resources be received over a protected transport layer
connection (SSL), specify a user data constraint in the application deployment descriptor. The
following is an example of a web.xml application deployment descriptor that specifies that SSL
be used:

<security-constraint>

<web-resource-collection>

<web-resource-name>view dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DEPT_ADMIN</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

A user data constraint (<user-data-constraint> in the deployment descriptor) requires that
all constrained URL patterns and HTTP methods specified in the security constraint are
received over a protected transport layer connection such as HTTPS (HTTP over SSL). A user
data constraint specifies a transport guarantee (<transport-guarantee> in the deployment
descriptor). The choices for transport guarantee include CONFIDENTIAL, INTEGRAL, or NONE. If
you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of security constraint
applies to all requests that match the URL patterns in the web resource collection and not just to
the login dialog box.

The strength of the required protection is defined by the value of the transport guarantee.

■ Specify CONFIDENTIAL when the application requires that data be transmitted so as to
prevent other entities from observing the contents of the transmission.

■ Specify INTEGRAL when the application requires that the data be sent between client and
server in such a way that it cannot be changed in transit.

■ Specify NONE to indicate that the container must accept the constrained requests on any
connection, including an unprotected one.

The user data constraint is handy to use with basic and form-based user authentication. When
the login authentication method is set to BASIC or FORM, passwords are not protected, meaning
that passwords sent between a client and a server on an unprotected session can be viewed and
intercepted by third parties. Using a user data constraint with the user authentication
mechanism can alleviate this concern.

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 457

Verifying SSL Support
For testing purposes, and to verify that SSL support has been correctly installed, load the default
introduction page with a URL that connects to the port defined in the server deployment
descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL protocol. The
localhost in this example assumes that you are running the example on your local machine as
part of the development process. The 8181 in this example is the secure port that was specified
where the SSL connector was created. If you are using a different server or port, modify this
value accordingly.

The first time that you load this application, the New Site Certificate or Security Alert dialog box
displays. Select Next to move through the series of dialog boxes, and select Finish when you
reach the last dialog box. The certificates will display only the first time. When you accept the
certificates, subsequent hits to this site assume that you still trust the content.

Tips on Running SSL
The SSL protocol is designed to be as efficient as securely possible. However, encryption and
decryption are computationally expensive processes from a performance standpoint. It is not
strictly necessary to run an entire web application over SSL, and it is customary for a developer
to decide which pages require a secure connection and which do not. Pages that might require a
secure connection include login pages, personal information pages, shopping cart checkouts, or
any pages where credit card information could possibly be transmitted. Any page within an
application can be requested over a secure socket by simply prefixing the address with https:

instead of http:. Any pages that absolutely require a secure connection should check the
protocol type associated with the page request and take the appropriate action if https is not
specified.

Using name-based virtual hosts on a secured connection can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, where the client browser accepts the
server certificate, must occur before the HTTP request is accessed. As a result, the request
information containing the virtual host name cannot be determined before authentication, and
it is therefore not possible to assign multiple certificates to a single IP address. If all virtual hosts
on a single IP address need to authenticate against the same certificate, the addition of multiple
virtual hosts should not interfere with normal SSL operations on the server. Be aware, however,
that most client browsers will compare the server’s domain name against the domain name
listed in the certificate, if any (this is applicable primarily to official, CA-signed certificates). If
the domain names do not match, these browsers will display a warning to the client. In general,
only address-based virtual hosts are commonly used with SSL in a production environment.

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial, Volume I • December 2009458

Working with Digital Certificates
Digital certificates for the Enterprise Server have already been generated and can be found in
the directory as-install/domain-dir/config/. These digital certificates are self-signed and are
intended for use in a development environment; they are not intended for production purposes.
For production purposes, generate your own certificates and have them signed by a CA.

The instructions in this section apply to the developer and cluster profiles of the Enterprise
Server. In the enterprise profile, the certutil utility is used to create digital certificates. For
more information, see the Sun GlassFish Enterprise Server v3 Administration Guide.

To use SSL, an application or web server must have an associated certificate for each external
interface, or IP address, that accepts secure connections. The theory behind this design is that a
server should provide some kind of reasonable assurance that its owner is who you think it is,
particularly before receiving any sensitive information. It may be useful to think of a certificate
as a “digital driver’s license” for an Internet address. It states with which company the site is
associated, along with some basic contact information about the site owner or administrator.

The digital certificate is cryptographically signed by its owner and is difficult for anyone else to
forge. For sites involved in e-commerce or in any other business transaction in which
authentication of identity is important, a certificate can be purchased from a well-known
certificate authority (CA) such as VeriSign or Thawte. If your server certificate is self-signed,
you must install it in the Enterprise Server keystore file (keystore.jks). If your client certificate
is self-signed, you should install it in the Enterprise Server truststore file (cacerts.jks).

Sometimes authentication is not really a concern. For example, an administrator might simply
want to ensure that data being transmitted and received by the server is private and cannot be
snooped by anyone eavesdropping on the connection. In such cases, you can save the time and
expense involved in obtaining a CA certificate and simply use a self-signed certificate.

SSL uses public key cryptography, which is based on key pairs. Key pairs contain one public key
and one private key. If data is encrypted with one key, it can be decrypted only with the other
key of the pair. This property is fundamental to establishing trust and privacy in transactions.
For example, using SSL, the server computes a value and encrypts the value using its private key.
The encrypted value is called a digital signature. The client decrypts the encrypted value using
the server’s public key and compares the value to its own computed value. If the two values
match, the client can trust that the signature is authentic, because only the private key could
have been used to produce such a signature.

Digital certificates are used with the HTTPS protocol to authenticate web clients. The HTTPS
service of most web servers will not run unless a digital certificate has been installed. Use the
procedure outlined in the next section, “Creating a Server Certificate” on page 460, to set up a
digital certificate that can be used by your application or web server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the Java SE SDK. It enables users to administer their own
public/private key pairs and associated certificates for use in self-authentication (where the user

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 459

http://docs.sun.com/doc/820-7692

authenticates himself or herself to other users or services) or data integrity and authentication
services, using digital signatures. It also allows users to cache the public keys (in the form of
certificates) of their communicating peers. For a better understanding of keytool and public
key cryptography, read the keytool documentation at http://java.sun.com/javase/6/
docs/technotes/tools/solaris/keytool.html.

Creating a Server Certificate
A server certificate has already been created for the Enterprise Server. The certificate can be
found in the domain-dir/config/ directory. The server certificate is in keystore.jks. The
cacerts.jks file contains all the trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool utility stores the keys
and certificates in a file termed a keystore, a repository of certificates used for identifying a client
or a server. Typically, a keystore is a file that contains one client or one server’s identity. It
protects private keys by using a password.

If you don’t specify a directory when specifying the keystore file name, the keystores are created
in the directory from which the keytool command is run. This can be the directory where the
application resides, or it can be a directory common to many applications.

To create a server certificate, follow these steps:

1. Create the keystore.
2. Export the certificate from the keystore.
3. Sign the certificate.
4. Import the certificate into a truststore: a repository of certificates used for verifying the

certificates. A truststore typically contains more than one certificate.

Run keytool to generatea new key pair in the default development keystore file, keystore.jks.
This example uses the alias server-alias to generate a new public/private key pair and wrap
the public key into a self-signed certificate inside keystore.jks. The key pair is generated using
an algorithm of type RSA, with a default password of changeit. For more information and
other examples of creating and managing keystore files, read the keytool online help at
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html.

Note – RSA is public-key encryption technology developed by RSA Data Security, Inc. The
acronym stands for Rivest, Shamir, and Adelman, the inventors of the technology.

From the directory in which you want to create the key pair , run keytool with the following
parameters.

1. Generate the server certificate. (Type the keytool command all on one line.)

java-home/bin/keytool -genkey -alias server-alias -keyalg RSA -keypass changeit

-storepass changeit -keystore keystore.jks

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial, Volume I • December 2009460

http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html

When you press Enter, keytool prompts you to enter the server name, organizational unit,
organization, locality, state, and country code.

You must enter the server name in response to keytool’s first prompt, in which it asks for
first and last names. For testing purposes, this can be localhost.

When you run the example applications, the host (server name) specified in the keystore
must match the host identified in the javaee.server.name property specified in the file
tut-install/examples/bp-project/build.properties.

2. Export the generated server certificate in keystore.jks into the file server.cer. (Type the
keytool command all on one line.)

java-home/bin/keytool -export -alias server-alias -storepass changeit

-file server.cer -keystore keystore.jks

3. If you want to have the certificate signed by a CA, read the example at
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html.

4. To add the server certificate to the truststore file, cacerts.jks, run keytool from the
directory where you created the keystore and server certificate. Use the following
parameters:

java-home/bin/keytool -import -v -trustcacerts -alias server-alias -file server.cer

-keystore cacerts.jks -keypass changeit -storepass changeit

Information on the certificate, such as that shown next, will display.

% keytool -import -v -trustcacerts -alias server-alias -file server.cer

-keystore cacerts.jks -keypass changeit -storepass changeit

Owner: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USIssuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USSerial number: 3e932169Valid from: Tue Apr 08Certificate

fingerprints:MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90 SHA1:

EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:

Trust this certificate? [no]:

5. Enter yes, and then press the Enter or Return key. The following information displays:

Certificate was added to keystore[Saving cacerts.jks]

Miscellaneous Commands for Certificates
To check the contents of a keystore that contains a certificate with an alias server-alias, use
this command:

keytool -list -keystore keystore.jks -alias server-alias -v

To check the contents of the cacerts file, use this command:

keytool -list -keystore cacerts.jks

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 461

http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html

Further Information about Security
For more information about security in Java EE applications, see:
■ Java EE 6 Specification:

http://jcp.org/en/jsr/detail?id=316

■ The Sun GlassFish Enterprise Server v3 Application Development Guide includes security
information for application developers.

■ The Sun GlassFish Enterprise Server v3 Administration Guide includes information on
setting security settings for the Enterprise Server.

■ The Sun GlassFish Enterprise Server v3 Application Deployment Guide includes information
on security settings in the deployment descriptors specific to the Enterprise Server.

■ EJB 3.1 Specification (JSR-318):
http://jcp.org/en/jsr/detail?id=318

■ Implementing Enterprise Web Services 1.3 (JSR-109):
http://jcp.org/en/jsr/detail?id=109

■ Java Platform, Standard Edition 6 security information:
http://java.sun.com/javase/6/docs/technotes/guides/security/

■ Java Servlet Specification, Version 3.0:
http://jcp.org/en/jsr/detail?id=315

■ JSR 181: Web Services Metadata for the Java Platform:
http://jcp.org/en/jsr/detail?id=181

■ JSR 250: Common Annotations for the Java Platform:
http://jcp.org/en/jsr/detail?id=250

■ The Java SE discussion of annotations:
http://java.sun.com/

javase/6/docs/technotes/guides/language/annotations.html

■ JSR 115: Java Authorization Contract for Containers 1.3:
http://jcp.org/en/jsr/detail?id=115

■ Chapter 24 of the CORBA/IIOP specification, Secure Interoperability:
http://www.omg.org/cgi-bin/doc?formal/02-06-60

■ Java Authentication and Authorization Service (JAAS) in Java Platform, Standard Edition:
http://java.sun.com/developer/technicalArticles/Security/jaasv2/index.html

■ Java Authentication and Authorization Service (JAAS) Reference Guide:
http://java.sun.com/

javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Further Information about Security

The Java EE 6 Tutorial, Volume I • December 2009462

http://jcp.org/en/jsr/detail?id=316
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7693
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=250
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html
http://jcp.org/en/jsr/detail?id=115
http://www.omg.org/cgi-bin/doc?formal/02-06-60
http://java.sun.com/developer/technicalArticles/Security/jaasv2/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide:
http://java.sun.com/

javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Further Information about Security

Chapter 23 • Introduction to Security in the Java EE Platform 463

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

464

Getting Started Securing Enterprise
Applications

Enterprise applications provide business logic support functionality for an enterprise, typically
in commercial organizations, to improve the enterprise's productivity and efficiency. Services
provided by enterprise applications are typically business-oriented applications such as online
shopping and online payment processing, interactive product catalogue, automated billing
systems, security, content management, CRM, ERP, Business Intelligence, HR management,
manufacturing, EAI, Enterprise Forms Automation, etc. Enterprise applications typically have
interfaces to other enterprise software (for example, from a database to Enterprise JavaBeansTM)
and are centrally managed.1

Responsibility for Administering Security
The following parties are responsible for administering security for enterprise applications:

■ System Administrator
The system administrator is responsible for setting up a database of users and assigning
those users to the proper group. The system administrator is also responsible for setting
properties on the Enterprise Server that enable the applications to run properly. In terms of
security, some examples include setting up a default principal to role mapping, anonymous
users, default users, and propagated identities. More information on system administrator
responsibilities is found in Sun GlassFish Enterprise Server v3 Administration Guide. When
needed for this tutorial, the steps for performing specific steps will also be provided herein.

■ Application Developer/Bean Provider
The application developer/bean provider is responsible for annotating the classes and
methods of the enterprise application in order to provide information to the deployer about
which methods need to have restricted access. This tutorial describes the steps necessary to
complete this task.

1 Enterprise software. (2009, October 20). In Wikipedia, The Free Encyclopedia. Retrieved 19:41, October 29, 2009, from
http://en.wikipedia.org/w/index.php?title=Enterprise_software

24C H A P T E R 2 4

465

http://docs.sun.com/doc/820-7692

■ Deployer
The deployer is responsible for taking the security view provided by the application
developer and implementing that security upon deployment. This document provides the
information needed to accomplish this task for the tutorial example applications. For more
information on deployment, the best source for the Enterprise Server is the Sun GlassFish
Enterprise Server v3 Application Deployment Guide.

Securing Enterprise Beans
Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
Enterprise Server. Although transparent to the application developer, the EJB container
provides system-level services such as transactions and security to its enterprise beans, which
form the core of transactional Java EE applications.

Enterprise bean methods can be secured using one of the following methods:
■ Declarative Security (preferred)

Declarative security enables the application developer to specify which users are authorized
to access which methods of the enterprise beans, what type of authentication will be used,
and whether or not the protected data will use a secure connection.
In older versions of Java EE, declarative security was specified in the application deployment
descriptor. A deployment descriptor is an XML file that is external to the application and
expresses, among other things, an application's security structure. With the introduction of
Java EE 5, metadata annotations (or simply, annotations,) were introduced to specify which
users were authorized to access protected methods of the enterprise applications. Beginning
with Java EE 6, the presence of an annotation in the business method of an enterprise
application that specifies method permissions is all that is needed for method protection and
authentication in some situations. This section discusses this simple and efficient method of
securing enterprise beans
There are some limitations to the simplified method of securing enterprise beans, so there
are some instances where you would want to continue to use the deployment descriptor to
specify security information. An authentication mechanism must be configured on the
server for the simple solution to work. The Enterprise Server assumes a default
authentication method of basic authentication, but not all servers are configured for a
default authentication mechanism, in which case you would need to use a vendor-specific
deployment descriptor to specify an authentication method. Using deployment descriptors
to specify security information for enterprise applications is discussed in Part VII,
“Security,” in The Java EE 6 Tutorial, Volume II.
For this tutorial, we will describe how to invoke username-password authentication of
authorized users by decorating the enterprise application's business methods with
annotations that specify method permissions. To make the deployer's task easier, the
application developer can define security roles. A security role is a grouping of permissions

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009466

http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7693

that a given type of users of the application must have in order to successfully use the
application. For example, in a payroll application, there will be users who want to view their
own payroll information (employee), user who need to view others payroll information
(manager), and users who need to be able to change others payroll information
(payrollDept). The application developer would determine who the potential users of the
application would be, and which methods would be accessible to which users. The
application developer would then decorate classes or methods of the enterprise bean with
annotations that specify the types of users authorized to access those methods. Using
annotations to specify authorized users is described in “Specifying Authorized Users by
Declaring Security Roles” on page 470.
When one of the annotations is used to define method permissions, the deployment system
will automatically require username-password authentication. Username-password
authentication is used often in applications. In this type of authentication, a user will be
prompted to enter their username and password. These will be compared against a database
of known users. If the user is found and the password matches, the roles that the user is
assigned will be compared against the roles that are authorized to access the method. If the
user is authenticated and found to have a role that is authorized to access that method, the
data will be returned to the user.
Using declarative security is discussed in “Securing an Enterprise Bean Using Declarative
Security and Annotations” on page 469.

■ Programmatic Security
Programmatic security is code that is embedded in a business method, is used to access a
caller's identity programmatically, and uses this information to make security decisions
within the method itself. Programmatic security is useful when declarative security alone is
not sufficient to express the security model of an application.
In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans' business methods. The programmatic security API's
described in this chapter should be used only in the less frequent situations in which the
enterprise bean business methods need to access the security context information, such as
when you want to grant access based on the time of day (or other nontrivial condition
checks) for a particular role.
Programmatic security is discussed in “Securing an Enterprise Bean Programmatically” on
page 477.

Some of the material in this chapter assumes that you have already read Chapter 23,
“Introduction to Security in the Java EE Platform,” Chapter 14, “Enterprise Beans,” and
Chapter 15, “Getting Started with Enterprise Beans.”

As mentioned earlier, enterprise beans run in the EJB container, a runtime environment within
the Enterprise Server, as shown in Figure 24–1.

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 467

This section discusses how to secure a Java EE application where one or more modules (such as
EJB JAR files) are packaged into an EAR file, the archive file that holds the application. Security
annotations will be used in the Java programming class files to specify authorized users and
basic, or username-password, authentication.

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application's WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.
When a servlet or JSP page handles the web front-end, and the application is packaged into a
WAR module as a Java programming class file, then security for the application can be handled
in the application's web.xml file. The EJB in the WAR file can have its own deployment
descriptor, ejb-jar.xml, if required. Securing web applications using web.xml is discussed in
Chapter 25, “Getting Started Securing Web Applications,” and Part VII, “Security,” in The Java
EE 6 Tutorial, Volume II.

Web Browser

Web
Container

EJB
Container

Enterprise
Bean

Database

Client
Machine

Java EE
Server

Application
Client

Application Client
Container

Servlet
JSP
Page

Enterprise
Bean

FIGURE 24–1 Java EE Server and Containers

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009468

The following sections describe declarative and programmatic security mechanisms that can be
used to protect enterprise bean resources. The protected resources include methods of
enterprise beans that are called from application clients, web components, or other enterprise
beans.

You can protect enterprise beans by doing the following:
■ “Securing an Enterprise Bean Using Declarative Security and Annotations” on page 469
■ “Securing an Enterprise Bean Programmatically” on page 477
■ “Propagating a Security Identity (Run-As)” on page 480
■ “Deploying Secure Enterprise Beans” on page 482

You should also read JSR-318: Enterprise JavaBeans 3.1 for more information on this topic. This
document can be downloaded from http://jcp.org/en/jsr/detail?id=318. Chapter 17 of
this specification, Security Management, discusses security management for enterprise beans.

Securing an Enterprise Bean Using Declarative
Security and Annotations
Declarative security enables the application developer to specify which users are authorized to
access which methods of the enterprise beans, and to authenticate these users with basic, or
username-password, authentication.

Frequently, the person who is developing an enterprise application is not the same person who
is responsible for deploying the application. When an application developer uses declarative
security to define method permissions and authentications mechanisms, they are passing along
to the deployer a security view of the enterprise beans contained in the EJB JAR. When a security
view is passed on to the deployer, the deployer uses this information to define method
permissions for security roles. If you don’t define a security view, the deployer will have to
determine what each business method does to determine which users are authorized to call each
method.

A security view consists of a set of security roles, a semantic grouping of permissions that a given
type of users of an application must have to successfully access the application. Security roles
are meant to be logical roles, representing a type of user. You can define method permissions for
each security role. A method permission is a permission to invoke a specified group of methods
of the enterprise beans’ business interface, home interface, component interface, and/or web
service endpoints. After method permissions are defined, username-password authentication
will be used to verify the identity of the user.

It is important to keep in mind that security roles are used to define the logical security view of
an application. They should not be confused with the user groups, users, principals, and other
concepts that exist in the Enterprise Server. An additional step is required to map the roles
defined in the application to users, groups, and principals that are the components of the user
database in the file realm of the Enterprise Server. These steps are outlined in “Mapping
Security Roles to Enterprise Server Groups” on page 473.

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 469

http://jcp.org/en/jsr/detail?id=318

The following sections show how an application developer uses declarative security to either
secure an application or to create a security view to pass along to the deployer.

■ “Specifying Authorized Users by Declaring Security Roles” on page 470
■ “Specifying an Authentication Mechanism and Secure Connection” on page 474
■ “Example: Securing an Enterprise Bean” on page 474

Specifying Authorized Users by Declaring Security Roles
This section discusses how to use annotations to specify the method permissions for the
methods of a bean class. If you'd like more information on these annotations, refer to JSR-250
Common Annotations for the Java Platform.

Method permissions can be specified on the class, the business methods of the class, or both.
Method permissions can be specified on a method of the bean class to override the method
permissions value specified on the entire bean class. The following annotations are used to
specify method permissions:

■ @DeclareRoles

This annotation is used to specify all of the roles that will be used by the application,
including roles not specifically named in a RolesAllowed annotation. The set of security
roles used by the application is the total of the security roles defined in the @DeclareRoles
and @RolesAllowed annotations.

The @DeclareRoles annotation is specified on a bean class, where it serves to declare roles
that can be tested (for example, by calling isCallerInRole) from within the methods of the
annotated class. When declaring the name of a role used as a parameter to the
isCallerInRole(String roleName) method, the declared name must be the same as the
parameter value.

Here is some example code that demonstrates the use of the DeclareRoles annotation.

@DeclareRoles("BusinessAdmin")
public class Calculator {

public void convertCurrency() {

if(x.isUserInRole("BusinessAdmin")) {

//....

}

}

//...

}

The syntax for declaring more than one role is as shown in the following example:

@DeclareRoles({"Administrator", "Manager", "Employee"})

■ @RolesAllowed("list-of-roles")

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009470

http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250

The @RolesAllowed annotation specifies the security roles permitted to access method(s) in
an application. This annotation can be specified on a class or on method(s). When specified
at the class level, it applies to all methods in the class. When specified on a method, it applies
to that method only, and overrides any values specified at the class level.
To specify that no roles are authorized to access method(s) in an application, use the
@DenyAll annotation. To specify that a user in any role is authorized to access the
application, use the @PermitAll annotation.
When used in conjunction with the @DeclareRoles annotation, the combined set of
security roles are used by the application.
Here is some example code that demonstrates the use of the RolesAllowed annotation.

@RolesAllowed("AllUsers")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//..

}

■ @PermitAll

The @PermitAll annotation specifies that all security roles are permitted to execute the
specified method(s). The user is not checked against a database to ensure that this user is
authorized to access this application.
This annotation can be specified on a class or on method(s). Specifying this annotation on
the class means that it applies to all methods of the class. Specifying it at the method level
means that it applies to only that method.
Here is some example code that demonstrates the use of the PermitAll annotation.

import javax.annotation.security.*;

@RolesAllowed("RestrictedUsers")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@PermitAll

public long convertCurrency(long amount) {

//...

}

}

■ @DenyAll

The @DenyAll annotation specifies that no security roles are permitted to execute the
specified method(s). This means that these methods are excluded from execution in the Java
EE container.
Here is some example code that demonstrates the use of the DenyAll annotation.

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 471

import javax.annotation.security.*;

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@DenyAll

public long convertCurrency(long amount) {

//...

}

}

EXAMPLE 24–1 Declaring Roles using @DeclareRoles

The following code snippet demonstrates the use of the @DeclareRoles annotation with the
isCallerInRole method. In this example, the @DeclareRoles annotation declares a role that
the enterprise bean PayrollBean uses to make the security check using
isCallerInRole("payroll") to verify that the caller is authorized to change salary data.

@DeclareRoles("payroll")
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

EXAMPLE 24–2 Declaring Roles using @RolesAllowed

The following example code illustrates the use of the RolesAllowed annotation:

@RolesAllowed("admin")
public class SomeClass {

public void aMethod () {...}

public void bMethod () {...}

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009472

EXAMPLE 24–2 Declaring Roles using @RolesAllowed (Continued)

...

}

@Stateless public class MyBean extends SomeClass implements A {

@RolesAllowed("HR")
public void aMethod () {...}

public void cMethod () {...}

...

}

In this example, assuming aMethod, bMethod, and cMethod are methods of business interface A,
the method permissions values of methods aMethod and bMethod are @RolesAllowed("HR")
and @RolesAllowed("admin") respectively. The method permissions for method cMethod have
not been specified.

To clarify, the annotations are not inherited by the subclass per se, they apply to methods of the
superclass which are inherited by the subclass.

Mapping Security Roles to Enterprise Server Groups
The Enterprise Server assigns users to principals or groups, rather than to security roles. When
you are developing a Java EE application, you don’t need to know what categories of users have
been defined for the realm in which the application will be run. In the Java EE platform, the
security architecture provides a mechanism for mapping the security roles defined in the
application to the users, principals, or groups defined in the runtime realm. The deployer will
work with the security view provided by the application developer to implement this mapping.

One way to declare a mapping between a security role used in the application and one or more
groups and/or principals defined for the applicable realm of the Enterprise Server is to use the
security-role-mapping element in the runtime deployment descriptor
(sun-application.xml, sun-web.xml, or sun-ejb-jar.xml.) This is the method to use when
the role name defined in the application does not match the group or principal name defined for
the Enterprise Server. An example of this role mapping can be found in Part VII, “Security,” in
The Java EE 6 Tutorial, Volume II.

In the tutorial, the role names used in the application are the same as the group names defined
on the Enterprise Server. Under these circumstances, you can enable a default principal-to-role
mapping on the Enterprise Server using the Admin Console. To enable the default
principal-to-role-mapping, follow these steps:

1. Start the Enterprise Server, then the Admin Console.
2. Expand the Configuration node.
3. Select the Security node.

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 473

4. On the Security page, check the Enabled box beside Default Principal to Role Mapping.

Specifying an Authentication Mechanism and Secure Connection
When method permissions are specified, basic, username-password, authentication will be
invoked by the Enterprise Server.

If you would like to specify a different type of authentication, or to require a secure connection
using SSL, you would specify this information in an application deployment descriptor. Using
application deployment descriptors is discussed in Part VII, “Security,” in The Java EE 6
Tutorial, Volume II.

Example: Securing an Enterprise Bean
This section discusses how to configure an enterprise bean for username-password
authentication. When a bean that is constrained in this way is requested, the server requests a
user name and password from the client and verifies that the user name and password are valid
by comparing them against a database of authorized users on the Enterprise Server.

If the topic of authentication is new to you, please refer to the section titled “Specifying an
Authentication Mechanism” on page 499.

This example demonstrates security by starting with the unsecured enterprise bean application,
cart, which is found in the directory tut-install/examples/ejb/cart/ and is discussed in “The
cart Example” on page 277.

In general, the following steps are necessary to add username-password authentication to an
existing application that contains an enterprise bean.

1. Create an application like the one in “The cart Example” on page 277.
2. If you have not already done so, complete the steps in“Setting Up Your System for Running

the Security Examples” on page 518 to configure your system for running the tutorial
applications.

3. Modify the source code for the enterprise bean, CartBean.java, to specify which roles are
authorized to access which protected methods. This step is discussed in “Annotating the
Bean” on page 474.

4. Build, package, and deploy the enterprise bean, then build and run the client application by
following the steps in “Building, Deploying, and Running the Secure Cart Example Using
NetBeans IDE” on page 476 or “Building, Deploying, and Running the Secure Cart Example
Using Ant” on page 476.

Annotating the Bean

The source code for the original cart application was modified as shown in the following code
snippet (modifications in bold, method details are removed to save space). The resulting file can
be found in the following location:

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009474

tut-install/examples/ejb/cart-secure/cart-secure-ejb/src/java/cart/
ejb/CartBean.java

The code snippet is as follows:

package cart.ejb;

import cart.util.BookException;

import cart.util.IdVerifier;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.annotation.security.RolesAllowed;

@Stateful

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(String person, String id) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

throw new BookException("Invalid id: " + id);

}

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 475

contents = new ArrayList<String>();

}

@RolesAllowed("TutorialUser")

public void addBook(String title) {

contents.add(title);

}

@RolesAllowed("TutorialUser")

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException("\"" + title + "\" not in cart.");
}

}

@RolesAllowed("TutorialUser")

public List<String> getContents() {

return contents;

}

@Remove()

@RolesAllowed("TutorialUser")

public void remove() {

contents = null;

}

}

The @RolesAllowed annotation is specified on methods for which you want to restrict access. In
this example, only users in the role of TutorialUser will be allowed to add and remove books
from the cart, and to list the contents of the cart. An @RolesAllowed annotation implicitly
declares a role that will be referenced in the application; therefore, no @DeclareRoles

annotation is required. The presence of the @RolesAllowed annotation also implicitly declares
that authentication will be required for a user to access these methods. If no authentication
method is specified in the deployment descriptor, the type of authentication will be
username-password authentication.

Building, Deploying, and Running the Secure Cart Example Using NetBeans IDE
Follow the instructions for building, deploying, and running the secure cart example by
following the instructions in “Building, Packaging, Deploying, and Running the cart Example”
on page 282,

Building, Deploying, and Running the Secure Cart Example Using Ant
Follow the instructions for building, deploying, and running the secure cart example by
following the instructions in “Building, Packaging, Deploying, and Running the cart Example”
on page 282. Enter your user name and password when prompted to do so.

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009476

Securing an Enterprise Bean Programmatically
Programmatic security is code that is embedded in a business method, is used to access a caller's
identity programmatically, and uses this information to make security decisions within the
method itself.

Accessing an Enterprise Bean Caller’s Security Context
In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans’ business methods. The security API described in this
section should be used only in the less frequent situations in which the enterprise bean business
methods need to access the security context information, such as when you want to restrict
access to a particular time of day.

The javax.ejb.EJBContext interface provides two methods that allow the bean provider to
access security information about the enterprise bean’s caller.

■ java.security.Principal getCallerPrincipal();

The purpose of the getCallerPrincipal method is to allow the enterprise bean methods to
obtain the current caller principal’s name. The methods might, for example, use the name as
a key to information in a database.
The following code sample illustrates the use of the getCallerPrincipal() method:

@Stateless public class EmployeeServiceBean

implements EmployeeService{

@Resource SessionContext ctx;

@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {

...

// obtain the caller principal.

callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.

callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord

EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number

myEmployeeRecord.setPhoneNumber(...);

...

}

}

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 477

In this example, the enterprise bean obtains the principal name of the current caller and uses
it as the primary key to locate an EmployeeRecord entity. This example assumes that
application has been deployed such that the current caller principal contains the primary
key used for the identification of employees (for example, employee number).

■ boolean isCallerInRole(String roleName);

The enterprise bean code can use the isCallerInRole(String roleName) method to allow
the bean provider/application developer to code the security checks that cannot be easily
defined using method permissions. Such a check might impose a role-based limit on a
request, or it might depend on information stored in the database.
The enterprise bean code can use the isCallerInRole(String roleName) method to test
whether the current caller has been assigned to a given security role. Security roles are
defined by the bean provider or the application assembler, and are assigned to principals or
principal groups that exist in the operational environment by the deployer.
The following code sample illustrates the use of the isCallerInRole(String roleName)
method:

@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

You would use programmatic security in this way to dynamically control access to a method,
for example, when you want to deny access except during a particular time of day. An example
application that uses the getCallerPrincipal and isCallerInRole methods is described in
“Example: Using the isCallerInRole and getCallerPrincipal Methods” on page 478.

Example: Using the isCallerInRole and getCallerPrincipal

Methods
This example demonstrates how to use the getCallerPrincipal() and
isCallerInRole(String role) methods with an enterprise bean. This example starts with a
very simple EJB application, converter, and modifies the methods of the ConverterBean so
that currency conversion will only occur when the requester is in the role of TutorialUser.

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009478

Modifying ConverterBean

The source code for the original converter application was modified as shown in the following
code snippet (modifications in bold) to add the if..else clause that tests if the caller is in the
role of TutorialUser. If the user is in the correct role, the currency conversion is computed and
displayed. If the user is not in the correct role, the computation is not performed, and the
application displays the result as 0.

The code snippet is as follows:

package converter.secure.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

import java.security.Principal;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateless()

@DeclareRoles("TutorialUser")

public class ConverterBean{

@Resource SessionContext ctx;

private BigDecimal yenRate = new BigDecimal("96.0650");
private BigDecimal euroRate = new BigDecimal("0.0078");

@RolesAllowed("TutorialUser")

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}else{

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

@RolesAllowed("TutorialUser")

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}else{

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

}

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 479

Building, Deploying, and Running the Secure Converter Example Using
NetBeans IDE

After you've made the changes to the enterprise bean, follow the instructions in “Compiling,
Packaging, and Running the converter Example” on page 273.

Building, Deploying, and Running the Secure Converter Example Using Ant

After you've made the changes to the enterprise bean, follow the instructions in “Compiling,
Packaging, and Running the converter Example” on page 273.

Troubleshooting the Secure Converter Application

Problem: The application displays zero values after authentication, as shown here:

appclient-command-common:

[exec] $100.00 is 0.00 Yen.

[exec] 0.00 Yen is 0.00 Euro.

Solution: Verify that the user name and password that you entered for authentication match a
user name and password in the Enterprise Server, and that this user is assigned to the group
named TutorialUser. User names and passwords are case-sensitive. Read “Adding Users to the
Enterprise Server” on page 452 for more information on adding users to the file realm of the
Enterprise Server.

Propagating a Security Identity (Run-As)
You can specify whether a caller’s security identity should be used for the execution of specified
methods of an enterprise bean, or whether a specific run-as identity should be used.

Figure 24–2 illustrates this concept.

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009480

In this illustration, an application client is making a call to an enterprise bean method in one
EJB container. This enterprise bean method, in turn, makes a call to an enterprise bean method
in another container. The security identity during the first call is the identity of the caller. The
security identity during the second call can be any of the following options:
■ By default, the identity of the caller of the intermediate component is propagated to the

target enterprise bean. This technique is used when the target container trusts the
intermediate container.

■ A specific identity is propagated to the target enterprise bean. This technique is used when
the target container expects access using a specific identity.
To propagate an identity to the target enterprise bean, configure a run-as identity for the
bean as discussed in “Configuring a Component’s Propagated Security Identity” on
page 481.
Establishing a run-as identity for an enterprise bean does not affect the identities of its
callers, which are the identities tested for permission to access the methods of the enterprise
bean. The run-as identity establishes the identity that the enterprise bean will use when it
makes calls.
The run-as identity applies to the enterprise bean as a whole, including all the methods of
the enterprise bean’s business interface, home interface, component interface, and web
service endpoint interfaces, the message listener methods of a message-driven bean, the
time-out callback method of an enterprise bean, and all internal methods of the bean that
might be called in turn.

Configuring a Component’s Propagated Security Identity
You can configure an enterprise bean’s run-as, or propagated, security identity using the @RunAs
annotation. The RunAs annotation defines the role of the application during execution in a Java
EE container. It can be specified on a class, allowing developers to execute an application under
a particular role. The role must map to the user/group information in the container's security
realm. The RunAs annotation specifies the name of a security role as its parameter.

Here is some example code that demonstrates the use of the RunAs annotation.

Initiating
Client Intermediate Target

Application Client
or Web Client

EJB
or Web Container EJB Container

Java EE Security
Identity

Propagated
Security Identity

(Java EE)

FIGURE 24–2 Security Identity Propagation

Securing Enterprise Beans

Chapter 24 • Getting Started Securing Enterprise Applications 481

@RunAs("Admin")
public class Calculator {

//....

}

You will have to map the run-as role name to a given principal defined on the Enterprise Server
if the given roles associate to more than one user principal. Mapping roles to principals is
described in Part VII, “Security,” in The Java EE 6 Tutorial, Volume II.

Trust between Containers
When an enterprise bean is designed so that either the original caller identity or a designated
identity is used to call a target bean, the target bean will receive the propagated identity only; it
will not receive any authentication data.

There is no way for the target container to authenticate the propagated security identity.
However, because the security identity is used in authorization checks (for example, method
permissions or with the isCallerInRole() method), it is vitally important that the security
identity be authentic. Because there is no authentication data available to authenticate the
propagated identity, the target must trust that the calling container has propagated an
authenticated security identity.

By default, the Enterprise Server is configured to trust identities that are propagated from
different containers. Therefore, there are no special steps that you need to take to set up a trust
relationship.

Deploying Secure Enterprise Beans
The deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. If a security view has been provided to the
deployer through the use of security annotations and/or a deployment descriptor, the security
view is mapped to the mechanisms and policies used by the security domain in the target
operational environment, which in this case is the Enterprise Server. If no security view is
provided, the deployer must set up the appropriate security policy for the enterprise bean
application.

Deployment information is specific to a web or application server. Please read the Sun GlassFish
Enterprise Server v3 Application Deployment Guide for more information on deploying
enterprise beans.

Accepting Unauthenticated Users
Web applications may accept unauthenticated web clients and allow these clients to make calls
to the EJB container. The EJB specification requires a security credential for accessing EJB
methods. Typically, the credential will be that of a generic unauthenticated user. The way you
specify this credential is implementation-specific.

Securing Enterprise Beans

The Java EE 6 Tutorial, Volume I • December 2009482

http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7693

In the Enterprise Server, you must specify the name and password that an unauthenticated user
will use to log in by modifying the Enterprise Server using the Admin Console:

1. Start the Enterprise Server, then the Admin Console.
2. Expand the Configuration node.
3. Select the Security node.
4. On the Security page, set the Default Principal and Default Principal Password values.

Securing Application Clients
The Java EE authentication requirements for application clients are the same as for other Java
EE components, and the same authentication techniques can be used as for other Java EE
application components.

No authentication is necessary when accessing unprotected web resources. When accessing
protected web resources, the usual varieties of authentication can be used, namely HTTP basic
authentication, SSL client authentication, or HTTP login form authentication. These
authentication methods are discussed in “Specifying an Authentication Mechanism” on
page 499.

Authentication is required when accessing protected enterprise beans. The authentication
mechanisms for enterprise beans are discussed in “Securing Enterprise Beans” on page 466.
Lazy authentication can be used.

An application client makes use of an authentication service provided by the application client
container for authenticating its users. The container’s service can be integrated with the native
platform’s authentication system, so that a single sign-on capability is employed. The container
can authenticate the user when the application is started, or it can use lazy authentication,
authenticating the user when a protected resource is accessed.

An application client can provide a class to gather authentication data. If so, the
javax.security.auth.callback.CallbackHandler interface must be implemented, and the
class name must be specified in its deployment descriptor. The application’s callback handler
must fully support Callback objects specified in the javax.security.auth.callback package.
Gathering authentication data in this way is discussed in the next section, “Using Login
Modules” on page 483.

Using Login Modules
An application client can use the Java Authentication and Authorization Service (JAAS) to
create login modules for authentication. A JAAS-based application implements the
javax.security.auth.callback.CallbackHandler interface so that it can interact with users
to enter specific authentication data, such as user names or passwords, or to display error and
warning messages.

Securing Application Clients

Chapter 24 • Getting Started Securing Enterprise Applications 483

Applications implement the CallbackHandler interface and pass it to the login context, which
forwards it directly to the underlying login modules. A login module uses the callback handler
both to gather input (such as a password or smart card PIN) from users and to supply
information (such as status information) to users. Because the application specifies the callback
handler, an underlying login module can remain independent of the various ways that
applications interact with users.

For example, the implementation of a callback handler for a GUI application might display a
window to solicit user input. Or the implementation of a callback handler for a command-line
tool might simply prompt the user for input directly from the command line.

The login module passes an array of appropriate callbacks to the callback handler’s handle
method (for example, a NameCallback for the user name and a PasswordCallback for the
password); the callback handler performs the requested user interaction and sets appropriate
values in the callbacks. For example, to process a NameCallback, the CallbackHandler might
prompt for a name, retrieve the value from the user, and call the setName method of the
NameCallback to store the name.

For more information on using JAAS for login modules for authentication, refer to the
following sources:

■ Java Authentication and Authorization Service (JAAS) in Java Platform, Standard Edition
■ Java Authentication and Authorization Service (JAAS) Reference Guide
■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide

Links to this information are provided in “Further Information about Security” on page 462.

Using Programmatic Login
Programmatic login enables the client code to supply user credentials. If you are using an EJB
client, you can use the com.sun.appserv.security.ProgrammaticLogin class with their
convenient login and logout methods.

Programmatic login is specific to a server. Information on programmatic login for the
Enterprise Server is included in the Sun GlassFish Enterprise Server v3 Application Development
Guide or the documentation for the server you are using.

Securing Application Clients

The Java EE 6 Tutorial, Volume I • December 2009484

http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7695

Securing Enterprise Information Systems (EIS) Applications
In EIS applications, components request a connection to an EIS resource. As part of this
connection, the EIS can require a sign-on for the requester to access the resource. The
application component provider has two choices for the design of the EIS sign-on:

■ Container-managed sign-on
In the container-managed sign-on approach, the application component lets the container
take the responsibility of configuring and managing the EIS sign-on. The container
determines the user name and password for establishing a connection to an EIS instance.
For more information, read “Container-Managed Sign-On” on page 485.

■ Component-managed sign-on
In the component-managed sign-on approach, the application component code manages
EIS sign-on by including code that performs the sign-on process to an EIS. For more
information, read “Component-Managed Sign-On” on page 485.

You can also configure security for resource adapters. Read “Configuring Resource Adapter
Security” on page 486 for more information.

Container-Managed Sign-On
In container-managed sign-on, an application component does not have to pass any sign-on
security information to the getConnection() method. The security information is supplied by
the container, as shown in the following example.

// Business method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");
// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method

javax.resource.cci.Connection cx = cxf.getConnection();

...

Component-Managed Sign-On
In component-managed sign-on, an application component is responsible for passing the
needed sign-on security information to the resource to the getConnection method. For
example, security information might be a user name and password, as shown here:

Securing Enterprise Information Systems (EIS) Applications

Chapter 24 • Getting Started Securing Enterprise Applications 485

// Method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec

com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection

properties.setUserName("...");
properties.setPassword("...");
javax.resource.cci.Connection cx =

cxf.getConnection(properties);

...

Configuring Resource Adapter Security
A resource adapter is a system-level software component that typically implements network
connectivity to an external resource manager. A resource adapter can extend the functionality
of the Java EE platform either by implementing one of the Java EE standard service APIs (such
as a JDBC driver), or by defining and implementing a resource adapter for a connector to an
external application system. Resource adapters can also provide services that are entirely local,
perhaps interacting with native resources. Resource adapters interface with the Java EE
platform through the Java EE service provider interfaces (Java EE SPI). A resource adapter that
uses the Java EE SPIs to attach to the Java EE platform will be able to work with all Java EE
products.

To configure the security settings for a resource adapter, you need to edit the resource adapter
descriptor file, ra.xml. Here is an example of the part of an ra.xml file that configures the
following security properties for a resource adapter:

<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

<credential-interface>

javax.resource.spi.security.PasswordCredential

</credential-interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

Securing Enterprise Information Systems (EIS) Applications

The Java EE 6 Tutorial, Volume I • December 2009486

You can find out more about the options for configuring resource adapter security by reviewing
as-install/lib/dtds/connector_1_0.dtd. You can configure the following elements in the
resource adapter deployment descriptor file:

■ Authentication mechanisms

Use the authentication-mechanism element to specify an authentication mechanism
supported by the resource adapter. This support is for the resource adapter and not for the
underlying EIS instance.

There are two supported mechanism types:
■ BasicPassword: This mechanism supports the interface

javax.resource.spi.security.PasswordCredential.
■ Kerbv5: This mechanism supports the interface

javax.resource.spi.security.GenericCredential. The Enterprise Server does not
currently support this mechanism type.

■ Reauthentication support

Use the reauthentication-support element to specify whether the resource adapter
implementation supports re-authentication of existing Managed-Connection instances.
Options are true or false.

■ Security permissions

Use the security-permission element to specify a security permission that is required by
the resource adapter code. Support for security permissions is optional and is not supported
in the current release of the Enterprise Server. You can, however, manually update the
server.policy file to add the relevant permissions for the resource adapter, as described in
the Developing and Deploying Applications section of the Sun GlassFish Enterprise Server v3
Application Development Guide.

The security permissions listed in the deployment descriptor are ones that are different from
those required by the default permission set as specified in the connector specification.

Refer to the following URL for more information on Sun’s implementation of the security
permission specification: http://java.sun.com/
javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax.

In addition to specifying resource adapter security in the ra.xml file, you can create a security
map for a connector connection pool to map an application principal or a user group to a back
end EIS principal. The security map is usually used in situations where one or more EIS back
end principals are used to execute operations (on the EIS) initiated by various principals or user
groups in the application. You can find out more about security maps in the Configuring
Security chapter section of the Sun GlassFish Enterprise Server v3 Administration Guide.

Securing Enterprise Information Systems (EIS) Applications

Chapter 24 • Getting Started Securing Enterprise Applications 487

http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7695
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.sun.com/doc/820-7692

Mapping an Application Principal to EIS Principals
When using the Enterprise Server, you can use security maps to map the caller identity of the
application (principal or user group) to a suitable EIS principal in container-managed
transaction-based scenarios. When an application principal initiates a request to an EIS, the
Enterprise Server first checks for an exact principal using the security map defined for the
connector connection pool to determine the mapped back end EIS principal. If there is no exact
match, then the Enterprise Server uses the wild card character specification, if any, to determine
the mapped back-end EIS principal. Security maps are used when an application user needs to
execute EIS operations that require to be executed as a specific identity in the EIS.

To work with security maps, use the Admin Console. From the Admin Console, follow these
steps to get to the security maps page:

1. Expand the Resources node.
2. Expand the Connectors node.
3. Select the Work Security Maps node.
4. Click New to create a new work security map for a resource adapter.
5. Enter a name by which you will refer to the security map, as well as the other required

information. Click the Help button for more information on the individual options.

Securing Enterprise Information Systems (EIS) Applications

The Java EE 6 Tutorial, Volume I • December 2009488

Getting Started Securing Web Applications

A web application is an application that is accessed using a web browser over a network such as
the Internet or a company's intranet. As discussed in Chapter 24, “Getting Started Securing
Enterprise Applications,” the JavaTM EE platform uses a distributed multi-tiered application
model. As discussed in “Distributed Multitiered Applications” on page 31, web applications run
in the web-tier.

Web applications contain resources that can be accessed by many users. These resources often
traverse unprotected, open networks, such as the Internet. In such an environment, a
substantial number of web applications will require some type of security. The ways to
implement security for Java EE web applications are discussed in a general way in “Securing
Containers” on page 444. This chapter provides more detail and a few examples that explore
these security services as they relate to web components.

Both types of web applications can be secured using the same security model:

■ Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language such as HTML, XHTML, and XML, and
generates dynamic content in response to requests. The technologies that are discussed in
this chapter and that are considered presentation-oriented web applications include Java
Servlets and JavaServerTM Faces technology. You can read more about web applications in
Chapter 3, “Getting Started with Web Applications.”

■ Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. The technologies that are discussed in the chapter and that are considered
service-oriented web applications include the Java API for XML-Based Web Services
(JAX-WS) and the Java API for RESTful Web Services (JAX-RS). You can read more about
web services in Chapter 11, “Introduction to Web Services”

Securing applications and their clients in the business tier and the EIS tier is discussed in
Chapter 24, “Getting Started Securing Enterprise Applications.”

25C H A P T E R 2 5

489

The following topics are included in this chapter:

■ “Overview of Web Application Security” on page 490
■ “Using Deployment Descriptors to Secure Web Applications” on page 492
■ “Using Programmatic Security with Web Applications” on page 510
■ “Using Message Security with Web Applications” on page 517
■ “Examples: Securing Web Applications” on page 517

Overview of Web Application Security
In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, JSF pages, or web service endpoints. The
interaction between a web client and a web application is illustrated in Figure 25–1.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. Certain aspects of web application security can be configured when the
application is installed, or deployed, to the web container. Annotations and/or deployment
descriptors are used to relay information to the deployer about security and other aspects of the

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
ComponentsWeb
ComponentsWeb
Components

Web
ComponentsWeb
ComponentsJavaBeans
Components

2

3

4

5

4

6

FIGURE 25–1 Java Web Application Request Handling

Overview of Web Application Security

The Java EE 6 Tutorial, Volume I • December 2009490

application. Specifying this information in annotations or in the deployment descriptor helps
the deployer set up the appropriate security policy for the web application. Any values explicitly
specified in the deployment descriptor override any values specified in annotations.

Security for Java EE web applications can be implemented in the following ways:
■ Declarative security

Declarative security can be implemented using either an application's deployment
descriptor or using metadata annotations. Metadata annotations (or simply, annotations)
are used to specify information about security within a class file. An application deployment
descriptor is an XML file that is external to the application and which expresses an
application’s security structure, including security roles, access control, and authentication
requirements. When an application is deployed, security information specified using
annotations can be overridden by the application deployment descriptor.
Declarative security is described in “Using Deployment Descriptors to Secure Web
Applications” on page 492.

■ Programmatic security
Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application. Declarative security alone may not be sufficient in cases
where conditional login in a particular work flow, instead of for all cases, is required in the
middle of an application.
New in Java EE 6 and Servlet specification 3.0 are the authenticate, login, and logout,
methods of the HttpServletRequest interface. With the addition of the authenticate,
login, and logout methods to the Servlet specification, an application deployment
descriptor is no longer required for web applications, but may still be used to further specify
security requirements beyond the basic default values.
Programmatic security is discussed in “Using Programmatic Security with Web
Applications” on page 510

■ Message Security
Message security works with web services and incorporates security features, such as digital
signatures and encryption, into the header of a SOAP message, working in the application
layer, ensuring end-to-end security. Message security is not a component of Java EE 6, but is
included here for informational purposes only.
Message security is discussed in “Using Message Security with Web Applications” on
page 517.

Some of the material in this chapter builds on material presented earlier in this tutorial. In
particular, this chapter assumes that you are familiar with the information in the following
chapters:
■ Chapter 3, “Getting Started with Web Applications”
■ Chapter 10, “Java Servlet Technology”

Overview of Web Application Security

Chapter 25 • Getting Started Securing Web Applications 491

■ Chapter 4, “JavaServer Faces Technology”
■ Chapter 11, “Introduction to Web Services”
■ Chapter 12, “Building Web Services with JAX-WS”
■ Chapter 13, “Building RESTful Web Services with JAX-RS and Jersey”
■ Chapter 23, “Introduction to Security in the Java EE Platform”
■ Chapter 24, “Getting Started Securing Enterprise Applications”

Using Deployment Descriptors to Secure Web Applications
Web applications are created by application developers who give, sell, or otherwise transfer the
application to an application deployer for installation into a runtime environment. Application
developers communicate how the security is to be set up for the deployed application by the use
of the deployment descriptor mechanism or by the use of annotations. When this information is
passed on to the deployer, the deployer uses this information to define method permissions for
security roles, set up user authentication, and set up the appropriate transport mechanism. If
you don’t define security requirements, the deployer will have to determine the security
requirements independently.

Many elements necessary for security in a web application cannot, as yet, be specified as
annotations for all types of web applications. Therefore, in this volume of the tutorial, we
describe how to secure web applications using deployment descriptors only. For information
on using annotations to secure web applications, refer to the following sources:

■ The Java Servlet Specification, Version 3.0, for information on the @ServletSecurity
annotation

■ Part VII, “Security,” in The Java EE 6 Tutorial, Volume II

Introduction to Web Application Deployment
Descriptors
The web application deployment descriptor file does pretty much what it's name says it does: it
describes how the web application should be deployed. The web application deployment
descriptor describes a lot more about a web application than just its security information, but
this chapter only discusses the elements of the application deployment descriptor that relate to
security.

For web applications written using the Java programming language, the web application
deployment descriptor is written using the EXtensible Markup Language (XML) syntax. The
web application deployment descriptor is named web.xml, and, when included with a web
application, it must reside in a WEB-INF subdirectory at the web application root. The contents
of this file direct a deployment tool to deploy a module or application with the specified security
settings, and describes other specific configuration requirements and/or container options.

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009492

http://jcp.org/en/jsr/summary?id=315

The following XML code is an example of the elements in a deployment descriptor that apply
specifically to declaring security for web applications or for resources within web applications.
This example comes from An Example of Security, from the Java Servlet Specification, Version
3.0.

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"
version=?2.5?>

<display-name>A Secure Application</display-name>

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet</servlet-class>

<init-param>

<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

<!-- Defining Security Roles -->

<security-role-ref>

<role-name>MGR</role-name>

<!-- role name used in code -->

<role-link>manager</role-link>

</security-role-ref>

</servlet>

<security-role>

<role-name>manager</role-name>

</security-role>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<!-- Defining A Security Constraint -->

<security-constraint>

<!-- Specifying the Resources to be Protected -->

<web-resource-collection>

<web-resource-name>SalesInfo</web-resource-name>

<url-pattern>/salesinfo/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 493

http://jcp.org/en/jsr/summary?id=315
http://jcp.org/en/jsr/summary?id=315

<!-- Specifying which Users Can Access Protected Resources -->

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

<!-- Specifying Secure Transport using SSL -->

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL </transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- Specifying an Authentication Method -->

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>file</realm-name>

</login-config>

</web-app>

Even if you are simply using the deployment descriptor to specify security, there are some
structural elements that must be included in this file in order for it to work properly. For
example, the <security-constraint> element is a sub-element of the <web-app> element, so
the <web-app> element must always be included, and it must indicate the version of the web
application schema (2.4 or 2.5) it is using. The elements that are specified within the
deployment descriptor must comply with the rules for processing that version of the
deployment descriptor. Version 3.0 of the Java Servlet Specification, which can be downloaded
at http://jcp.org/en/jsr/detail?id=315, contains more information regarding the
structure of deployment descriptors.

XML files are hierarchical. The elements must be specified in a particular order within the
deployment descriptor, between elements that are its parent. To visually see an example of how
the deployment descriptor elements are nested within their parent elements, refer to the
elements within the <security-constraint> element above, which is itself nested within
<web-app> elements. For this example, the lines have been indented to emphasize the nesting
aspect of the file, but the file itself ignores the formatting and relies only on the elements and
their content for its processing. Information about the application is specified as a value
between the opening (<element-name>) and closing (</element-name>) elements. For example,
between the opening <transport-guarantee> element and the closing
</transport-guarantee> element, there is the value CONFIDENTIAL, which describes which
type of transport guarantee should be used for this application.

The following sections describe each of the security elements of a deployment descriptor in
more detail, listing all of the options available for each element:

■ “Specifying Security Constraints” on page 495
■ “Specifying an Authentication Mechanism” on page 499
■ “Working with Security Roles” on page 506

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009494

http://jcp.org/en/jsr/detail?id=315

Some of the elements of web application security must be addressed in server configuration files
rather than in the deployment descriptor or annotations for the web application. Configuring
security on the Enterprise Server is discussed in the following sections and books:

■ “Securing the Enterprise Server” on page 446 (in this book)
■ “Managing Users and Groups on the Enterprise Server” on page 451 (in this book)
■ “Installing and Configuring SSL Support” on page 456 (in this book)
■ “Deploying Secure Enterprise Beans” on page 482 (in this book)
■ Sun GlassFish Enterprise Server v3 Administration Guide
■ Sun GlassFish Enterprise Server v3 Application Development Guide

Specifying Security Constraints
A security constraint is used to define the access privileges to a collection of resources using their
URL mapping. The following elements can be part of a security constraint:

■ Web resource collection (web-resource-collection)

A web resource collection is a list of URL patterns (the part of a URL after the host name and
port which you want to constrain) and HTTP operations (the methods within the files that
match the URL pattern which you want to constrain (in this example, POST and GET)) that
describe a set of resources to be protected. Web resource collections are discussed in
“Specifying a Web Resource Collection” on page 496.

■ Authorization constraint (auth-constraint)

Authorization constraints establish a requirement for authentication and name the roles
authorized to perform the constrained requests. For more information about authorization
constraints, read “Specifying an Authentication Mechanism” on page 499.

■ User data constraint (TutorialUser-data-constraint)

User data constraints establish a requirement that the constrained requests be received over
a protected transport layer connection. This guarantees how the data will be transported
between client and server. The strength of the required protection is defined by the value of
the transport guarantee. A transport guarantee of INTEGRAL is used to establish a
requirement for content integrity and a transport guarantee of CONFIDENTIAL is used to
establish a requirement for confidentiality. The transport guarantee of NONE indicates that
the container must accept the constrained requests when received on any connection
including an unprotected one. User data constraints are discussed in “Specifying a Secure
Connection” on page 497.

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 495

http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7695

Specifying a Web Resource Collection
A web resource collection consists of the following sub-elements:
■ web-resource-name is the name you use for this resource. It's use is optional, but it is useful

to describe the resources being protected as applications get more complex.
■ url-pattern is used to list the request URI to be protected.

Many applications feature unprotected web content, which any caller can access without
authentication. In the web tier, you provide unrestricted access simply by not configuring a
security constraint for that particular request URI. It is common to have some unprotected
resources and some protected resources. In this case, you will define security constraints and
a login method, but they will not be used to control access to the unprotected resources.
Users won’t be asked to log in until the first time they enter a protected request URI.

The Java Servlet specification defines the request URI as the part of a URL after the host
name and port. For example, let’s say you have an e-commerce site with a browseable catalog
that you would want anyone to be able to access, and a shopping cart area for customers
only. You could set up the paths for your web application so that the pattern /cart/* is
protected but nothing else is protected. Assuming that the application is installed at context
path /myapp, the following are true:
■ http://localhost:8080/myapp/index.jsp is not protected.
■ http://localhost:8080/myapp/cart/index.jsp is protected.

A user will not be prompted to log in the first time that user accesses a resource in the cart/
subdirectory.

■ http-method or http-method-omission is used to specify which methods should be
protected or which methods should be omitted from protection. An HTTP method is
protected by a web-resource-collection when no HTTP methods are named in the
collection (which means all are protected), or the collection specifically names the HTTP
method in a contained http-method element, or the collection contains one or more
http-method-omission elements, none of which names the HTTP method.

Specifying an Authorization Constraint
An authorization constraint (auth-constraint) contains the role-name element. You can use
as many role-name elements as needed here.

An authorization constraint establishes a requirement for authentication and names the roles
authorized to access the URL patterns and HTTP methods declared by this security constraint.
If there is no authorization constraint, the container must accept the request without requiring
user authentication. If there is an authorization constraint, but no roles are specified within it,
the container will not allow access to constrained requests under any circumstances. The role
name(s) specified here must either correspond to the role name of one of the <security-role>
elements defined for this web application, or be the specially reserved role name *, which is a
compact syntax for indicating all roles in the web application. Role names are case sensitive.

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009496

The roles defined for the application must be mapped to users and groups defined on the server.
For more information about security roles, read “Working with Security Roles” on page 506.

Specifying a Secure Connection
A user data constraint (<TutorialUser-data-constraint> in the deployment descriptor)
contains the <transport-guarantee> element. A user data constraint can be used to require
that a protected transport layer connection such as HTTPS (HTTP over SSL) be used for all
constrained URL patterns and HTTP methods specified in the security constraint. The choices
for transport guarantee include CONFIDENTIAL, INTEGRAL, or NONE. If you specify CONFIDENTIAL
or INTEGRAL as a security constraint, it generally means that the use of SSL is required, and that
type of security constraint applies to all requests that match the URL patterns in the web
resource collection and not just to the login dialog box.

The strength of the required protection is defined by the value of the transport guarantee.
Specify CONFIDENTIAL when the application requires that data be transmitted so as to prevent
other entities from observing the contents of the transmission. Specify INTEGRAL when the
application requires that the data be sent between client and server in such a way that it cannot
be changed in transit. Specify NONE to indicate that the container must accept the constrained
requests on any connection, including an unprotected one.

The user data constraint is handy to use in conjunction with basic and form-based user
authentication. When the login authentication method is set to BASIC or FORM, passwords are
not protected, meaning that passwords sent between a client and a server on an unprotected
session can be viewed and intercepted by third parties. Using a user data constraint with the
user authentication mechanism can alleviate this concern. Configuring a user authentication
mechanism is described in “Specifying an Authentication Mechanism” on page 499.

To guarantee that data is transported over a secure connection, ensure that SSL support is
configured for your server. If your server is the Sun Java System Enterprise Server, SSL support
is already configured. If you are using another server, consult the documentation for that server
for information on setting up SSL support. More information on configuring SSL support on
the Enterprise Server can be found in “Establishing a Secure Connection Using SSL” on
page 456 and in the Sun GlassFish Enterprise Server v3 Administration Guide.

Note – Good Security Practice: If you are using sessions, after you switch to SSL you should
never accept any further requests for that session that are non-SSL. For example, a shopping site
might not use SSL until the checkout page, and then it might switch to using SSL to accept your
card number. After switching to SSL, you should stop listening to non-SSL requests for this
session. The reason for this practice is that the session ID itself was not encrypted on the earlier
communications. This is not so bad when you’re only doing your shopping, but after the credit
card information is stored in the session, you don’t want a bad guy trying to fake the purchase
transaction against your credit card. This practice could be easily implemented using a filter.

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 497

http://docs.sun.com/doc/820-7692

Specifying Separate Security Constraints for Different Resources
You can create a separate security constraint for different resources within your application. For
example, you could allow users with the role of PARTNER access to the GET and POST methods of
all resources with the URL pattern /acme/wholesale/*, and allow users with the role of CLIENT
access to theGET and POST methods of all resources with the URL pattern /acme/retail/*. An
example of a deployment descriptor that would demonstrate this functionality is the following:

<!-- SECURITY CONSTRAINT #1 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>PARTNER</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- SECURITY CONSTRAINT #2 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>retail</web-resource-name>

<url-pattern>/acme/retail/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CLIENT</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

When the same url-pattern and http-method occur in multiple security constraints, the
constraints on the pattern and method are defined by combining the individual constraints,
which could result in unintentional denial of access. The Java Servlet 3.0 Specification
(downloadable from http://jcp.org/en/jsr/detail?id=315) gives more detail and an
example that illustrates the combination of constraints and how the declarations will be
interpreted.

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009498

http://jcp.org/en/jsr/detail?id=315

Specifying an Authentication Mechanism
The login configuration element is separate from the security-constraint element, as there
can be multiple security constraints applying to multiple resources, but the same authentication
method will apply to all constrained resources in an application. The login-config element is
used to specify the user authentication method to be used for access to web content, the realm in
which the user will be authenticated (in the case of basic authentication), and, in the case of
form-based login, additional attributes. When specified, the user must be authenticated before
access to any resource that is constrained by a security constraint will be granted.

The sub-element auth-method configures the authentication mechanism for the web
application. The element content must be either NONE, BASIC, DIGEST, FORM, or
CLIENT-CERT. The realm-name element indicates the realm name to use when the basic
authentication scheme is chosen for the web application. The form-login-config element
specifies the login and error pages that should be used when FORM based login is specified.

Note – Another way to specify form-based authentication is to use the authenticate, login,
and logout methods of HttpServletRequest, as discussed in “Authenticating Users
Programmatically” on page 511.

When you try to access a web resource that is constrained by a security-constraint element,
the web container activates the authentication mechanism that has been configured for that
resource. The authentication mechanism you choose specifies how the user is prompted to
login. If the <login-config> element is present, and the <auth-method> element contains a
value other than NONE, the user must be authenticated before it can access any resource that is
constrained by the use of a security-constraint element in the same deployment descriptor
(read “Specifying Security Constraints” on page 495 for more information on security
constraints). If you do not specify an authentication mechanism, authentication of the user is
not required.

Before you can authenticate a user, you must have a database of user names, passwords, and
roles configured on your web or application server. For information on setting up the user
database, refer to “Managing Users and Groups on the Enterprise Server” on page 451 in this
tutorial or the Sun GlassFish Enterprise Server v3 Administration Guide.

The choices for authentication mechanisms are discussed further in the following sections:

■ “HTTP Basic Authentication” on page 500
■ “Form-Based Authentication” on page 501
■ “HTTPS Client Authentication” on page 503
■ “Digest Authentication” on page 506

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 499

http://docs.sun.com/doc/820-7692

HTTP Basic Authentication
Specifying HTTP Basic Authentication requires that the server request a user name and
password from the web client and verify that the user name and password are valid by
comparing them against a database of authorized users in the specified or default realm.

When basic authentication is declared, the following actions occur:

1. A client requests access to a protected resource.
2. The web server returns a dialog box that requests the user name and password.
3. The client submits the user name and password to the server.
4. The server authenticates the user in the specified realm and, if successful, returns the

requested resource.

Figure 25–2 shows what happens when you specify HTTP basic authentication.

The following example shows how to specify basic authentication in your deployment
descriptor:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>file</realm-name>

</login-config>

HTTP basic authentication is not a secure authentication mechanism. Basic authentication
sends user names and passwords over the Internet as text that is Base64 encoded, and the target
server is not authenticated. This form of authentication can expose user names and passwords.
If someone can intercept the transmission, the user name and password information can easily
be decoded. However, when a secure transport mechanism, such as SSL, or security at the

ServerClient 2
Requests username:password

3
Sends username:password

4
Returns requested resource

1
Requests a protected resource

FIGURE 25–2 HTTP Basic Authentication

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009500

network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with basic
authentication, some of these concerns can be alleviated. To specify a secure transport
mechanism, use the elements described in “Specifying a Secure Connection” on page 497.

“Example: Basic Authentication with JAX-WS” on page 524 is an example application that uses
HTTP basic authentication in a JAX-WS service.

Form-Based Authentication
Form-based authentication allows the developer to control the look and feel of the login
authentication screens by customizing the login screen and error pages that an HTTP browser
presents to the end user. When form-based authentication is declared, the following actions
occur:

1. A client requests access to a protected resource.

2. If the client is unauthenticated, the server redirects the client to a login page.

3. The client submits the login form to the server.

4. The server attempts to authenticate the user.

a. If authentication succeeds, the authenticated user’s principal is checked to ensure it is in
a role that is authorized to access the resource. If the user is authorized, the server
redirects the client to the resource using the stored URL path.

b. If authentication fails, the client is forwarded or redirected to an error page.

Figure 25–3 shows what happens when you specify form-based authentication.

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 501

The following example shows how to declare form-based authentication in your deployment
descriptor:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/logon.jsp</form-login-page>

<form-error-page>/logonError.jsp</form-error-page>

</form-login-config>

</login-config>

The login and error page locations are specified relative to the location of the deployment
descriptor. Examples of login and error pages are shown in “Creating the Login Form and the
Error Page” on page 528.

Form-based authentication is not particularly secure. In form-based authentication, the content
of the user dialog box is sent as plain text, and the target server is not authenticated. This form
of authentication can expose your user names and passwords unless all connections are over
SSL. If someone can intercept the transmission, the user name and password information can
easily be decoded. However, when a secure transport mechanism, such as SSL, or security at the
network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with
form-based authentication, some of these concerns can be alleviated. To add a protected
transport in your application, use the elements described in “Specifying a Secure Connection”
on page 497.

The section “Example: Form-Based Authentication with a Servlet” on page 528 is an example
application that uses form-based authentication.

ServerClient

2
Redirected to

login page
3

Form submitted

1
Requests protected resource

j_security_check

?

login.jsp

4
Redirected to source

error.jsp

Success

Error page returned
Failure

FIGURE 25–3 Form-Based Authentication

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009502

Using Login Forms

When creating a form-based login, be sure to maintain sessions using cookies or SSL session
information.

As shown in “Form-Based Authentication” on page 501, for authentication to proceed
appropriately, the action of the login form must always be j_security_check. This restriction
is made so that the login form will work no matter which resource it is for, and to avoid
requiring the server to specify the action field of the outbound form. The following code snippet
shows how the form should be coded into the HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

HTTPS Client Authentication
HTTPS Client Authentication requires the client to possess a Public Key Certificate (PKC). If
you specify client authentication, the web server will authenticate the client using the client’s
public key certificate.

HTTPS Client Authentication is a more secure method of authentication than either basic or
form-based authentication. It uses HTTP over SSL (HTTPS), in which the server authenticates
the client using the client’s Public Key Certificate (PKC). Secure Sockets Layer (SSL) technology
provides data encryption, server authentication, message integrity, and optional client
authentication for a TCP/IP connection. You can think of a public key certificate as the digital
equivalent of a passport. It is issued by a trusted organization, which is called a certificate
authority (CA), and provides identification for the bearer.

Before using HTTP Client Authentication, you must make sure that the following actions have
been completed:

■ Make sure the client has a valid Public Key Certificate. For more information on creating
and using public key certificates, read “Working with Digital Certificates” on page 459.

■ Make sure that SSL support is configured for your server. If your server is the Sun
GlassFishEnterprise Server v3, SSL support is already configured. If you are using another
server, consult the documentation for that server for information on setting up SSL support.
More information on configuring SSL support on the application server can be found in
“Establishing a Secure Connection Using SSL” on page 456 and the Sun GlassFish Enterprise
Server v3 Administration Guide.

The following example shows how to declare HTTPS client authentication in your deployment
descriptor:

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 503

http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

An example demonstrating HTTPS client authentication may be available in Part VII,
“Security,” in The Java EE 6 Tutorial, Volume II.

Mutual Authentication

With mutual authentication, the server and the client authenticate one another. There are two
types of mutual authentication:

■ Certificate-based mutual authentication (see Figure 25–4)
■ User name- and password-based mutual authentication (see Figure 25–5)

When using certificate-based mutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its certificate to the server.

5. The server verifies the client’s credentials.

6. If successful, the server grants access to the protected resource requested by the client.

Figure 25–4 shows what occurs during certificate-based mutual authentication.

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009504

In user name- and password-based mutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its user name and password to the server, which verifies the
client’s credentials.

5. If the verification is successful, the server grants access to the protected resource requested
by the client.

Figure 25–5 shows what occurs during user name- and password-based mutual authentication.

ServerClient

server.keystore

server.cert

3

Verifies
certificate

1
Requests protected resource

2
Presents certificate

4
Presents certificate

6
Accesses protected resource

client.keystore

client.cert

trustStore

server.cert

client.cert

5

Verifies
certificate

6

FIGURE 25–4 Certificate-Based Mutual Authentication

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 505

Digest Authentication
Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user based on a
username and a password. However, unlike HTTP Basic Authentication, HTTP Digest
Authentication does not send user passwords over the network. In HTTP Digest
authentication, the client sends a one-way cryptographic hash of the password (and additional
data). Although passwords are not sent on the wire, HTTP Digest authentication requires that
clear text password equivalents be available to the authenticating container so that it can
validate received authenticators by calculating the expected digest.

The following example shows how to declare HTTP Digest authentication in your deployment
descriptor:

<login-config>

<auth-method>DIGEST</auth-method>

</login-config>

Working with Security Roles
In an application, a role is an abstract name for a group of users. A role can be compared to a key
that can open a lock. Many people might have a copy of the key. The lock doesn’t care who you
are, only that you have the right key.

ServerClient

trustStore

server.cert

server.keystore

server.cert
3

Verifies
certificate

1
Requests protected resource

2
Presents certificate

4
Sends username:password

5
Accesses protected resource

FIGURE 25–5 User Name- and Password-Based Mutual Authentication

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009506

For example, in a corporation, you might have the roles Director, Manager, HR, and Employee.
When an application developer is creating an internal payroll website, the developer would use
the same set of data for all of its corporate users, but would allow different access to the data
depending on the role the user is in. For example, a person in the role of HR would have
permission to create new Employees, and to modify the payroll information for Employees. The
Employee would be able to view their own payroll information, but would not be able to change
some of the data, such as their pay rate, but could change some other data, such as their address
or dependent information. The users' assigned role determines what permissions that user is
granted for access to a particular set of resources in an application.

The following elements in a deployment descriptor use security roles in some capacity:

■ <security-role>

A security role element is used to define the security roles that will comprise the entire set of
security roles used in the application. The sub-element role-name designates the name of
the security role. All role names that are used in an application should be specified in its
deployment descriptor.

■ <security-role-ref>

The security role reference element is used in conjunction with the
HttpServletRequest.isUserInRole(String role) programmatic security option. When
a call is made to isUserInRole, the caller identity is tested for membership in this role. If a
security-role-ref has been defined, the caller is tested for membership in the role linked,
or mapped, to the role name.

The security role name specified here is the security role name used in the application code.
The value of the role-name element must be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role) method. The container uses the
mapping of security-role-ref to security-role when determining whether or not the
user is authorized to access the requested information.

The security role link specified here contains the value of the name of the security role that
the user may be mapped into. The role-link element is used to link a security role
reference to a defined security role. The role-link element must contain the name of one of
the security roles defined in the security-role elements.

For more information about using security-role-ref with the isUserInRole method,
read “Declaring and Linking Role References” on page 515.

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 507

Reviewing Security Concepts
If you read “Working with Realms, Users, Groups, and Roles” on page 448, you will remember
the following information:

■ On the Enterprise Server, the following concepts need to be understood in order to work
with security roles.
■ A realm is a complete database of users and groups that identify valid users of a web

application (or a set of web applications) and are controlled by the same authentication
policy. For more information, read “What Is a Realm?” on page 449.

■ A user is an individual (or application program) identity that has been defined in the
Enterprise Server. On the Enterprise Server, a user generally has a user name, a
password, and, optionally, a list of groups to which this user has been assigned. For more
information, read “What Is a User?” on page 450.

■ A group is a set of authenticated users, classified by common traits, defined in the
Enterprise Server. For more information, read “What Is a Group?” on page 450.

■ A principal is an entity that can be authenticated by an authentication protocol in a
security service that is deployed in an enterprise.
For more information on configuring users on the Enterprise Server, read “Managing
Users and Groups on the Enterprise Server” on page 451.

■ During deployment, the deployer takes the information provided in the application
deployment descriptor and maps the roles specified for the application to users and groups
defined on the server using the Enterprise Server deployment descriptors sun-web.xml,
sun-ejb-jar.xml, or sun-application.xml.
For more information, read “Mapping Security Roles to Enterprise Server Groups” on
page 509.

■ The concepts of users, groups, principals, and realms exist in most application or web
servers, but might use different names in different products. If you are using a server other
than Enterprise Server, consult your product's documentation for the terminology specific
to that server.

Declaring Security Roles
You can declare security role names used in web applications using the security-role element
of the deployment descriptor. Use this element to list all of the security roles that you have
referenced in your application, and also in conjunction with the security-role-ref element
(see “Declaring and Linking Role References” on page 515.)

The following snippet of a deployment descriptor is taken from the simple sample application.
This snippet declares the roles that will be used in the application using the security-role
element, and specifies which of these roles is authorized to access protected resources using the
auth-constraint element.

Using Deployment Descriptors to Secure Web Applications

The Java EE 6 Tutorial, Volume I • December 2009508

<security-constraint>

<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>

<url-pattern>/jsp/security/protected/*</url-pattern>

<http-method>PUT</http-method>

<http-method>DELETE</http-method>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

<!-- Security roles used by this web application -->

<security-role>

<role-name>manager</role-name>

</security-role>

<security-role>

<role-name>employee</role-name>

</security-role>

In this example, the security-role element lists all of the security roles used in the application:
manager and employee. This enables the deployer to map all of the roles defined in the
application to users and groups defined on the Enterprise Server.

The auth-constraint element specifies the role, manager, that can access the HTTP methods
PUT, DELETE, GET, POST located in the directory specified by the url-pattern element
(/jsp/security/protected/*).

Mapping Security Roles to Enterprise Server Groups
To map security roles defined in applications to Enterprise Server principals and groups, use the
security-role-mapping element in the runtime deployment descriptor (DD). The runtime
deployment descriptor is different from the application deployment descriptor file. The
runtime deployment descriptor is an XML file that contains information such as the context
root of the web application and the mapping of the portable names of an application’s resources
to the Enterprise Server resources. The Enterprise Server web application runtime DD is located
in the /WEB-INF/ directory along with the web application deployment descriptor. Runtime
deployment descriptors are named sun-web.xml, sun-application.xml, or sun-ejb-jar.xml.

The following example demonstrates how to do this mapping in the sun-web.xml file, which is
the file used for web applications:

<sun-web-app>

<security-role-mapping>

Using Deployment Descriptors to Secure Web Applications

Chapter 25 • Getting Started Securing Web Applications 509

<role-name>CEO</role-name>

<principal-name>Schwartz</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>director</group-name>

</security-role-mapping>

...

</sun-web-app>

A role can be mapped to specific principals, specific groups, or both. The principal or group
names must be valid principals or groups in the current default realm, or in the realm specified
in the login-config element. In this example, the role of CEO that is used in the application is
mapped to a principal named Schwartz that exists on the application server. Mapping a role to a
specific principal is useful when the person occupying that role may change. For this
application, you would only need to modify the runtime deployment descriptor and not search
and replace throughout the application for references to this principal.

Also in this example, the role of Admin is mapped to a group of users who are assigned the
group name of director. This is useful because the group of people authorized to access
director-level administrative data only has to be maintained on the Enterprise Server. The
application developer does not need to know who these people are, just define the group of
people who will be given access to the information.

The role-name must match the role-name in the security-role element of the corresponding
application deployment descriptor (web.xml, ejb-jar.xml) or the role name defined in an
@DeclareRoles annotation.

Sometimes the role names used in the application are the same as the group names defined on
the Enterprise Server. Under these circumstances, you can use the Admin Console to define a
default principal-to-role-mapping that applies to the entire Enterprise Server instance. From
the Admin Console, select Configuration, then Security, then check the Enable box beside
Default Principal to Role Mapping. For more information, read the Sun GlassFish Enterprise
Server v3 Administration Guide.

Using Programmatic Security with Web Applications
Programmatic security is used by security-aware applications when declarative security alone is
not sufficient to express the security model of the application. The following topics are
discussed in this section:

■ “Authenticating Users Programmatically” on page 511
■ “Checking Caller Identity Programmatically” on page 513

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial, Volume I • December 2009510

http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7692

■ “Example Code for Programmatic Security” on page 513
■ “Declaring and Linking Role References” on page 515

Authenticating Users Programmatically
Servlet 3.0 specifies the following methods of the HttpServletRequest interface that enable
you to authenticate users for a web application programmatically:

■ authenticate

The authenticate method allows an application to instigate authentication of the request
caller by the container from within an unconstrained request context. A login dialog box
displays and collects the user's name and password for authentication purposes.

■ login

The login method allows an application to collect username and password information as
an alternative to specifying form-based authentication in an application deployment
descriptor.

■ logout

The logout method is provided to allow an application to reset the caller identity of a
request.

The following example code shows how to use the login and logout methods:

package test;

import java.io.IOException;

import java.io.PrintWriter;

import java.math.BigDecimal;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name="TutorialServlet", urlPatterns={"/TutorialServlet"})
public class TutorialServlet extends HttpServlet {

@EJB

private ConverterBean converterBean;

/**

* Processes requests for both HTTP <code>GET</code>

* and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

Using Programmatic Security with Web Applications

Chapter 25 • Getting Started Securing Web Applications 511

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/O error occurs

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet TutorialServlet</title>");
out.println("</head>");
out.println("<body>");
request.login("TutorialUser", "TutorialUser");
BigDecimal result = converterBean.dollarToYen(new BigDecimal("1.0"));
out.println("<h1>Servlet TutorialServlet result of dollarToYen= " + result + "</h1>");
out.println("</body>");
out.println("</html>");

} catch (Exception e) {

throw new ServletException(e);

} finally {

request.logout();

out.close();

}

}

}

This code sample shows how to use the authenticate method:

package com.sam.test;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class TestServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

request.authenticate(response);

out.println("Authenticate Successful");

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial, Volume I • December 2009512

} finally {

out.close();

}

}

Checking Caller Identity Programmatically
In general, security management should be enforced by the container in a manner that is
transparent to the web component. The security API described in this section should be used
only in the less frequent situations in which the web component methods need to access the
security context information.

Servlet 3.0 specifies the following methods of the HttpServletRequest interface that enable
you to verify a caller's identity programmatically, and to use that information to grant or deny
access to data:

■ The HttpServletRequest interface provides the following methods that enable you to
access security information about the component’s caller:getRemoteUser: Determines the
user name with which the client authenticated. The getRemoteUser method returns the
name of the remote user (that is, the caller) associated by the container with the request. If
no user has been authenticated, this method returns null.

■ isUserInRole: Determines whether a remote user is in a specific security role. If no user has
been authenticated, this method returns false. This method expects a String user
role-name parameter.
The <security-role-ref> element should be declared in the deployment descriptor with a
<role-name> sub-element containing the role name to be passed to the method. Using
security role references is discussed in “Declaring and Linking Role References” on page 515.

■ getUserPrincipal: Determines the principal name of the current user and returns a
java.security.Principal object. If no user has been authenticated, this method returns
null. Calling the getName method on the Principal returned by getUserPrincipal
returns the name of the remote user.

Your application can make business logic decisions based on the information obtained using
these APIs.

Example Code for Programmatic Security
The following code demonstrates the use of programmatic security for the purposes of
programmatic login.

package enterprise.programmatic_login;

import java.io.*;

Using Programmatic Security with Web Applications

Chapter 25 • Getting Started Securing Web Applications 513

import java.net.*;

import javax.annotation.security.DeclareRoles;

import javax.servlet.*;

import javax.servlet.http.*;

@DeclareRoles("javaee6user")
public class LoginServlet extends HttpServlet {

/**

* Processes requests for both HTTP GET and POST methods.

* @param request servlet request

* @param response servlet response

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

String userName = request.getParameter("txtUserName");
String password = request.getParameter("txtPassword");

out.println("Before Login"+"

");
out.println("IsUserInRole?.." + request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.." + request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

try {

request.login(userName, password);

}catch(ServletException ex) {

out.println("Login Failed with a ServletException.." +

ex.getMessage());

return;

}

out.println("After Login..."+"

");
out.println("IsUserInRole?.." + request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.." + request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

request.logout();

out.println("After Logout..."+"

");
out.println("IsUserInRole?.." + request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.." + request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"
");

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial, Volume I • December 2009514

} finally {

out.close();

}

}

/**

* Handles the HTTP <code>GET</code> method.

* @param request servlet request

* @param response servlet response

*/

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

processRequest(request, response);

}

/**

* Handles the HTTP <code>POST</code> method.

* @param request servlet request

* @param response servlet response

*/

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

processRequest(request, response);

}

/**

* Returns a short description of the servlet.

*/

public String getServletInfo() {

return "Short description";
}

}

This servlet displays the name of the user who is currently logged in, then prompts a user for
login, and prints out the information again, then logs out the user and prints the information
again in order to demonstrate the effect of the login and logout methods. The application
deployment descriptor, web.xml, includes a login-config element that specifies basic
authentication. The runtime deployment descriptor, sun-web.xml, includes a role-mapping of
the user of the application to a group of the same name on the Enterprise Server.

Declaring and Linking Role References
A security role reference defines a mapping between the name of a role that is called from a web
component using isUserInRole(String role) and the name of a security role that has been
defined for the application. If no <security-role-ref> element is declared in a deployment

Using Programmatic Security with Web Applications

Chapter 25 • Getting Started Securing Web Applications 515

descriptor, and the isUserInRole method is called, the container defaults to checking the
provided role name against the list of all security roles defined for the web application. Using
the default method instead of using the security-role-ref element limits your flexibility to
change role names in an application without also recompiling the servlet making the call.

The security-role-ref element is used when an application uses the
HttpServletRequest.isUserInRole(String role) method. The value passed to the
isUserInRole method is a String representing the role name of the user. The value of the
role-name element must be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role) method. The role-link must contain the
name of one of the security roles defined in the security-role elements. The container uses
the mapping of security-role-ref to security-role when determining the return value of
the call.

For example, to map the security role reference cust to the security role with role name
bankCustomer, the syntax would be:

<servlet>

...

<security-role-ref>

<role-name>cust</role-name>

<role-link>bankCustomer</role-link>

</security-role-ref>

...

</servlet>

In this case, if the servlet called by a user belonging to the bankCustomer security role made the
API call, isUserInRole("cust") would return true.

The <role-link> element in the security-role-ref element must match a <role-name>
defined in the <security-role> element of the same web.xml deployment descriptor, as shown
here:

<security-role>

<role-name>bankCustomer</role-name>

</security-role>

A security role reference, including the name defined by the reference, is scoped to the
component whose deployment descriptor contains the security-role-ref deployment
descriptor element.

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial, Volume I • December 2009516

Using Message Security with Web Applications
Web Services Security: SOAP Message Security (WS-Security) is an international standard for
interoperable Web Services Security that was collaboratively developed in OASIS by all the
major providers of web services technology (including Sun Microsystems). WS-Security is a
message security mechanism that uses XML Encryption and XML Digital Signature to secure
web services messages sent over SOAP. The WS-Security specification defines the use of various
security tokens including X.509 certificates, SAML assertions, and username/password tokens
to authenticate and encrypt SOAP web services messages. The WS-Security specification can be
viewed at http://www.oasis-open.org/
committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf

WS-Security incorporates security features in the header of a SOAP message, working in the
application layer. Message security differs from transport layer security (which is what is
discussed in this chapter) in that message security can be used to decouple message protection
from message transport so that messages remain protected after transmission, ensuring
end-to-end security.

Sun's implementation of WS-Security is part of Metro, a web service stack. In the past, web
services have relied on transport-based security such as SSL to provide point-to-point security.
Metro implements the WS-Security specification to provide interoperable message content
integrity and confidentiality, even in the presence of intermediaries. Metro also provides an
implementation of the WS-Trust specification as a means for issuing, renewing, and validating
security tokens used by WS-Security, and to establish and broker trust relationships. That
portion of Metro is known as WSIT (Web Services Interoperability Technologies). Metro's
WSIT subsystem is an implementation of a number of open web services specifications to
support enterprise features. In addition to security, reliable messaging, and atomic transactions,
Metro includes a bootstrapping and configuration technology.

Message security is not part of the Java EE 6 platform, but can be used with and by Java EE 6
applications by following the instructions from the Metro User's Guide at
https://metro.dev.java.net/guide/.

Examples: Securing Web Applications
There is some basic setup required before any of the example applications will run correctly.
Refer to “Setting Up Your System for Running the Security Examples” on page 518 to make sure
you have completed these steps prior to continuing with the examples.

The following examples use annotations, programmatic security, and/or declarative security to
demonstrate adding security to existing web applications:

■ “Setting Up Your System for Running the Security Examples” on page 518
■ “Example: Basic Authentication with a Servlet” on page 518

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 517

http://www.oasis-open.org/committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf
http://www.oasis-open.org/committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf
https://metro.dev.java.net/guide/

■ “Example: Basic Authentication with JAX-WS” on page 524
■ “Example: Form-Based Authentication with a Servlet” on page 528

Here are some links to other locations where you will find examples of securing different types
of applications:

■ “Example: Securing an Enterprise Bean” on page 474
■ “Example: Using the isCallerInRole and getCallerPrincipal Methods” on page 478
■ GlassFish samples: https://glassfish-samples.dev.java.net/

Setting Up Your System for Running the Security
Examples
To set up your system for running the security examples, you basically need to configure a user
database that can be used by the application for authenticating users. Here are the steps you
need to complete before continuing:

■ If you have not already done so, make sure you have read and followed the directions for
installing the tutorial examples, Ant, and NetBeans IDE, and that you understand how to
start the Enterprise Serverand Administration Console. These instructions can be found in
Chapter 2, “Using the Tutorial Examples.”

■ If you have not already done so, add an authorized user to the Enterprise Server. For this
example, add users to the file realm of the Enterprise Server and assign the user to the
group TutorialUser. Be sure to write down the user name and password for the user you
create so that you can use it for testing the example applications. Authentication is
case-sensitive for both the user name and password, so write down the user name and
password exactly. This topic is discussed more in “Managing Users and Groups on the
Enterprise Server” on page 451.

■ Set up Default Principal to Role Mapping on the Enterprise Server. From the Admin
Console, select Configuration, then Security, then check the enable box beside Default
Principal to Role Mapping.

Example: Basic Authentication with a Servlet
This example discusses how to use basic authentication with a servlet. With basic
authentication of a servlet, the web browser presents a standard login dialog that is not
customizable. When a user submits their name and password, the server determines if the user
name and password are those of an authorized user and sends the requested web resource if the
user is authorized to view it.

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009518

https://glassfish-samples.dev.java.net/

In general, the following steps are necessary for adding basic authentication to an unsecured
servlet, such as the one described in Chapter 3, “Getting Started with Web Applications.” In the
example application included with this tutorial, many of these steps have been completed for
you and are listed here simply to show what needs to be done should you wish to create a similar
application. The completed version of this example application can be found in the directory
tut-install/examples/web/hello2_basicauth/.

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. Create a web module as described in Chapter 3, “Getting Started with Web Applications,”
for the servlet example, hello2.

3. Add the appropriate security elements to the web.xml deployment descriptor. The
deployment descriptor for the example application can be viewed at
tut-install/examples/web/hello2_basicauth/web/WEB-INF/web.xml. The security
elements are described in “Specifying Security in the Deployment Descriptor” on page 519.

4. Build, package, and deploy the web application by following the steps in “Building,
Packaging, and Deploying the Servlet Basic Authentication Example Using NetBeans IDE”
on page 520 or “Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using Ant” on page 521.

5. Run the web application by following the steps described in “Running the Basic
Authentication Servlet” on page 521.

6. If you have any problems running this example, refer to the troubleshooting tips in
“Troubleshooting the Basic Authentication Example” on page 523.

Specifying Security in the Deployment Descriptor
The elements of the deployment descriptor that add basic authentication to this example tells
the server or browser to perform the following tasks:
■ Send a standard login dialog to collect user name and password data
■ Verify that the user is authorized to access the application
■ If authorized, display the servlet to the user

Deployment descriptors elements are described in “Introduction to Web Application
Deployment Descriptors” on page 492.

The following sample code shows the security elements for the deployment descriptor used in
this example of basic authentication, which can be found in
tut-install/examples/web/hello2_basicauth/web/WEB-INF/web.xml.

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/greeting</url-pattern>

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 519

</web-resource-collection>

<auth-constraint>

<role-name>TutorialUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>file</realm-name>

</login-config>

<security-role>

<role-name>TutorialUser</role-name>

</security-role>

This deployment descriptor shows that all the request URI /greeting can only be accessed by
users who have entered their user name and password and have been authorized to access this
URL because they have been verified to be in the role TutorialUser. The data will be sent over a
protected transport in order to keep the user name and password data from being read in
transit.

Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using NetBeans IDE
To build, package, and deploy the web/hello2_basicauth example application using NetBeans
IDE, follow these steps:

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. Open the project in NetBeans IDE by selecting File→Open Project.
3. Browse to the tut-install/examples/web/hello2_basicauth/ directory.
4. Make sure that Open as Main Project is selected.
5. Select Open Project.
6. Right-click hello2_basicauth in the Projects pane, then select Clean and Build.
7. Right-click hello2_basicauth in the Projects pane, then select Deploy.
8. To run the servlet, follow the steps in “Running the Basic Authentication Servlet” on

page 521.

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009520

Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using Ant
To build, package, and deploy the web/hello2_basicauth example using the Ant tool, follow
these steps:

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. From a terminal window or command prompt, change to the
tut-install/examples/web/hello2_basicauth/ directory.

3. Build and package the web application by entering the following command at the terminal
window or command prompt:

ant

4. To deploy the example using Ant, enter the following command at the terminal window or
command prompt:

ant deploy

The deploy target in this case gives you an incorrect URL to run the application. To run the
application, please use the URL shown in “Running the Basic Authentication Servlet” on
page 521.

5. To run the web application, follow the steps in “Running the Basic Authentication Servlet”
on page 521.

Running the Basic Authentication Servlet
To run the web client, follow these steps:

1. Open a web browser.
2. Enter the following URL in your web browser:

https://localhost:8181/hello2_basicauth/greeting

You may be prompted to accept the security certificate for the server. If so, accept the
security certificate.

3. A default login form displays. Enter a user name and password combination that
corresponds to a user that has already been created in the file realm of the Enterprise
Server and has been assigned to the group of TutorialUser.
Basic authentication is case-sensitive for both the user name and password, so enter the user
name and password exactly as defined for the Enterprise Server.
The server returns the requested resource if all of the following conditions are met:
■ There is a user defined for the Enterprise Server with the user name you entered.
■ The user with the user name you entered has the password you entered.

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 521

■ The user name and password combination you entered is assigned to the group of
TutorialUser on the Enterprise Server.

■ The role of TutorialUser, as defined for the application, is mapped to the group of
TutorialUser, as defined for the Enterprise Server.

When these conditions are met, and the server has authenticated the user, the application
will display as shown in Figure 25–6.

4. Enter your name and click the Submit button. Because you have already been authorized,
the name you enter in this step does not have any limitations. You have unlimited access to
the application now.

The application responds by saying “Hello” to you, as shown in Figure 25–7.

FIGURE 25–6 Running the Application

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009522

Note – For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant clean and ant undeploy targets or the NetBeans IDE Clean and
Build option to get a fresh start.

Troubleshooting the Basic Authentication Example
When doing iterative development with this web application, follow these steps if you are using
NetBeans IDE:

1. Close your web browser.
2. Clean and recompile the files from the previous build by right-clicking hello2_basicauth

and selecting Clean and Build.
3. Redeploy the application by right-clicking hello2_basicauth and selecting Undeploy and

Deploy.
4. Open your web browser and reload the following URL:

https://localhost:8181/hello2_basicauth/greeting

Follow these steps if you are using the Ant tool:

1. Close your web browser.
2. Undeploy the web application. To undeploy the application, use the following command in

the directory:

ant undeploy

3. Clean out files from the previous build, using the following command:

FIGURE 25–7 The Running Basic Authentication Response

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 523

ant clean

4. Recompile, repackage, and redeploy the application, using the following commands:

ant

ant deploy

5. Open your web browser and reload the following URL:

https://localhost:8181/hello2_basicauth/greeting

Example: Basic Authentication with JAX-WS
This section discusses how to configure a JAX-WS-based web service for HTTP basic
authentication. When a service that is constrained by HTTP basic authentication is requested,
the server requests a user name and password from the client and verifies that the user name
and password are valid by comparing them against a database of authorized users.

For this tutorial, you will add the security elements to the JAX-WS service; build, package, and
deploy the service; and then build and run the client application.

This example does not include a finished application, but provides instructions in the event that
you want to secure a JAX-WS web service, such as the one that can be found in the directory
tut-install/examples/jaxws/helloservice and is discussed in “Creating a Simple Web Service
and Client with JAX-WS” on page 210. You build on this simple application by adding the
necessary elements to secure the application using basic authentication.

In general, the following steps are necessary to add basic authentication to a JAX-WS web
service.

1. Create an application like the one in “Creating a Simple Web Service and Client with
JAX-WS” on page 210.

2. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

3. Add security elements that specify that basic authentication is to be performed to the
application deployment descriptor, web.xml. This step is discussed in “Adding Security
Elements to the Deployment Descriptor” on page 525.

4. Build, package, and deploy the web service. See “Building and Deploying helloservice
with Basic Authentication Using NetBeans IDE” on page 526 or “Building and Deploying
helloservice with Basic Authentication Using Ant” on page 526 for the steps to accomplish
this.

5. Build and run the client application. See “Building and Running the helloservice Client
Application with Basic Authentication Using NetBeans IDE” on page 527 or “Building and
Running the helloservice Client Application with Basic Authentication Using Ant” on
page 527 for the steps to accomplish this.

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009524

Adding Security Elements to the Deployment Descriptor
To enable basic authentication for the service, add security elements to the application
deployment descriptor, web.xml. The security elements that need to be added to the
deployment descriptor include the <security-constraint>, <login-config>, and
<security-role> elements. These security elements are discussed in more detail in
“Introduction to Web Application Deployment Descriptors” on page 492 and in the Java Servlet
Specification. The code is added to the original deployment descriptor to enable HTTP basic
authentication. The resulting deployment descriptor looks like this:

<?xml version="1.0" encoding="UTF-8"?><web-app
xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
<display-name>HelloService</display-name>

<listener>

<listener-class>

com.sun.xml.ws.transport.http.servlet.WSServletContextListener

</listener-class>

</listener>

<servlet>

<display-name>HelloService</display-name>

<servlet-name>HelloService</servlet-name>

<servlet-class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloService</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/hello</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>TutorialUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-constraint>BASIC</auth-constraint>

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 525

<realm-name>file</realm-name>

</login-config>

<security-role>

<role-name>TutorialUser</role-name>

</security-role>

</web-app>

This security constraint protects resources at the URI /hello. Anyone who tries to access this
resource will be prompted for their user name and password and must be authenticated by the
Enterprise Server before they will be granted access to the resource. The request is sent over a
protected transport to ensure that the username and password are not intercepted in transit.

Building and Deploying helloservicewith Basic Authentication Using
NetBeans IDE
To build, package, and deploy the example using NetBeans IDE, follow these steps, or the steps
described in “Building, Packaging, and Deploying the Service” on page 212.

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to the project.
4. Click Open Project.
5. In the Projects tab, right-click the project and select Clean and Build.
6. In the Projects tab, right-click the project and select Deploy.

This step builds and packages the application into a WAR file, and deploys this war file to
your Enterprise Server instance.

Building and Deploying helloservicewith Basic Authentication Using
Ant
To build, package, and deploy the project using the Ant tool, follow these steps, or the steps
described in “Building, Packaging, and Deploying the Service” on page 212.

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. From a terminal window or command prompt, go to the project directory.
3. Build, package, and deploy the JAX-WS service by entering the following at the terminal

window or command prompt in the project directory:

ant all

You can test the service in the Admin Console. For more information on how to do this, read
“Testing the Service without a Client” on page 214.

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009526

Building and Running the helloserviceClient Application with Basic
Authentication Using NetBeans IDE
To build and run the client application using NetBeans IDE, follow these steps. The service
must be deployed onto the Enterprise Server before compiling the client files. For information
on deploying the service, read “Building and Deploying helloservice with Basic
Authentication Using NetBeans IDE” on page 526.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the project.

3. Click Open Project.

4. In the Projects tab, right-click the project and select Clean and Build.

5. In the Projects tab, right-click the project and select Run.

You will be prompted for your user name and password.

6. Enter the user name and password of a user that has been entered into the database of users
for the file realm and has been assigned to the group of TutorialUser.

If the username and password you enter are authorized, you will see the output of the
application client in the Output pane.

Building and Running the helloserviceClient Application with Basic
Authentication Using Ant
To build and run the client application using the Ant tool, follow these steps. The secured
service must be deployed onto the Enterprise Server before you can successfully compile the
client application. For more information on deploying the service, read “Building and
Deploying helloservice with Basic Authentication Using Ant” on page 526.

1. Build the client by changing to the project directory and entering the following at the
terminal window or command prompt:

ant

This command calls the default target, which builds and packages the application into a
JAR file.

2. Run the client by entering the following at the terminal window or command prompt:

ant run

A Login for User dialog displays.

3. Enter a user name and password that correspond to a user set up on the Enterprise Server
with a group of TutorialUser. Click OK.

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 527

Example: Form-Based Authentication with a Servlet
This example discusses how to use form-based authentication with a basic servlet. With
form-based authentication, you can customize the login screen and error pages that are
presented to the web client for authentication of their user name and password. When a user
submits their name and password, the server determines if the user name and password are
those of an authorized user and, if authorized, sends the requested web resource.

In general, the steps are necessary for adding form-based authentication to an unsecured servlet
are similar to those described in “Example: Basic Authentication with a Servlet” on page 518, so
just follow all of the steps in “Example: Basic Authentication with a Servlet” on page 518, except
use the deployment descriptor described in “Specifying Security in the Deployment Descriptor”
on page 529 instead and create the login form and login error form pages as described in
“Creating the Login Form and the Error Page” on page 528. The completed version of this
example application can be found in the directory
tut-install/examples/web/hello2_formauth/.

Creating the Login Form and the Error Page
When using form-based login mechanisms, you must specify a page that contains the form you
want to use to obtain the user name and password, as well as which page to display if login
authentication fails. This section discusses the login form and the error page used in this
example. The section “Specifying Security in the Deployment Descriptor” on page 529 shows
how you specify these pages in the deployment descriptor.

The login page can be an HTML page, a JSP page, or a servlet, and it must return an HTML page
containing a form that conforms to specific naming conventions (see the Java Servlet 3.0
specification for more information on these requirements). To do this, include the elements
that accept user name and password information between <form></form> tags in your login
page. The content of an HTML page, JSP page, or servlet for a login page should be coded as
follows:

<form method=post action="j_security_check" >

<input type="text" name= "j_username" >

<input type="password" name= "j_password" >

</form>

The full code for the login page used in this example can be found at
tut-install/examples/web/hello2_formauth/web/loginform.html. An example of the
running login form page is shown later in Figure 25–8. Here is the code for this page:

<html>

<head>

<title>Login Page</title>

</head>

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009528

<h2>Hello, please log in:</h2>

<form action="j_security_check" method=post>

<p>Please Enter Your User Name:

<input type="text" name="j_username" size="25">

<p><p>Please Enter Your Password:

<input type="password" size="15" name="j_password">

<p><p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

</html>

The login error page is displayed if the user enters a user name and password combination that
is not authorized to access the protected URI. For this example, the login error page can be
found at tut-install/examples/web/hello2_formauth/web/loginerror.html. For this
example, the login error page explains the reason for receiving the error page and provides a
link that will allow the user to try again. Here is the code for this page:

<html>

<head>

<title>Login Error</title>

</head>

<body>

<c:url var="url" value="/index.jsp"/>
<h2>Invalid user name or password.</h2>

<p>Please enter a user name or password that is authorized to access this

application. For this application, this means a user that has been created in the

<code>file</code> realm and has been assigned to the group of

<code>TutorialUser</code>. Click here to Try Again</p>

</body>

</html>

Specifying Security in the Deployment Descriptor
This example takes a very simple servlet-based web application and adds form-based security to
this application. All security for this example is declared in the deployment descriptor for the
application. A security constraint is defined in the deployment descriptor that tells the server to
send a login form to collect user data, verify that the user is authorized to access the application,
and, if so, display the JSP page to the user.

Deployment descriptor elements are described in “Introduction to Web Application
Deployment Descriptors” on page 492.

The following sample code shows the deployment descriptor used in this example of
form-based login authentication, which can be found in
tut-install/examples/web/hello2_formauth/web/WEB-INF/web.xml.

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 529

<!-- FORM-BASED LOGIN AUTHENTICATION EXAMPLE -->

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<display-name>hello2_formauth</display-name>

<servlet>

<display-name>index</display-name>

<servlet-name>index</servlet-name>

<jsp-file>/index.jsp</jsp-file>

</servlet>

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>TutorialUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>/loginform.html</form-login-page>

<form-error-page>/loginerror.html</form-error-page>

</form-login-config>

</login-config>

<security-role>

<role-name>TutorialUser</role-name>

</security-role>

</web-app>

Building, Packaging, and Deploying the Form-Based Authentication
Example Using NetBeans IDE
To build, package, and deploy this application using NetBeans IDE, follow these steps:

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. Open the project in NetBeans IDE by selecting File→Open Project.
3. Browse to the tut-install/examples/web/hello2_formauth/ directory.
4. Make sure that Open as Main Project is selected.

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009530

5. Select Open Project.
6. Right-click hello2_formauth in the Projects pane, then select Clean and Build.
7. Right-click hello2_formauth in the Projects pane, then select Deploy.
8. Follow the steps in “Testing the Form-Based Authentication Web Client” on page 531.

Building, Packaging, and Deploying the Form-Based Authentication
Example Using Ant
To build, package, and deploy this application using the Ant tool, follow these steps:

1. Follow the steps in “Setting Up Your System for Running the Security Examples” on
page 518.

2. From a terminal window or command prompt, change to the
tut-install/examples/web/hello2_formauth/ directory.

3. Enter the following command at the terminal window or command prompt:

ant

This target will spawn any necessary compilations, copy files to the
tut-install/examples/web/hello2_formauth/build/ directory, create the WAR file, and
copy it to the tut-install/examples/web/hello2_formauth/dist/ directory.

4. Deploy the WAR named hello2_formauth.war onto the Enterprise Server using Ant by
entering the following command at the terminal window or command prompt:

ant deploy

5. Follow the steps in “Testing the Form-Based Authentication Web Client” on page 531.

Testing the Form-Based Authentication Web Client
To run the web client, follow these steps:

1. Open a web browser.
2. Enter the following URL in your web browser:

https://localhost:8181/hello2_formauth

The login form displays in the browser, as shown in Figure 25–8.
3. Enter a user name and password combination that corresponds to a user that has already

been created in the file realm of the Enterprise Server and has been assigned to the group
of TutorialUser.

4. Click the Submit button. Form-based authentication is case-sensitive for both the user name
and password, so enter the user name and password exactly as defined for the Enterprise
Server.
If you entered My_Name as the name and My_Pwd for the password, the server returns the
requested resource if all of the following conditions are met:

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 531

■ There is a user defined for the Enterprise Server with the user name of My_Name.
■ The user with the user name of My_Name has a password of My_Pwd defined for the

Enterprise Server.
■ The user My_Name with the password My_Pwd is assigned to the group of TutorialUser

on the Enterprise Server.
■ The role of TutorialUser, as defined for the application, is mapped to the group of

TutorialUser, as defined for the Enterprise Server.

When these conditions are met, and the server has authenticated the user, the
application will display as shown in Figure 25–9.

5. Enter your name and click the Submit button. Because you have already been authorized,
the name you enter in this step does not have any limitations. You have unlimited access to
the application now.

The application responds by saying “Hello” to you, as shown in Figure 25–10.

For additional testing, close and reopen your browser, enter the application URL, and enter a
username and password that are not authorized to see the login error page generated.

FIGURE 25–8 Form-Based Login Page

Examples: Securing Web Applications

The Java EE 6 Tutorial, Volume I • December 2009532

Note – For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant clean and ant undeploy commands to ensure a fresh build if
using the Ant tool, or select Clean and Build then Undeploy and Deploy if using NetBeans IDE.

FIGURE 25–9 Running Web Application

FIGURE 25–10 The Running Form-Based Authentication Example

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 533

534

JavaTM EE Supporting Technologies
Part Eight explores several technologies that support the Java EE platform.

P A R T V I I I

535

536

Introduction to JavaTM EE Supporting
Technologies

The Java EE platform includes several technologies and APIs that extend its functionality. These
technologies allow applications to access a wide range of services in a uniform manner.

This chapter introduces the following Java EE technologies:

These technologies are explained in greater in subsequent chapters: Chapter 27, “Transactions,”
and Chapter 28, “Resource Connections.”

The following topics are addressed here:

■ “Transactions” on page 537
■ “Resources” on page 538

Transactions
A transaction is a series of actions in a Java EE application that must all complete successfully or
else all the changes in each action are backed out. Transactions end in either a commit or a
rollback.

The Java Transaction API (JTA) allows applications to access transactions in a manner that is
independent of specific implementations. JTA specifies standard Java interfaces between a
transaction manager and the parties involved in a distributed transaction system: the
transactional application, the Java EE server, and the manager that controls access to the shared
resources affected by the transactions.

The JTA defines the UserTransaction interface that is used by applications to start, and
commit or abort transactions. Application components get a UserTransaction object through
a JNDI lookup using the name java:comp/UserTransaction or by requesting injection of a
UserTransaction object. A number of interfaces defined by JTA are used by an application
server to communicate with a transaction manager, and for a transaction manager to interact
with a resource manager.

26C H A P T E R 2 6

537

See the Chapter 27, “Transactions,” chapter for a more detailed explanation. The JTA 1.1
specification is available at http://java.sun.com/javaee/technologies/jta/index.jsp.

Resources
A resource is a program object that provides connections to systems such as database servers
and messaging systems.

The Java EE Connector Architecture and Resource
Adapters
The Java EE Connector 1.6 architecture enables Java EE components to interact with enterprise
information systems (EISs) and EISs to interact with Java EE components. EIS software
includes various types of systems: enterprise resource planning (ERP), mainframe transaction
processing, and nonrelational databases, among others. Connector architecture simplifies the
integration of diverse EISs. Each EIS requires only one implementation of the Connector
architecture. Because an implementation adheres to the Connector specification, it is portable
across all compliant Java EE servers.

The specification defines the contracts for an application server as well as for resource adapters,
which are system-level software drivers for specific EIS resources. These standard contracts
provide pluggability between application servers and EISs. The Java EE Connector 1.6
specification defines new system contracts such as Generic Work Context and Security Inflow.

The Java EE Connector 1.6 specification is available at: http://jcp.org/en/jsr/
detail?id=322

A resource adapter is a Java EE component that implements the Connector architecture for a
specific EIS.

A resource adapter can choose to support the following levels of transactions:

■ NoTransaction- No transaction support is provided.
■ LocalTransaction - Resource manager local transactions are supported..
■ XATransaction - Resource adapter supports XA and the JTA XATransaction interface. .

See the Chapter 28, “Resource Connections,” chapter for a more detailed explanation of
resource adapters.

Resources

The Java EE 6 Tutorial, Volume I • December 2009538

http://java.sun.com/javaee/technologies/jta/index.jsp
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322

Java Message Service
Messaging is a method of communication between software components or applications. A
messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that provides
facilities for creating, sending, receiving, and reading messages.

The Java Message Service API is a Java API that allows applications to create, send, receive, and
read messages. Designed by Sun and several partner companies, the JMS API defines a common
set of interfaces and associated semantics that allow programs written in the Java programming
language to communicate with other messaging implementations.

The JMS API minimizes the set of concepts a programmer must learn in order to use messaging
products but provides enough features to support sophisticated messaging applications. It also
strives to maximize the portability of JMS applications across JMS providers in the same
messaging domain.

Sun GlassFishTM Enterprise Server v3 implements the Java Message Service (JMS) API by
integrating the Sun GlassFish Message Queue software with the Enterprise Server software.

Java DataBase Connectivity (JDBCTM) Software
To store, organize, and retrieve data, most applications use relational databases. Java EE
applications access relational databases through the JDBC API.

A JDBC resource (data source) provides applications with a means of connecting to a database.
Typically, a JDBC resource is created for each database accessed by the applications deployed in
a domain. Transactional access to JDBC resources is available from servlets, JSP pages, and
enterprise beans. The connection pooling and distributed transaction features are intended for
use by JDBC drivers to coordinate with an application server.

For more information, see “DataSource Objects and Connection Pools” on page 554.

Resources

Chapter 26 • Introduction to JavaTM EE Supporting Technologies 539

540

Transactions

A typical enterprise application accesses and stores information in one or more databases.
Because this information is critical for business operations, it must be accurate, current, and
reliable. Data integrity would be lost if multiple programs were allowed to update the same
information simultaneously. It would also be lost if a system that failed while processing a
business transaction were to leave the affected data only partially updated. By preventing both
of these scenarios, software transactions ensure data integrity. Transactions control the
concurrent access of data by multiple programs. In the event of a system failure, transactions
make sure that after recovery the data will be in a consistent state.

The following topics are addressed here:

■ “What Is a Transaction?” on page 541
■ “Container-Managed Transactions” on page 542
■ “Bean-Managed Transactions” on page 547
■ “Transaction Timeouts” on page 549
■ “Updating Multiple Databases” on page 550
■ “Transactions in Web Components” on page 551

What Is a Transaction?
To emulate a business transaction, a program may need to perform several steps. A financial
program, for example, might transfer funds from a checking account to a savings account using
the steps listed in the following pseudocode:

begin transaction

debit checking account

credit savings account

update history log

commit transaction

27C H A P T E R 2 7

541

Either all three of these steps must complete, or none of them at all. Otherwise, data integrity is
lost. Because the steps within a transaction are a unified whole, a transaction is often defined as
an indivisible unit of work.

A transaction can end in two ways: with a commit or with a rollback. When a transaction
commits, the data modifications made by its statements are saved. If a statement within a
transaction fails, the transaction rolls back, undoing the effects of all statements in the
transaction. In the pseudocode, for example, if a disk drive were to crash during the credit
step, the transaction would roll back and undo the data modifications made by the debit
statement. Although the transaction fails, data integrity would be intact because the accounts
still balance.

In the preceding pseudocode, the begin and commit statements mark the boundaries of the
transaction. When designing an enterprise bean, you determine how the boundaries are set by
specifying either container-managed or bean-managed transactions.

Container-Managed Transactions
In an enterprise bean with container-managed transaction demarcation, the EJB container sets
the boundaries of the transactions. You can use container-managed transactions with any type
of enterprise bean: session, or message-driven. Container-managed transactions simplify
development because the enterprise bean code does not explicitly mark the transaction’s
boundaries. The code does not include statements that begin and end the transaction.

By default if no transaction demarcation is specified enterprise beans use container-managed
transaction demarcation.

Typically, the container begins a transaction immediately before an enterprise bean method
starts. It commits the transaction just before the method exits. Each method can be associated
with a single transaction. Nested or multiple transactions are not allowed within a method.

Container-managed transactions do not require all methods to be associated with transactions.
When developing a bean, you can specify which of the bean’s methods are associated with
transactions by setting the transaction attributes.

Enterprise beans that use container-managed transaction demarcation must not use any
transaction management methods that interfere with the container’s transaction demarcation
boundaries. Examples of such methods are the commit, setAutoCommit, and rollback methods
of java.sql.Connection or the commit and rollback methods of javax.jms.Session. If you
require control over the transaction demarcation, you must use application-managed
transaction demarcation.

Enterprise beans that use container-managed transaction demarcation also must not use the
javax.transaction.UserTransaction interface.

Container-Managed Transactions

The Java EE 6 Tutorial, Volume I • December 2009542

Transaction Attributes
A transaction attribute controls the scope of a transaction. Figure 27–1 illustrates why
controlling the scope is important. In the diagram, method-A begins a transaction and then
invokes method-B of Bean-2. When method-B executes, does it run within the scope of the
transaction started by method-A, or does it execute with a new transaction? The answer depends
on the transaction attribute of method-B.

A transaction attribute can have one of the following values:
■ Required

■ RequiresNew

■ Mandatory

■ NotSupported

■ Supports

■ Never

RequiredAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container starts a new transaction before running the method.

The Required attribute is the implicit transaction attribute for all enterprise bean methods
running with container-managed transaction demarcation. You typically do not set the
Required attribute unless you need to override another transaction attribute. Because
transaction attributes are declarative, you can easily change them later.

Bean-1

.

.

.
method-A(){
 .
 .
 .
 bean-2.method-B()
}

Bean-2

.

.

.
method-B(){
 .
 .
 .
}

TX1{ TX?{
FIGURE 27–1 Transaction Scope

Container-Managed Transactions

Chapter 27 • Transactions 543

RequiresNewAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container takes the following steps:

1. Suspends the client’s transaction
2. Starts a new transaction
3. Delegates the call to the method
4. Resumes the client’s transaction after the method completes

If the client is not associated with a transaction, the container starts a new transaction before
running the method.

You should use the RequiresNew attribute when you want to ensure that the method always
runs within a new transaction.

MandatoryAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container throws the TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean’s method must use the transaction of the
client.

NotSupportedAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container suspends the client’s transaction before invoking the method. After the method has
completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new transaction
before running the method.

Use the NotSupported attribute for methods that don’t need transactions. Because transactions
involve overhead, this attribute may improve performance.

SupportsAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container does not start a new transaction before running the method.

Because the transactional behavior of the method may vary, you should use the Supports
attribute with caution.

Container-Managed Transactions

The Java EE 6 Tutorial, Volume I • December 2009544

NeverAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container throws a RemoteException. If the client is not associated with a transaction, the
container does not start a new transaction before running the method.

Summary of Transaction Attributes
Table 27–1 summarizes the effects of the transaction attributes. Both the T1 and the T2
transactions are controlled by the container. A T1 transaction is associated with the client that
calls a method in the enterprise bean. In most cases, the client is another enterprise bean. A T2

transaction is started by the container just before the method executes.

In the last column of Table 27–1, the word None means that the business method does not
execute within a transaction controlled by the container. However, the database calls in such a
business method might be controlled by the transaction manager of the DBMS.

TABLE 27–1 Transaction Attributes and Scope

Transaction Attribute Client’s Transaction Business Method’s Transaction

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Mandatory None error

T1 T1

NotSupported None None

T1 None

Supports None None

T1 T1

Never None None

T1 Error

Setting Transaction Attributes
Transaction attributes are specified by decorating the enterprise bean class or method with a
javax.ejb.TransactionAttribute annotation, and setting it to one of the
javax.ejb.TransactionAttributeType constants.

Container-Managed Transactions

Chapter 27 • Transactions 545

If you decorate the enterprise bean class with @TransactionAttribute, the specified
TransactionAttributeType is applied to all the business methods in the class. Decoration a
business method with @TransactionAttribute applies the TransactionAttributeType only
to that method. If a @TransactionAttributeannotation decorates both the class and the
method, the method TransactionAttributeType overrides the class
TransactionAttributeType.

The TransactionAttributeType constants encapsulate the transaction attributes described
earlier in this section.
■ Required: TransactionAttributeType.REQUIRED
■ RequiresNew: TransactionAttributeType.REQUIRES_NEW
■ Mandatory: TransactionAttributeType.MANDATORY
■ NotSupported: TransactionAttributeType.NOT_SUPPORTED
■ Supports: TransactionAttributeType.SUPPORTS
■ Never: TransactionAttributeType.NEVER

The following code snippet demonstrates how to use the @TransactionAttribute annotation:

@TransactionAttribute(NOT_SUPPORTED)

@Stateful

public class TransactionBean implements Transaction {

...

@TransactionAttribute(REQUIRES_NEW)

public void firstMethod() {...}

@TransactionAttribute(REQUIRED)

public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}

}

In this example, the TransactionBean class’s transaction attribute has been set to
NotSupported. firstMethod has been set to RequiresNew, and secondMethod has been set to
Required. Because a @TransactionAttribute set on a method overrides the class
@TransactionAttribute, calls to firstMethod will create a new transaction, and calls to
secondMethod will either run in the current transaction, or start a new transaction. Calls to
thirdMethod or fourthMethod do not take place within a transaction.

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction. First, if a system exception is
thrown, the container will automatically roll back the transaction. Second, by invoking the
setRollbackOnly method of the EJBContext interface, the bean method instructs the

Container-Managed Transactions

The Java EE 6 Tutorial, Volume I • December 2009546

container to roll back the transaction. If the bean throws an application exception, the rollback
is not automatic but can be initiated by a call to setRollbackOnly.

Synchronizing a Session Bean’s Instance Variables
The SessionSynchronization interface, which is optional, allows stateful session bean
instances to receive transaction synchronization notifications. For example, you could
synchronize the instance variables of an enterprise bean with their corresponding values in the
database. The container invokes the SessionSynchronization methods (afterBegin,
beforeCompletion, and afterCompletion) at each of the main stages of a transaction.

The afterBegin method informs the instance that a new transaction has begun. The container
invokes afterBegin immediately before it invokes the business method.

The container invokes the beforeCompletion method after the business method has finished,
but just before the transaction commits. The beforeCompletion method is the last opportunity
for the session bean to roll back the transaction (by calling setRollbackOnly).

The afterCompletion method indicates that the transaction has completed. It has a single
boolean parameter whose value is true if the transaction was committed and false if it was
rolled back.

Methods Not Allowed in Container-Managed
Transactions
You should not invoke any method that might interfere with the transaction boundaries set by
the container. The list of prohibited methods follows:

■ The commit, setAutoCommit, and rollback methods of java.sql.Connection
■ The getUserTransaction method of javax.ejb.EJBContext
■ Any method of javax.transaction.UserTransaction

You can, however, use these methods to set boundaries in application-managed transactions.

Bean-Managed Transactions
In bean-managed transaction demarcation, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. Although beans with container-managed
transactions require less coding, they have one limitation: When a method is executing, it can
be associated with either a single transaction or no transaction at all. If this limitation will make
coding your bean difficult, you should consider using bean-managed transactions.

Bean-Managed Transactions

Chapter 27 • Transactions 547

The following pseudocode illustrates the kind of fine-grained control you can obtain with
application-managed transactions. By checking various conditions, the pseudocode decides
whether to start or stop different transactions within the business method.

begin transaction

...

update table-a

...

if (condition-x)

commit transaction

else if (condition-y)

update table-b

commit transaction

else

rollback transaction

begin transaction

update table-c

commit transaction

When coding a application-managed transaction for session or message-driven beans, you
must decide whether to use JavaTM DataBase Connectivity (JDBCTM) or JTA transactions. The
sections that follow discuss both types of transactions.

JTA Transactions
JTA is the abbreviation for the Java Transaction API. This API allows you to demarcate
transactions in a manner that is independent of the transaction manager implementation. Sun
GlassFishTM Enterprise Server v3 implements the transaction manager with the Java Transaction
Service (JTS). But your code doesn’t call the JTS methods directly. Instead, it invokes the JTA
methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the Java EE transaction manager. You may want to use a JTA
transaction because it can span updates to multiple databases from different vendors. A
particular DBMS’s transaction manager may not work with heterogeneous databases. However,
the Java EE transaction manager does have one limitation: it does not support nested
transactions. In other words, it cannot start a transaction for an instance until the preceding
transaction has ended.

To demarcate a JTA transaction, you invoke the begin, commit, and rollback methods of the
javax.transaction.UserTransaction interface.

Bean-Managed Transactions

The Java EE 6 Tutorial, Volume I • December 2009548

Returning without Committing
In a stateless session bean with bean-managed transactions, a business method must commit or
roll back a transaction before returning. However, a stateful session bean does not have this
restriction.

In a stateful session bean with a JTA transaction, the association between the bean instance and
the transaction is retained across multiple client calls. Even if each business method called by
the client opens and closes the database connection, the association is retained until the
instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains the association
between the bean instance and the transaction across multiple calls. If the connection is closed,
the association is not retained.

Methods Not Allowed in Bean-Managed Transactions
Do not invoke the getRollbackOnly and setRollbackOnly methods of the EJBContext
interface in bean-managed transactions. These methods should be used only in
container-managed transactions. For bean-managed transactions, invoke the getStatus and
rollback methods of the UserTransaction interface.

Transaction Timeouts
For container-managed transactions, you can use the Admin Console to configure the
transaction timeout interval. See“Starting the Administration Console” on page 59.

1. In the Admin Console, expand the Configuration node and select Transaction Service.
2. On the Transaction Service page, set the value of the Transaction Timeout field to the value

of your choice (for example, 5).
With this setting, if the transaction has not completed within 5 seconds, the EJB container
rolls it back.
The default value is 0, meaning that the transaction will not time out.

3. Click Save.

For enterprise beans with bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction interface.

Transaction Timeouts

Chapter 27 • Transactions 549

Updating Multiple Databases
The Java EE transaction manager controls all enterprise bean transactions except for
bean-managed JDBC transactions. The Java EE transaction manager allows an enterprise bean
to update multiple databases within a transaction. The figures that follow show two scenarios
for updating multiple databases in a single transaction.

In Figure 27–2, the client invokes a business method in Bean-A. The business method begins a
transaction, updates Database X, updates Database Y, and invokes a business method in
Bean-B. The second business method updates Database Z and returns control to the business
method in Bean-A, which commits the transaction. All three database updates occur in the same
transaction.

In Figure 27–3, the client calls a business method in Bean-A, which begins a transaction and
updates Database X. Then Bean-A invokes a method in Bean-B, which resides in a remote Java
EE server. The method in Bean-B updates Database Y. The transaction managers of the Java EE
servers ensure that both databases are updated in the same transaction.

Java EE
Server

Bean-B

Client

Bean-A

X Y Z

Databases

FIGURE 27–2 Updating Multiple Databases

Updating Multiple Databases

The Java EE 6 Tutorial, Volume I • December 2009550

Transactions in Web Components
You can demarcate a transaction in a web component by using either the
java.sql.Connection or javax.transaction.UserTransaction interface. These are the same
interfaces that a session bean with bean-managed transactions can use. Transactions
demarcated with the UserTransaction interface are discussed in the section “JTA
Transactions” on page 548.

Java EE
Server

Java EE
Server

Bean-B

Client

Bean-A

X Y

Databases

FIGURE 27–3 Updating Multiple Databases across Java EE Servers

Transactions in Web Components

Chapter 27 • Transactions 551

552

Resource Connections

JavaTM EE components can access a wide variety of resources, including databases, mail sessions,
Java Message Service objects, and URLs. The Java EE 6 platform provides mechanisms that
allow you to access all these resources in a similar manner. This chapter describes how to get
connections to several types of resources.

The following topics are addressed here:

■ “Resources and JNDI Naming” on page 553
■ “DataSource Objects and Connection Pools” on page 554
■ “Resource Injection” on page 555
■ “Resource Adapters” on page 558
■ “Metadata Annotations” on page 563
■ “Replacing Deployment Descriptors With Metadata Annotations” on page 564
■ “Common Client Interface” on page 568
■ “Further Information about Resources” on page 569

Resources and JNDI Naming
In a distributed application, components need to access other components and resources such
as databases. For example, a servlet might invoke remote methods on an enterprise bean that
retrieves information from a database. In the Java EE platform, the Java Naming and Directory
InterfaceTM (JNDI) naming service enables components to locate other components and
resources.

A resource is a program object that provides connections to systems, such as database servers
and messaging systems. (A Java DataBase Connectivity (JDBCTM) resource is sometimes
referred to as a data source.) Each resource object is identified by a unique, people-friendly
name, called the JNDI name.

For example, the JNDI name of the JDBC resource for the Java DB database that is shipped with
Sun GlassFishTM Enterprise Server v3 (Enterprise Server) is jdbc/__default.

28C H A P T E R 2 8

553

An administrator creates resources in a JNDI namespace. In the Enterprise Server, you can use
either the Administration Console or the asadmin command to create resources. Applications
then use annotations to inject the resources. If an application uses resource injection, the
Enterprise Server invokes the JNDI API, and the application is not required to do so. However,
it is also possible for an application to locate resources by making direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory service.
To create a new resource, a new name-object binding is entered into the JNDI namespace. You
inject resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you specify in an
annotation. Using a deployment descriptor allows you to change an application by repackaging
it, rather than by both recompiling the source files and repackaging. However, for most
applications, a deployment descriptor is not necessary.

DataSourceObjects and Connection Pools
To store, organize, and retrieve data, most applications use a relational database. Java EE 6
components may access relational databases through the JDBC API. For information on this
API, see http://java.sun.com/javase/technologies/database/.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource has a set of
properties that identify and describe the real world data source that it represents. These
properties include information such as the location of the database server, the name of the
database, the network protocol to use to communicate with the server, and so on. In the Sun
GlassFish Enterprise Server, a data source is called a JDBC resource.

Applications access a data source using a connection, and a DataSource object can be thought
of as a factory for connections to the particular data source that the DataSource instance
represents. In a basic DataSource implementation, a call to the getConnection method returns
a connection object that is a physical connection to the data source.

If a DataSource object is registered with a JNDI naming service, an application can use the
JNDI API to access that DataSource object, which can then be used to connect to the data
source it represents.

DataSource objects that implement connection pooling also produce a connection to the
particular data source that the DataSource class represents. The connection object that the
getConnection method returns is a handle to a PooledConnection object rather than being a
physical connection. An application uses the connection object in the same way that it uses a
connection. Connection pooling has no effect on application code except that a pooled
connection, like all connections, should always be explicitly closed. When an application closes
a connection that is pooled, the connection is returned to a pool of reusable connections. The
next time getConnection is called, a handle to one of these pooled connections will be returned
if one is available. Because connection pooling avoids creating a new physical connection every
time one is requested, applications can run significantly faster.

DataSourceObjects and Connection Pools

The Java EE 6 Tutorial, Volume I • December 2009554

http://java.sun.com/javase/technologies/database/

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of
available connections to increase performance. When an application requests a connection, it
obtains one from the pool. When an application closes a connection, the connection is returned
to the pool.

Applications that use the Persistence API specify the DataSource object they are using in the
jta-data-source element of the persistence.xml file.

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The application code
does not refer to any JDBC objects.

Resource Injection
The javax.annotation.Resource annotation is used to declare a reference to a resource.
@Resource can decorate a class, a field, or a method. The container will inject the resource
referred to by @Resource into the component either at runtime or when the component is
initialized, depending on whether field/method injection or class injection is used. With field
and method-based injection, the container will inject the resource when the application is
initialized. For class-based injection, the resource is looked up by the application at runtime.

@Resource has the following elements:

■ name: The JNDI name of the resource
■ type: The Java language type of the resource
■ authenticationType: The authentication type to use for the resource
■ shareable: Indicates whether the resource can be shared
■ mappedName: A non-portable, implementation-specific name to which the resource should

be mapped
■ description: The description of the resource

The name element is the JNDI name of the resource, and is optional for field- and method-based
injection. For field-based injection, the default name is the field name qualified by the class
name. For method-based injection, the default name is the JavaBeansTM property name based on
the method qualified by the class name. The name element must be specified for class-based
injection.

Resource Injection

Chapter 28 • Resource Connections 555

The type of resource is determined by one of the following:

■ The type of the field the @Resource annotation is decorating for field-based injection
■ The type of the JavaBeans property the @Resource annotation is decorating for

method-based injection
■ The type element of @Resource

For class-based injection, the type element is required.

The authenticationType element is used only for connection factory resources, such as the
resources of a connector (also called the resource adapter or data source). This element can be
set to one of the javax.annotation.Resource.AuthenticationType enumerated type values:
CONTAINER, the default, and APPLICATION.

The shareable element is used only for Object Resource Broker (ORB) instance resources or
connection factory resource. It indicates whether the resource can be shared between this
component and other components, and may be set to true, the default, or false.

The mappedName element is a non-portable, implementation-specific name to which the
resource should be mapped. Because the name element, when specified or defaulted, is local only
to the application, many Java EE servers provide a way of referring to resources across the
application server. This is done by setting the mappedName element. Use of the mappedName
element is non-portable across Java EE server implementations.

The description element is the description of the resource, typically in the default language of
the system on which the application is deployed. It is used to help identify resources, and to help
application developers choose the correct resource.

Field-Based Injection
To use field-based resource injection, declare a field and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. If you do specify the type element, it must match the field’s type
declaration.

package com.example;

public class SomeClass {

@Resource

private javax.sql.DataSource myDB;

...

}

In the code above, the container infers the name of the resource based on the class name and the
field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class.

Resource Injection

The Java EE 6 Tutorial, Volume I • December 2009556

package com.example;

public class SomeClass {

@Resource(name="customerDB")
private javax.sql.DataSource myDB;

...

}

In the code above, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class.

Method-Based Injection
To use method-based injection, declare a setter method and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. The setter method must follow the JavaBeans conventions for
property names: the method name must begin with set, have a void return type, and only one
parameter. If you do specify the type element, it must match the field’s type declaration.

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource

private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

In the code above, the container infers the name of the resource based on the class name and the
field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class.

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource(name="customerDB")
private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

Resource Injection

Chapter 28 • Resource Connections 557

...

}

In the code above, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class.

Class-Based Injection
To use class-based injection, decorate the class with a @Resource annotation, and set the
required name and type elements.

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory")

public class SomeMessageBean {

...

}

Declaring Multiple Resources
The @Resources annotation is used to group together multiple @Resource declarations for
class-based injection.

@Resources({

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory"),

@Resource(name="myMailSession",
type="javax.mail.Session")

})

public class SomeMessageBean {

...

}

The code above shows the @Resources annotation containing two @Resource declarations. One
is a Java Message Service (JMS) message queue, and the other is a JavaMailTM session.

Resource Adapters
A resource adapter is a Java EE component that implements the Java EE Connector
Architecture for a specific Enterprise Information System (EIS). Examples of EISs include
Enterprise Resource Planning (ERP), mainframe transaction processing (TP), and database
systems. As illustrated in Figure 35-1, the resource adapter facilitates communication between a
Java EE application and an EIS.

Resource Adapters

The Java EE 6 Tutorial, Volume I • December 2009558

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be deployed on any
Java EE server, much like a Java EE application. An RAR file may be contained in an Enterprise
Archive (EAR) file, or it may exist as a separate file.

A resource adapter is analogous to a JDBC driver. Both provide a standard API through which
an application can access a resource that is outside the Java EE server. For a resource adapter,
the target system is an EIS; for a JDBC driver, it is a DBMS. Resource adapters and JDBC drivers
are rarely created by application developers. In most cases, both types of software are built by
vendors that sell products such as tools, servers, or integration software.

Resource Adapter Contracts
The resource adapter mediates communication between the Java EE server and the EIS by
means of contracts. The application contract defines the API through which a Java EE
component such as an enterprise bean accesses the EIS. This API is the only view that the
component has of the EIS. The system contracts link the resource adapter to important services
that are managed by the Java EE server. The resource adapter itself and its system contracts are
transparent to the Java EE component.

Management Contracts
The Java EE Connector Architecture defines system contracts that enable resource adapter life
cycle and thread management.

Java EE Server

EIS

Enterprise
Bean

Managers:
Transaction
Connection
Security

Web
Component

Resource
Adapter

Application
Contract

Application
Contract

System
Contracts

Resource Adapters

Chapter 28 • Resource Connections 559

Life cycle Management

The Connector Architecture specifies a life cycle management contract that allows an
application server to manage the life cycle of a resource adapter. This contract provides a
mechanism for the application server to bootstrap a resource adapter instance during the
deployment or application server startup. It also provides a means for the application server to
notify the resource adapter instance when it is undeployed or when an orderly shutdown of the
application server takes place.

Work Management Contract

The Connector Architecture work management contract ensures that resource adapters use
threads in the proper, recommended manner. It also enables an application server to manage
threads for resource adapters.

Resource adapters that improperly use threads can jeopardize the entire application server
environment. For example, a resource adapter might create too many threads or it might not
properly release threads it has created. Poor thread handling inhibits application server
shutdown. It also impacts the application server's performance because creating and destroying
threads are expensive operations.

The work management contract establishes a means for the application server to pool and reuse
threads, similar to pooling and reusing connections. By adhering to this contract, the resource
adapter does not have to manage threads itself. Instead, the resource adapter has the application
server create and provide needed threads. When the resource adapter is finished with a given
thread, it returns the thread to the application server. The application server manages the
thread: It can return the thread to a pool and reuse it later, or it can destroy the thread. Handling
threads in this manner results in increased application server performance and more efficient
use of resources.

In addition to moving thread management to the application server, the Connector
Architecture provides a flexible model for a resource adapter that uses threads:
■ The requesting thread can choose to block (stop its own execution) until the work thread

completes.
■ Or the requesting thread can block while it waits to get the work thread. When the

application server provides a work thread, the requesting thread and the work thread
execute in parallel.

■ The resource adapter can opt to submit the work for the thread to a queue. The thread
executes the work from the queue at some later point. The resource adapter continues its
own execution from the point it submitted the work to the queue, no matter when the
thread executes it.

With the latter two approaches, the submitting thread and the work thread may execute
simultaneously or independently from each other. For these approaches, the contract specifies a
listener mechanism to notify the resource adapter that the thread has completed its operation.

Resource Adapters

The Java EE 6 Tutorial, Volume I • December 2009560

The resource adapter can also specify the execution context for the thread, and the work
management contract controls the context in which the thread executes.

Generic Work Context Contract
A generic work context contract enables a resource adapter to control the contexts in which the
Work instances submitted by it are executed by the application server's WorkManager. A
Generic Work context mechanism also enables an application server to support new message
inflow and delivery schemes. It also provides a richer contextual Work execution environment
to the resource adapter while still maintaining control over concurrent behavior in a managed
environment.

The Generic Work Context contract standardizes the following contexts: Transaction Context
and Security Context.

Transaction Context

The transaction context between the resource adapter and the application server leverages the
Generic Work Context mechanism by describing a standard WorkContext, the
TransactionContext. It represents the standard interface that a resource adapter can use to
propagate transaction context information from the EIS to the application server.

Security Context

The security context between the resource adapter and the application server leverages the
Generic Work Context mechanism by describing a standard WorkContext, the
SecurityContext, that can be provided by the resource adapter while submitting a Work for
execution.

The SecurityContext provides a portable mechanism for the resource adapter to pass security
context information to the application server. This work context enables an EIS or resource
adapter to flow-in security context information while submitting a Work to a WorkContext for
execution.

Work Security Map

A work security map matches EIS identities to the application server domain's identities.

Hints Context

The propagation of Quality of Service hints to a WorkManager for the execution of a Work
instance is standardized through the HintsContext class. It provides a mechanism for the
resource adapter to pass quality-of-service metadata to the WorkManager during the submission
of a Work instance. The application server can use the specified hints to control the execution of
the Work instance.

Resource Adapters

Chapter 28 • Resource Connections 561

Outbound Contracts
The Connector Architecture defines system-level contracts between an application server and
an EIS that enable outbound connectivity to an EIS: connection management, transaction
management, and security.

Connection Management Contract

The connection management contract supports connection pooling, a technique that enhances
application performance and scalability. Connection pooling is transparent to the application,
which simply obtains a connection to the EIS.

Transaction Management Contract

The Connector Architecture supports the concept of transactions - a number of operations that
must be committed together or not at all for the data to remain consistent and to maintain data
integrity.

A local transaction is limited in scope to a single EIS system, and the EIS resource manager itself
manages such transaction. An XA transaction or global transaction can span multiple resource
managers. This form of transaction requires transaction coordination by an external
transaction manager, typically bundled with an application server. A transaction manager uses
a two-phase commit protocol to manage a transaction that spans multiple resource managers or
EISs. It uses one-phase commit optimization if only one resource manager is participating in an
XA transaction.

The Connector Architecture defines a transaction management contract between an
application server and a resource adapter . The transaction management contract extends the
connection management contract and provides support for management of both local and XA
transactions. These contracts enable an application server to provide the infrastructure and
runtime environment for transaction management. Application components rely on this
transaction infrastructure to support the component-level transaction model.

An application server is required to support all three levels of transactions:

■ No transaction support at all - this is typical of legacy applications and back-end systems.
■ Support for only local transactions
■ Support for both local and XA transactions

Security Management Contract

The security management contract provides mechanisms for authentication, authorization,
and secure communication between a Java EE server and an EIS to protect the information in
the EIS.

Resource Adapters

The Java EE 6 Tutorial, Volume I • December 2009562

Inbound Contracts
The Java EE Connector Architecture defines system contracts between a Java EE server and an
EIS that enable inbound connectivity from the EIS: pluggability contracts for message providers
and contracts for importing transactions.

Messaging Contracts

To enable external systems to connect to a Java EE application server, the Connector
Architecture extends the capabilities of message-driven beans to handle messages from any
message provider. That is, message-driven beans are no longer limited to handling JMS
messages. Instead, EISs and message providers can plug any message provider, including their
own custom or proprietary message providers, into a Java EE server.

To provide this feature, a message provider or an EIS resource adapter implements the
messaging contract, which details APIs for message handling and message delivery. A
conforming resource adapter is assured of the ability to send messages from any provider to a
message-driven bean, and it also can be plugged into a Java EE server in a standard manner.

Transaction Inflow

The Connector Architecture supports importing transactions from an EIS to a Java EE server.
The architecture specifies how to propagate the transaction context from the EIS. For example,
a transaction can be started by the EIS, such as the Customer Information Control System
(CICS). Within the same CICS transaction, a connection can be made through a resource
adapter to an enterprise bean on the application server. The enterprise bean does its work under
the CICS transaction context and commits within that transaction context.

The Connector Architecture also specifies how the container participates in transaction
completion and how it handles crash recovery to ensure that data integrity is not lost.

Metadata Annotations
Java EE Connector Architecture 1.6 introduces a set of annotations to minimize the need for
deployment descriptors.
■ The @Connector annotation can be used by the resource adapter developer to specify that

the JavaBeans component is a resource adapter JavaBeans component. This annotation is
used for providing metadata about the capabilities of the resource adapter. Optionally, you
can provide a JavaBeans component implementing the ResourceAdapter interface.

■ The @ConnectionDefinition annotation defines a set of connection interfaces and classes
pertaining to a particular connection type. The role of this annotation is identical to the role
played by the connection-definition element in the deployment descriptor.

■ The @AdministeredObject annotation designates a JavaBeans component as an
administered object.

Metadata Annotations

Chapter 28 • Resource Connections 563

■ The @Activation annotation contains the configuration information pertaining to inbound
connectivity from an EIS instance.

■ The @ConfigProperty annotation can be used on JavaBeans components to indicate to the
application server that a specific JavaBeans property is a configuration property for that
JavaBeans component. A configuration property may be used by the deployer and resource
adapter provider to provide additional configuration information. The application server
provides configuration tools to automatically discover the configuration properties of a
JavaBeans component through JavaBeans introspection and need not be specified by using a
deployment descriptor.

The specification allows a resource adapter to be developed in mixed-mode form, that is the
ability for a resource adapter developer to use both metadata annotations and deployment
descriptors in applications. An application assembler or deployer may use the deployment
descriptor to override the metadata annotations specified by the resource adapter developer.

A new attribute, metadata-complete, is introduced in the Connector 1.6 deployment
descriptor (the ra.xml file). The metadata-complete attribute defines whether the deployment
descriptor for the resource adapter module is complete, or whether the class files available to the
module and packaged with the resource adapter need to be examined for annotations that
specify deployment information.

For the complete list of annotations and JavaBeans components introduced in Java EE 6, see
http://jcp.org/en/jsr/detail?id=322.

Replacing Deployment Descriptors With Metadata
Annotations

The use of annotations reduces or completely eliminates the need to deal with a deployment
descriptor in many cases. The use of annotations also reduces the need to keep the deployment
descriptor synchronized with changes to source code.

The following examples provide sample deployment descriptors and equivalent annotations.

Example 1: @ConnectorAnnotation
The following deployment descriptor defines a connector:

<connector xmlns "http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/connector_1_6.xsd"
version="1.6">

Replacing Deployment Descriptors With Metadata Annotations

The Java EE 6 Tutorial, Volume I • December 2009564

http://jcp.org/en/jsr/detail?id=322

<description>Sample adapter using the JavaMail API</description>

<display-name>InboundResourceAdapter</display-name>

<icon></icon>

<vendor-name>Sun Microsystems, Inc</vendor-name>

<eis-type>MAIL</eis-type>

<resourceadapter-version>1.0</resourceadapter-version>

...

...

...

<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

<credential-interface>javax.resource.spi.security.PasswordCredential</credential-interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

...

...

</connector>

The equivalent metadata annotation is as follows:

@Connector(

description = "Sample adapter using the JavaMail API",
displayName = "InboundResourceAdapter",
vendorName = "Sun Microsystems, Inc.",
eisType = "MAIL",
version = "1.0",
authMechanisms = {

@AuthenticationMechanism(

authMechanism = "BasicPassword",
credentialInterface = AuthenticationMechanism.CredentialInterface.PasswordCredential

)

}

/*

// Since the following attribute values denote the default values of the annotation,

// they need not be specified explicitly

transactionSupport = TransactionSupport.TransactionSupportLevel.NoTransaction,

reauthenticationSupport = false

*/

)

public class ResourceAdapterImpl

implements ResourceAdapter, java.io.Serializable

{

...

...

}

Replacing Deployment Descriptors With Metadata Annotations

Chapter 28 • Resource Connections 565

Example 2: @ConnectionDefinitionAnnotation
The following deployment descriptor snippet describes a connection definition:

<connection-definition>

<managedconnectionfactory-class>

samples.mailra.ra.outbound.ManagedConnectionFactoryImpl

</managedconnectionfactory-class>

<config-property><config-property-name>serverName</config-property-name>

<config-property-type>java.lang.String</config-property-type>

<config-property-value>UnknownHostName</config-property-value>

...

...

<connectionfactory-interface>samples.mailra.api.JavaMailConnectionFactory</connectionfactory-interface>

<connectionfactory-impl-class>samples.mailra.ra.outbound.JavaMailConnectionFactoryImpl</connectionfactory-impl-class>

<connection-interface>samples.mailra.api.JavaMailConnection</connection-interface>

<credential-interface>javax.resource.spi.security.PasswordCredential</credential-interface>

<connection-impl-class>samples.mailra.ra.outbound.JavaMailConnectionImpl</connection-impl-class>

</connectiondefinition>

The equivalent metadata annotation is as follows:

@ConnectionDefinition(

connectionFactory =

samples.mailra..api.JavaMailConnectionFactory.class,

connectionFactoryImpl =

samples.mailra.ra.outbound.JavaMailConnectionFactoryImpl.class,

connection = samples.connectors.mailconnector.api.JavaMailConnection.class,

connectionImpl =

samples.mailra..ra.outbound.JavaMailConnectionImpl.class

)

public class ManagedConnectionFactoryImpl implements

ManagedConnectionFactory, Serializable

{

...

...

@ConfigProperty(

defaultValue = "UnknownHostName"
)

public void setServerName(String serverName)

{

...

}

}

Replacing Deployment Descriptors With Metadata Annotations

The Java EE 6 Tutorial, Volume I • December 2009566

Example 3: @ActivationAnnotation
The following deployment descriptor snippet describes the messaging capabilities of a resource
adapter:

<messageadapter>

<messagelistener>

<messagelistener-type>samples.mailra.api.JavaMailMessageListener</messagelistener-type>

<activationspec>

<activationspec-class>samples.mailra.ra.inbound.ActivationSpecImpl</activationspec-class>

required-config-property>

<config-property-name>serverName</config-property-name>

</required-config-property>

<required-config-property>

<config-property-name>userName</config-property-value>

</required-config-property>

<required-config-property>

<config-property-name>password</config-property-value>

</required-config-property>

<required-config-property>

<config-property-name>folderName</config-property-value>

</required-config-property>

<required-config-property>

<description>Normally imap or pop3</description>

<config-property-name>protocol</config-property-name>

<config-property-value>IMAP</config-property-value>

</required-config-property>

</activationspec>

</messagelistener>

</messageadapter>

The equivalent metadata annotation is as follows:

@Activation(

messageListeners = {samples.mailra.api.JavaMailMessageListener.class}

)

public class ActivationSpecImpl implements javax.resource.spi.ActivationSpec,

java.io.Serializable

{

...

@ConfigProperty()

// serverName property value

private String serverName = new String("");

@ConfigProperty()

// userName property value

private String userName = new String("");

Replacing Deployment Descriptors With Metadata Annotations

Chapter 28 • Resource Connections 567

@ConfigProperty()

// password property value

private String password = new String("");

@ConfigProperty()

// folderName property value

private String folderName = new String("Inbox");

// protocol property value

// Normally imap or pop3

@ConfigProperty(

description = "Normally imap or pop3"
)

private String protocol = new String("imap");

...

...

}

Common Client Interface
This section describes how components use the Connector Architecture Common Client
Interface (CCI) API and a resource adapter to access data from an EIS.

Defined by the Java EE Connector Architecture specification, the CCI defines a set of interfaces
and classes whose methods allow a client to perform typical data access operations. The CCI
interfaces and classes are as follows:
■ ConnectionFactory: Provides an application component with a Connection instance to an

EIS.
■ Connection: Represents the connection to the underlying EIS.
■ ConnectionSpec: Provides a means for an application component to pass

connection-request-specific properties to the ConnectionFactory when making a
connection request.

■ Interaction: Provides a means for an application component to execute EIS functions,
such as database stored procedures.

■ InteractionSpec: Holds properties pertaining to an application component's interaction
with an EIS.

■ Record: The superclass for the various kinds of record instances. Record instances can be
MappedRecord, IndexedRecord, or ResultSet instances, all of which inherit from the Record
interface.

■ RecordFactory: Provides an application component with a Record instance.

Common Client Interface

The Java EE 6 Tutorial, Volume I • December 2009568

■ IndexedRecord: Represents an ordered collection of Record instances based on the
java.util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS does so
in a prescribed manner. The component must establish a connection to the EIS's resource
manager, and it does so using the ConnectionFactory. The Connection object represents the
actual connection to the EIS and is used for subsequent interactions with the EIS.

The component performs its interactions with the EIS, such as accessing data from a specific
table, using an Interaction object. The application component defines the Interaction object
using an InteractionSpec object. When the application component reads data from the EIS
(such as from database tables) or writes to those tables, it does so using a particular type of
Record instance: either a MappedRecord, an IndexedRecord, or a ResultSet instance. Just as the
ConnectionFactory creates Connection instances, a RecordFactory creates Record instances.

Note, too, that a client application that relies on a CCI resource adapter is very much like any
other Java EE client that uses enterprise bean methods.

Further Information about Resources
For more information about resources and annotations, see:

■ The Java EE 6 Platform Specification (JSR 316):
http://jcp.org/en/jsr/detail?id=316

■ The Java EE Connector Architecture Specification 1.6 (JSR 322):
http://jcp.org/en/jsr/detail?id=322

■ EJB 3.1 specification (JSR 220):
http://jcp.org/en/jsr/detail?id=318

■ Common Annotations for the Java Platform (JSR 250):
http://www.jcp.org/en/jsr/detail?id=250

Further Information about Resources

Chapter 28 • Resource Connections 569

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=250

570

Index

Numbers and Symbols
@ApplicationScoped annotation, 318-320
@Consumes, 229
@ConversationScoped annotation, 318-320
@DELETE, 220, 226
@Dependent annotation, 318-320
@DiscriminatorColumn annotation, 355-356
@DiscriminatorValue annotation, 355-356
@Embeddable annotation, 352-353
@EmbeddedId annotation, 347
@Entity annotation, 343
@GET, 220, 226
@Id annotation, 347
@IdClass annotation, 347
@Inject annotation, 318
@Local annotation, 259, 278
@ManyToMany annotation, 349, 350
@ManyToOne annotation, 349
@Named annotation, 320
@NamedQuery annotation, 386
@OneToMany annotation, 349, 350, 351
@OneToOne annotation, 349, 350, 351
@Path, 220, 223
@PathParam, 231
@PersistenceContext annotation, 358
@PersistenceUnit annotation, 359
@POST, 220, 226
@PostActivate annotation, 279, 280-281
@PostConstruct annotation, 267-270
@PostConstruct annotation, 279, 280-281
@PreDestroy annotation, 267-270
@PreDestroy annotation, 279, 280-281

@PrePassivate annotation, 279, 280-281
@Produces, 229
@Produces annotation, 322
@PUT, 220, 226
@Qualifier annotation, 317-318
@QueryParam, 231
@Remote annotation, 259, 278
@Remove annotation, 267
@Remove annotation, 279, 282
@RequestScoped annotation, 318-320
@Resource annotation, 555-558
@SessionScoped annotation, 318-320
@Stateful annotation, 278
@Timeout annotation, 301
@Timeout method, 304
@Transient annotation, 345
@WebMethod annotation, 281

A
abstract schemas

defined, 385
types, 385

access control, 440
action events, 136

ActionEvent class
and UICommand component, 136

actionListener attribute, 164
and backing bean methods, 164
and UICommand component, 136

571

action events, actionListener attribute (Continued)
referencing methods that handle action

events, 165
ActionListener class, 162
actionListener tag, 153, 162
referencing methods that handle action events, 165,

181
writing a backing-bean method to handle action

events, 181
Admin Console, 54
Administration Console, starting, 59-60
annotations

DeclareRoles, 470-474
DenyAll, 471
JAX-RS, 222-223
Jersey, 220, 222-223
PermitAll, 471
RolesAllowed, 470
security, 445-446, 466

Ant tool, 56-57
appclient tool, 54
applet containers, 39
applets, 33, 35
application client containers, 39
application clients, 34

securing, 483-484
applications

creating
JAX-RS, 235-247

deploying
JAX-RS, 235-247

running
JAX-RS, 235-247

security, 442
asadmin tool, 54
attributes referencing backing bean methods, 164

action attribute, 164
and backing bean methods, 164
and navigation, 165

actionListener attribute, 164, 165
validator attribute, 164, 165
valueChangeListener attribute, 164, 166

audit modules, pluggable, 447
auditing, 440

auth-constraint, 496-497
auth-constraint element, 454
authenticate method, 511-513
authenticating users, 499-506
authentication, 440, 448, 456

basic, 500
example, 524-527

certificate-based mutual, 504
digest, 506
form-based

example, 528-533
mutual, 504-505
web resources

form-based, 501
HTTP basic, 500, 528-533

authentication mechanism, EJB, 474
authorization, 440, 448
authorization constraint, 454, 496-497
authorization providers, pluggable, 447

B
backing bean methods, 164, 179

attributes referencing
See attributes referencing backing bean methods

referencing
See referencing backing bean methods

writing
See writing backing bean methods

backing bean properties, 156, 167, 169
bound to component instances, 177-178
properties for UISelectItems composed of

SelectItem instances, 176
UIData properties, 172-173
UIInput and UIOutput properties, 171
UISelectBoolean properties, 173
UISelectItems properties, 175-176
UISelectMany properties, 173-174
UISelectOne properties, 174-175

backing beans, 167-170
method binding

See method binding
methods

See backing bean methods

Index

The Java EE 6 Tutorial, Volume I • December 2009572

backing beans (Continued)
properties

See backing bean properties
basic authentication, 500-501

EJB, 474
bean-managed transactions, See transactions,

bean-managed
beans, defined for CDI, 315
beans.xml file, 323
BLOBs, See persistence, BLOBs
BufferedReader class, 190
business logic, 251
business methods, 261

client calls, 281
exceptions, 282
locating, 273
requirements, 281
transactions, 545, 547, 549, 550

C
CallbackHandler interface, 483
capture-schema tool, 54
certificate authority, 459
certificates, 441

digital, 443, 459-461
managing, 459

server
generating, 460-461

using for authentication, 453
client-side, 234-235
clients

authenticating, 503-505
securing, 483-484

CLOBs, See persistence, CLOBs
collections

persistence, 345-347, 431
commit method, 547
commits, See transactions, commits
Common Client Interface, Connector

Architecture, 568-569
component binding, 169, 170

binding attribute
value expressions, 169

component classes
SelectItem class, 144, 175
SelectItemGroup class, 175

component-managed sign-on, 485
component properties, See backing bean properties
component tags

panelGrid tag, 138
selectItems tag, 175

composite components, facelets, 105-108
concurrent access, 541
confidentiality, 456
configuring JavaServer Faces applications

application configuration resource files
commandButton tag, 136
conversion model, 157

Connection interface, 551
Connection interface (java.sql), 547
connection pooling, 554
connections

secure, 456
securing, 456-461

connectors, See Java EE Connector architecture
constraint

authorization, 454
security, 454
user data, 454

container-managed sign-on, 485
container-managed transactions, See transactions,

container-managed
containers, 37-39

See also applet containers
See also application client containers
See also EJB containers
See also web containers
configurable services, 38
nonconfigurable services, 38
securing, 444-446
security, 436-440
services, 38
trust between, 482

context roots, 73
Contexts and Dependency Injection for the Java EE

Platform (CDI), 313-323
beans, 315

Index

573

Contexts and Dependency Injection for the Java EE
Platform (CDI) (Continued)

configuring applications, 323
examples, 325-339
Facelets pages, 321
injectable objects, 316
injecting beans, 318
managed beans, 315-316
overview, 314
qualifiers, 317-318
scopes, 318-320
setter and getter methods, 320-321
unified expression language, 320

conversion model
converter attribute, 156-157

text components, 131
Converter implementations, 155
converter tags

See converter tags
converterId attribute, 156
converters

See converters
javax.faces.convert package, 155

Converter implementation classes
BigDecimalConverter class, 155
BigIntegerConverter class, 155
BooleanConverter class, 155
ByteConverter class, 155
CharacterConverter class, 155
DateTimeConverter, 156
DateTimeConverter class, 155, 157
DoubleConverter class, 155
EnumConverter class, 156
FloatConverter class, 156
IntegerConverter class, 156
LongConverter class, 156
NumberConverter class, 156, 157, 159
ShortConverter class, 156

converter tags
convertDateTime tag, 157
convertDateTime tag attributes, 158-159
converter tag, 157
convertNumber tag, 157, 159
convertNumber tag attributes, 160

converter tags (Continued)
parseLocale attribute, 158

converters, 86
cookie parameters, 231
core tags, convertNumber tag, 159
createTimer method, 301
creating applications, JAX-RS, 235-247
credential, 451
Criteria API, 419-431

creating queries, 423-424
expressions, 426-427, 427-429
query execution, 430-431
query results, 426-429, 429-430

cryptography, public key, 459
custom validators

validate method, 181
Validator implementation

backing bean methods, 179

D
data, encryption, 503
data integrity, 440, 541, 542
data sources, 554
databases

See also persistence
clients, 251
connections, 282, 549
data recovery, 541
EIS tier, 31
message-driven beans and, 255
multiple, 548, 550
transactions

See transactions
DataSource interface, 554
debugging, Java EE applications, 62-63
declarative security, 436, 466, 491
DeclareRoles annotation, 470-474
DenyAll annotation, 471
Dependency Injection for Java (JSR-330), 313-323
deployer roles, 45
deploying, without NetBeans IDE, 238-239
deploying applications, JAX-RS, 235-247
deployment, 273-274

Index

The Java EE 6 Tutorial, Volume I • December 2009574

deployment descriptor, 492-495
auth-constraint element, 454
security-constraint element, 454
specifying SSL, 457
transport-guarantee element, 454
user-data-constraint element, 454
web applications, 492-510
web-resource-collection element, 454

deployment descriptors, 436, 444-445, 466, 491
ejb-jar.xml file, 445
portable, 42
runtime, 42
security-role-mapping element, 455
security-role-ref element, 516
web application, 69, 71

runtime, 71
web services, 445
web.xml file, 445

destroy method, 200
development roles, 43-45

application assemblers, 45
application client developers, 44
application deployers and administrators, 45
enterprise bean developers, 44
Java EE product providers, 44
tool providers, 44
web component developers, 44

digest authentication, 506
digital signature, 459
DNS, 51
doFilter method, 192, 193, 196
doGet method, 189
domains, 59
doPost method, 189
downloading, Enterprise Server, 56

E
EAR files, 42
EIS tier, 37

security, 485-488
EJB, security, 466-483
EJB containers, 39

container-managed transactions, 542

EJB containers (Continued)
services, 251, 466-483

EJB JAR files, 264
portability, 264

EJBContext interface, 546, 547, 549
embeddable classes, See persistence: embeddable classes
end-to-end security, 443-444
enterprise beans, 36, 46

See also Java EE components
accessing, 256
business methods

See business methods
classes, 264
compiling, 273-274
contents, 264-266
defined, 251
deployment, 264
distribution, 258
exceptions, 309
getCallerPrincipal method, 477-478
implementor of business logic, 36
interfaces, 256-263, 264
isCallerInRole method, 477-478
life cycles, 267-270
local access, 259-261
message-driven beans.

See message-driven beans
packaging, 273-274
performance, 259
persistence

See persistence
programmatic security, 477-478
protecting, 466-483
remote access, 261-262
securing, 465-488
session beans

See session beans
timer service, 298-309
types, 252
web services, 252, 262-263, 294-297

Enterprise Information Systems, See EIS tier
Enterprise Server

adding users to, 452-453
downloading, 56

Index

575

Enterprise Server (Continued)
enabling debugging, 62
installation tips, 56
securing, 446-447
server logs, 62
SSL connectors, 456
starting, 58
stopping, 59
tools, 53

entities
abstract, 353
abstract schema names, 388
cascading operations, 351

orphans, 351-352
collections, 401-402
entity manager, 358-362
finding, 360, 374
inheritance, 353-357, 378-379
life cycle, 360-362
managing, 357-363
overview, 343-357
persistent fields, 344-347
persistent properties, 344-347
persisting, 360-361
primary keys, 347-349
querying, 363-364
relationships, 374
removing, 361, 375
requirements, 343-344
superclasses, 354
synchronizing, 362

entity providers, 227
entity relationships

bidirectional, 350
many-to-many, 349
many-to-one, 349
multiplicity, 349
one-to-many, 349
one-to-one, 349
query language, 350
unidirectional, 350

equals method, 348
event and listener model

ActionEvent class, 132, 134

event and listener model (Continued)
event listeners

JavaServer Faces UI, 86
Listener class, 179
value-change events

See value-change events
ValueChangeEvent class, 166

examples, 55-63
building, 60
CDI, 325-339
classpath, 274
directory structure, 61
primary keys, 348
query language, 388-393
required software, 55-58
security, 436-439

basic authentication, 524-527
form-based authentication, 528-533

servlets, 272
session beans, 272
simple servlets, 70
timer service, 305-308
web clients, 272
web services, 210, 294

exceptions
business methods, 282
enterprise beans, 309
mapping to error screens, 81
rolling back transactions, 309, 546
transactions, 544, 545

expressions, lvalue expressions, 169

F
facelets, 93-108

composite components, 105-108
developing simple applications, 95-102
resources, 108
templating, 103-105

filter chains, 192, 196
Filter interface, 192
filters, 192

defining, 192
mapping to web components, 194

Index

The Java EE 6 Tutorial, Volume I • December 2009576

filters (Continued)
mapping to web resources, 194, 195, 196
overriding request methods, 193
overriding response methods, 193
response wrappers, 193

foreign keys, 367
form parameters, 231
forward method, 197

G
garbage collection, 270
GenericServlet interface, 185
getCallerPrincipal method, 477-478
getCallerPrincipal method, 477
getConnection method, 554
getRemoteUser, 511-513
getRemoteUser method, 513
getRequestDispatcher method, 196
getServletContext method, 198
getSession method, 198
getUserPrincipal, 511-513
getUserPrincipal method, 513
groups, 450-451

managing, 451-453

H
hashCode method, 348
header parameters, 231
helper classes, 264, 282
HTTP, 209

over SSL, 503
HTTP methods, 226
HTTP request URLs, 190

query strings, 191
request paths, 190

HTTP requests, 190
See also requests

HTTP responses, 192
See also responses
status codes, 81

mapping to error screens, 81

HTTPS, 442, 458, 459, 497-498
HttpServlet interface, 185
HttpServletRequest interface, 513
HttpServletRequest interface, 190
HttpServletResponse interface, 192
HttpSession interface, 198

I
identification, 440, 448
include method, 197
init method, 189
InitialContext interface, 51
injectable objects, 316
integrity, 456

of data, 440
internationalizing JavaServer Faces applications

FacesContext.getLocale method, 158
loadBundle tag, 154
using localized static data and messages, 141-142

invalidate method, 199
isCallerInRole method, 477-478
isCallerInRole method, 478
isUserInRole, 511-513
isUserInRole method, 513

J
JAAS, 53, 441, 483-484

login modules, 484
JACC, 447
JAF, 52
JAR files

See also EJB JAR files
javaee.jar, 274
query language, 400

JAR signatures, 441
Java API for XML Binding, See JAXB
Java API for XML Processing, See JAXP
Java API for XML Registries, See JAXR
Java API for XML Web Services, See JAX-WS
Java Authentication and Authorization Service, 441

See JAAS

Index

577

Java BluePrints, 61
Java Cryptography Extension (JCE), 441
Java DB database, 54

starting, 60
stopping, 60

Java EE 6 platform, APIs, 46-50
Java EE applications, 31

debugging, 62-63
deploying, 273-274
iterative development, 275
tiers, 31

Java EE clients, 33-34
application clients, 34

See also application clients
web clients, 67-84

See also web clients
Java EE components, 33

types, 33
Java EE Connector architecture, 49
Java EE modules, 42, 43

application client modules, 43
EJB modules, 43, 264
resource adapter modules, 43
web modules

See web modules
Java EE platform, 31
Java EE security model, 38
Java EE servers, 39
Java EE transaction model, 38
Java Generic Security Services, 441
Java GSS-API, 441
Java Message Service (JMS) API

message-driven beans.
See message-driven beans

Java Naming and Directory Interface, See JNDI
Java Persistence API query language, See query language
Java Persistence Criteria API, See Criteria API
Java Secure Sockets Extension, 441
Java Servlet technology, 46

See also servlets
Java Transaction API, See JTA
JavaBeans Activation Framework, See JAF
JavaBeans components, 34

in WAR files, 71

JavaMail API, 49
JavaServer Faces, 47
JavaServer Faces application development roles

application developers, 172
responsibilities, 167

page authors
ActionListener registration, 162
responsibilities, 123

JavaServer Faces applications, queueing messages, 182
JavaServer Faces core tag library, 123

action attribute, 136
actionListener tag, 153, 162
attribute tag, 153
convertDateTime tag, 153, 157
convertDateTime tag attributes, 158-159
converter tag, 153, 157
converterId attribute, 156
convertNumber tag, 153, 157, 159
convertNumber tag attributes, 160
facet tag, 139, 153, 154
jsf_core TLD, 154
loadBundle tag, 153, 154
param tag, 135, 153, 154
parseLocale attribute, 158
selectItem tag, 126, 141, 142, 154
selectitem tag, 143, 153
selectItems tag, 126, 141, 142, 154
selectitems tag, 143, 153
type attribute, 161
validateDoubleRange tag, 154, 162
validateLength tag, 154, 162
validateLongRange tag, 154, 162, 163
validator tag, 154
validator tags

See validator tags
valueChangeListener tag, 153, 161

JavaServer Faces standard components, UISelectItems
component, 175

JavaServer Faces standard HTML render kit tag
library, 123
UI component tags

See UI component tags
JavaServer Faces standard UI components

UIColumn component, 137

Index

The Java EE 6 Tutorial, Volume I • December 2009578

JavaServer Faces standard UI components (Continued)
UICommand component, 136, 162
UIData component, 137, 172
UIForm component, 129
UIGraphic component, 137
UIInput component, 131, 132
UIOutput component, 129, 131, 132
UIPanel component, 137
UISelectBoolean component, 173
UISelectItem component, 174, 175
UISelectItems component, 143, 174
UISelectMany component, 143, 153, 173
UISelectOne component, 143, 153
UISelectOne properties, 174

JavaServer Faces tag libraries
JavaServer Faces core tag library, 153

See JavaServer Faces core tag library
JavaServer Faces standard HTML tag library

See JavaServer Faces standard HTML render kit
tag library

taglib directives, 124
JavaServer Faces technology, 85-92

advantages of, 87
FacesContext class

Validator interface, 181
UI component tags

See UI component tags
JavaServer Pages Standard Tag Library, See JSTL
javax.servlet.http package, 185
javax.servlet package, 185
JAX-RS, 219

APIs, 220
described, 205-207

JAX-WS, 53
defined, 209
described, 205-207
service endpoint interfaces, 210
specification, 217

JAXB, 52
JAXP, 52
JAXR, 50
JCE, 441
JDBC API, 51, 554
Jersey, 219

Jersey (Continued)
APIs, 220
other info sources, 247-248

JMS API, 48
JNDI, 51, 553

data source naming subcontexts, 51
enterprise bean naming subcontexts, 51
environment naming contexts, 51
naming and directory services, 51
naming contexts, 51
naming environments, 51
naming subcontexts, 51

JSR-299, See Contexts and Dependency Injection for the
Java EE Platform (CDI)

JSR-311, 219
JSSE, 441
JSTL, 47
JTA, 48

See also transactions, JTA
JTS API, 548

K
Kerberos, 441
Kerberos tickets, 441
key pairs, 459
keystores, 441, 459-461

managing, 459
keytool utility, 459

L
LDAP, 51
listener classes, 186

defining, 186
listener interfaces, 186
listeners

HTTP, 446
IIOP, 446

local interfaces, defined, 259
login, configuring, 499-506
login configuration, 499-506
login method, 511-513

Index

579

login modules, 483-484
logout method, 511-513

M
managed beans, defined for CDI, 315-316
Managed Beans specification, 313-323
matrix parameters, 231
message-driven beans, 46, 255-256

accessing, 255
defined, 255
garbage collection, 270
onMessage method, 256
transactions, 542, 547, 548

message listeners, JMS, 255
message security, 447, 491, 517
MessageBodyReader, 227
MessageBodyWriter, 227
messages

integrity, 503
MessageFormat pattern, 134, 153
outputFormat tag, 134
param tag, 135
parameter substitution tags

See JavaServer Faces core tag library
param tag, 153

queueing messages, 182
securing, 443-444
security, 447

metadata annotations, 563-564, 564-568
security, 445-446

Metamodel API, 419-421
using, 421-422

method binding, 132
method-binding expressions, 132
method expressions, 164

method expressions, 110
method permissions, 469

annotations, 470-474

N
navigation model

action attribute, 164, 165
and backing bean methods, 164
and UICommand component, 136

action methods, 179
ActionEvent class, 165
logical outcome, 179

commandButton tag, 136
referencing backing bean methods, 165

navigation rules, 136
NavigationHandler class, 180
referencing methods that perform navigation, 165,

179
writing a backing bean method to perform

navigation processing, 179-180
NDS, 51
NetBeans IDE, 58
NIS, 51
non-repudiation, 440

O
onMessage method, message-driven beans, 256
overview, further topics, 234-235

P
package-appclient tool, 54
parameters, extracting, 231
path, templates, 223
path parameters, 231
permissions, policy, 447
PermitAll annotation, 471
persistence

BLOBs, 372-373
cascade operations, 372
CLOBs, 372-373
collections, 345-347

maps, 346-347
configuration, 363
context, 358
embeddable classes, 352-353

Index

The Java EE 6 Tutorial, Volume I • December 2009580

persistence (Continued)
entities, 343-357
many-to-many, 377-378
one-to-many, 367
one-to-one, 366-367
overview, 343-364
persistence units, 362-363
persistent fields, 344
primary keys, 347-349

compound, 368-371
properties, 345
queries, 343-364, 375, 386-387

See also query language
creating, 423-424
Criteria, 419-431
executing, 430-431
expressions, 426-427, 427-429
joins, 425
parameters, 386-387, 387
results, 426-429, 429-430
type-safe, 419-431

query language, 350
relationships, 365-367
scope, 362-363
self-referential relationships, 366
session beans, 253
temporal types, 373

persistence units
query language, 385, 400

pluggable audit modules, 447
pluggable authorization providers, 447
policy files, 441
prerequisites, 19
primary keys, 367

compound, 368-371
defined, 347-349
examples, 348

principal, 451
default, 482-483

PrintWriter class, 191
producer methods, 322
programmatic login, 447
programmatic security, 436, 446, 467, 491
proxies, 209

public key certificates, 503
public key cryptography, 459

Q
qualifiers, using, 317-318
Quality of Service (QOS), 440
query language

ABS function, 411
abstract schemas, 385, 388, 401
ALL expression, 409
ANY expression, 409
arithmetic functions, 410-411
ASC keyword, 416
AVG function, 414
BETWEEN expression, 392-393, 406-407
boolean literals, 405
boolean logic, 412
collection member expressions, 401, 408-409
collections, 401-402, 408
compared to SQL, 390, 400, 403
comparison operators, 393, 406
CONCAT function, 410
conditional expressions, 391, 404, 405, 413
constructors, 415-416
COUNT function, 414
DELETE expression, 393
DELETE statement, 388
DESC keyword, 416
DISTINCT keyword, 389
domain of query, 385, 399, 400
duplicate values, 389
enum literals, 405
equality, 413
ESCAPE clause, 407
examples, 388-393
EXISTS expression, 409
FETCH JOIN operator, 402
FROM clause, 388, 399-403
grammar, 394-417
GROUP BY clause, 388, 416-417
HAVING clause, 388, 417
identification variables, 388, 399, 400-403
identifiers, 399-400

Index

581

query language (Continued)
IN operator, 402, 407
INNER JOIN operator, 402
input parameters, 391, 405
IS EMPTY expression, 392
IS FALSE operator, 413
IS NULL expression, 392
IS TRUE operator, 413
JOIN statement, 390, 402-403
LEFT JOIN operator, 402
LEFT OUTER JOIN operator, 402
LENGTH function, 410
LIKE expression, 392, 407-408
literals, 404-405
LOCATE function, 410
LOWER function, 410
MAX function, 414
MEMBER exression, 408-409
MIN function, 414
MOD function, 411
multiple declarations, 400
multiple relationships, 391
named parameters, 389, 405
navigation, 390-391, 391, 401, 404
negation, 413
NOT operator, 413
null values, 408, 412
numeric comparisons, 413
numeric literals, 405
operator precedence, 405-406
operators, 405-406
ORDER BY clause, 388, 416
parameters, 389
parentheses, 405
path expressions, 385, 403-404
positional parameters, 405
range variables, 401
relationship fields, 386
relationships, 385, 390, 391
return types, 414
scope, 385
SELECT clause, 388, 414-416
setNamedParameter method, 389
SIZE function, 411

query language (Continued)
SQRT function, 411
state fields, 386
string comparison, 413
string functions, 410-411
string literals, 404
subqueries, 409
SUBSTRING function, 410
SUM function, 415
syntax, 394-417
TRIM function, 410
types, 403-404, 413
UPDATE expression, 388, 393
UPPER function, 410
WHERE clause, 388, 404-414
wildcards, 407

query parameters, 231

R
realms, 448, 449-450

admin-realm, 450
certificate, 450

adding users, 453
configuring, 447
file, 450

referencing backing bean methods, 164-166
for handling action events, 165, 181
for handling value-change events, 166
for performing navigation, 165, 179
for performing validation, 165-166, 181

relationship fields, query language, 386
relationships

direction, 350
unidirectional, 367

remote interfaces, defined, 261
request method designator, 220, 226
RequestDispatcher interface, 196
requests, 190

See also HTTP requests
customizing, 193
getting information from, 190

resource adapter, security, 486-487
resource adapters, 49, 558-563

Index

The Java EE 6 Tutorial, Volume I • December 2009582

resource class, 220
resource injection, 555-558
resource method, 220
resources, 553-569

See also data sources
facelets, 108

ResponseBuilder, 227
responses, 191

See also HTTP responses
buffering output, 191
customizing, 193
setting headers, 189

RESTful web services, 219
roles, 451

application, 455
declaring, 508-509
development

See development roles
mapping

to groups, 509-510
mapping to groups, 455
mapping to users, 455
referencing, 470-474
security, 453-455, 469, 470-474, 506-510

RolesAllowed annotation, 470
rollback method, 547, 548, 549
rollbacks, See transactions, rollbacks
run-as identity, 480-482
RunAs annotation, 480-482
running applications, JAX-RS, 235-247

S
SAAJ, 52
SASL, 441
schema, deployment descriptors, 444-445
schemagen tool, 54
scopes, using, 318-320
secure connections, 456-461
Secure Socket Layer (SSL), 456-461
security, 234-235

annotations, 445-446, 466
web applications, 491

application, 442

security, application (Continued)
characteristics of, 440

application client tier
callback handlers, 483-484

callback handlers, 483
clients, 483-484
constraints, 495-498
container, 436-440
container trust, 482
containers, 444-446
context

enterprise beans, 477-478
declarative, 436, 444-445, 466, 491
default principal, 482-483
deploying enterprise beans, 482-483
EIS applications, 485-488

component-managed sign-on, 485-486
container-managed sign-on, 485

end-to-end, 443-444
enterprise beans, 466-483
example, 436-439
functions, 439-440
groups, 450-451
implementation mechanisms, 441-444
introduction, 435-463
JAAS login modules, 484
Java EE

mechanisms, 442-444
Java SE, 441
login forms, 483
login modules, 483-484
mechanisms, 439-440
message, 491, 517
message-layer, 443-444
method permissions, 469

annotations, 470-474
policy domain, 451
programmatic, 436, 446, 467, 491, 510-516
programmatic login, 447
propagating identity, 480-482
realms, 449-450
resource adapter, 486-487
role names, 470-474, 508-509
roles, 451, 453-455, 469, 506-510

Index

583

security (Continued)
run-as identity, 480-482
single sign-on, 447
specifying run-as identity, 480-482
transport-layer, 442-443, 456-461
users, 450, 508
web applications, 489

deployment descriptor, 492-510
overview, 490

web components, 489
web services, 489

security constraint, 454
security-constraint element, 454
security constraints, 495-498

multiple, 498
security domain, 451
security identity

propagating, 480-482
specific identity, 481

security-role-mapping element, 455
security-role-ref element, 516
security roles, 453-455, 469, 509-510
server, authentication, 503
servers, certificates, 459-461
Servlet interface, 185
ServletContext interface, 198
ServletInputStream class, 190
ServletOutputStream class, 191
ServletRequest interface, 190
ServletResponse interface, 191
servlets, 185

binary data
reading, 190
writing, 191

character data
reading, 190
writing, 191

compiling, 273-274
examples, 70, 272
finalization, 200
initialization, 189

failure, 189
life cycle, 186-187

servlets (Continued)
life-cycle events

handling, 186
packaging, 273-274
service methods, 189

notifying, 201
programming long running, 202

tracking service requests, 200
session beans, 46, 253-255

activation, 267
clients, 253
databases, 547
examples, 272
passivation, 267
requirements, 278
stateful, 253, 254
stateless, 253, 254
transactions, 542, 547, 548
web services, 263, 295-296

sessions, 198
associating attributes, 198
associating with user, 199
invalidating, 199
notifying objects associated with, 199

sign-on
component-managed, 485
container-managed, 485

Simple Authentication and Security Layer, 441
single sign-on, 447
SingleThreadModel interface, 188
SOAP, 205-207, 209, 217
SOAP messages, 41

securing, 443-444
SOAP with Attachments API for Java, See SAAJ
SQL, 51, 390, 400, 403
SQL92, 412
SSL, 442, 456-461, 497-498, 503

connector, 456
connectors

Enterprise Server, 456
specifying, 454
tips, 458
verifying support, 458

SSL HTTPS Connector, configuring, 456

Index

The Java EE 6 Tutorial, Volume I • December 2009584

SSO, 447
standard converters

Converter implementation classes, 155
converter tags, 153, 154, 157
NumberConverter class, 156
using, 155

standard validators
using, 162
validator tags

See validator tags
state fields, query language, 386
substitution parameters, defining, See messages, param

tag

T
templating, facelets, 103-105
testing, without NetBeans IDE, 238-239
Thawte certificate authority, 459
timer service, 298-309

cancelling timers, 304
creating timers, 301-303
examples, 305-308
exceptions, 304
getInfo method, 304
getNextTimeout method, 304
getTimeRemaining method, 304
getting information, 304-305
saving timers, 304
transactions, 305

transactions, 541-551
application-managed, 358-360
attributes, 543-546
bean-managed, 547-549
boundaries, 542, 547
business methods

See business methods, transactions
commits, 542, 547
container-managed, 542-547, 549
default transaction demarcation, 542
defined, 542
exceptions

See exceptions transactions
JDBC, 550

transactions (Continued)
JTA, 548
managers, 545, 548, 550
message-driven beans, 256

See message-driven beans, transactions
nested, 542, 548
rollbacks, 542, 546-547, 547, 548
scope, 543
session beans

See session beans, transactions
timeouts, 549
timer service, 305
web components, 551

transport guarantee, 497-498
transport-guarantee, 497-498
transport-guarantee element, 454
transport-layer security, 442-443, 456-461
truststores, 459-461

managing, 459

U
UI component behavioral interfaces

ActionSource interface
action and actionListener attributes, 164

UI component classes
SelectItem class, 143
UISelectBoolean class, 140
UISelectItem class, 143
UISelectItems class, 143
UISelectMany class, 142
UISelectOne class, 140

UI component renderers
Table renderer, 137
Text renderer, 131, 132

UI component tag attributes, 127
action attribute, 179
actionListener attribute, 164, 181

and backing bean methods, 164
and UICommand component, 136

alt attribute, 137
binding attribute, 127, 129

value expressions, 169
columns attribute, 139

Index

585

UI component tag attributes (Continued)
converter attribute, 156-157

text components, 131
first attribute, 137
for attribute, 134, 148
id attribute, 127
immediate attribute, 127
redisplay attribute, 133
rendered attribute, 127, 128
rows attribute, 137
style attribute, 127, 128, 137, 148
styleClass attribute, 127, 128
validator attribute, 181

text components, 132
value attribute, 127, 129

binding to a backing-bean property, 170
commandButton tag, 136
graphicImage tag, 137
outputFormat tag, 135
outputLabel tag, 134
selectItems tag, 143

valueChangeListener attribute, 132, 166, 182
var attribute

graphicImage tag, 137
UI component tags, 127, 170

attributes
See UI component tag attributes

column tag, 124
commandButton tag, 125, 136
commandLink tag, 125, 136
dataTable tag, 125, 137, 172
form tag, 125, 130
graphicImage tag, 125
inputHidden tag, 125, 131
inputSecret tag, 125, 131, 133
inputText tag, 125, 131

text components, 131
text fields, 132

inputTextarea tag, 125, 131
message tag, 125, 148
messages tag, 125, 148
outputFormat tag, 125, 134, 136
outputLabel tag, 125, 132, 133
outputLink tag, 125, 132, 134

UI component tags (Continued)
outputMessage tag, 132
outputText tag, 126, 132, 134, 173

text fields, 132
panelGrid tag, 126, 137
panelGroup tag, 126, 137
selectBooleanCheckbox tag, 126, 140, 173
selectManyCheckbox tag, 126, 142, 173
selectManyListbox tag, 126, 142
selectManyMenu tag, 126
selectOneListbox tag, 126, 140
selectOneMenu tag, 126, 141, 174, 175
selectOneRadio tag, 126, 140

UI components
buttons, 125
check boxes, 126
combo boxes, 126
data grids, 125
hidden fields, 125
hyperlinks, 125
labels, 125, 126
list boxes, 126
password fields, 125
radio buttons, 126
table columns, 124
tables, 126
text areas, 125
text fields, 125

UnavailableException class, 189
unified expression language, 109-122, 169

deferred evaluation expressions, 110
expression examples, 121
immediate evaluation expressions, 110
literal expressions, 115, 119
literals, 114
lvalue expressions, 110, 112
managed beans, 320
method expressions, 116
operators, 120
reserved words, 121
rvalue expressions, 110, 112
type conversion during expression evaluation, 116
value expressions, 110, 112

URI path templates, 223

Index

The Java EE 6 Tutorial, Volume I • December 2009586

user data constraint, 454, 497-498
user-data-constraint, 497-498
user-data-constraint element, 454
users, 450, 508

adding to Enterprise Server, 452-453
managing, 451-453

UserTransaction interface, 547, 548, 549, 551
utility classes, 264

V
validation model

referencing a method that performs
validation, 165-166

validator attribute, 164, 181
and backing bean methods, 164
referencing backing bean methods, 165
text components, 132

Validator class, 179
Validator interface, 181-182
validators

See validators
writing a backing bean method to perform

validation, 181-182
Validator implementation classes, 162-163

DoubleRangeValidator class, 154, 162
LengthValidator class, 154, 162
LongRangeValidator class, 154, 162, 163

validator tags, 154
validateDoubleRange tag, 162
validateLength tag, 162
validateLongRange tag, 162, 163

validators, 86
custom validators, 154

value binding, 171
a component instance to a bean property

See component binding
acceptable types of component values, 171
value attribute

binding to a backing-bean property, 170
commandButton tag, 136
graphicImage tag, 137
outputFormat tag, 135
outputLabel tag, 134

value binding, value attribute (Continued)
selectItems tag, 143

value expressions, 172
value-change events, 161

processValueChangeEvent(ValueChangeEvent)

method, 182
referencing methods that handle value-change

events, 166
type attribute, 161
ValueChangeEvent class, 161
valueChangeListener attribute, 132, 164, 182
ValueChangeListener class, 161, 182
valueChangeListener tag, 153, 161
writing a backing bean method to handle

value-change events, 182-183
value expressions, 169

ValueExpression class, 170
VeriSign certificate authority, 459

W
W3C, 209, 217
WAR files, JavaBeans components in, 71
web applications, 71

configuring, 69, 77
maintaining state across requests, 198
presentation-oriented, 67

securing, 489
securing, 489
security

overview, 490
service oriented, 67
service-oriented

securing, 489
specifying initialization parameters, 79-80
specifying welcome files, 79

web beans, See Contexts and Dependency Injection for
the Java EE Platform (CDI)

web clients, 33, 67-84
examples, 272

web components, 35, 67
See also Java EE components
applets bundled with, 35
concurrent access to shared resources, 188

Index

587

web components (Continued)
forwarding to other web components, 197
including other web resources, 197
invoking other web resources, 196
mapping exceptions to error screens, 81
mapping filters to, 194
scope objects, 188
securing, 489
sharing information, 188
specifying aliases, 77
specifying initialization parameters, 80
transactions, 551
types, 35
utility classes bundled with, 35
web context, 198

web containers, 39
loading and initializing servlets, 186
mapping URLs to web components, 77

web modules, 43, 71
deploying, 73

packaged, 74
dynamic reloading, 76
undeploying, 76
updating, 75
viewing deployed, 75

web resource collection, 454, 496
web-resource-collection, 496
web-resource-collection element, 454
web resources, 71

mapping filters to, 194, 195, 196
unprotected, 496

web services, 40
described, 205
EJB.

See enterprise beans, web services
endpoint implementation classes, 295
examples, 210, 294
JAX-RS compared to JAX-WS, 205-207
securing, 489

web.xml file, 525-526
web.xml file, security elements, 492-495
work flows, 254
writing backing bean methods, 179-183

for handling action events, 181

writing backing bean methods (Continued)
for handling value-change events, 182-183
for performing navigation, 179-180
for performing validation, 181-182

writing backing-bean methods, for performing
validation, 132

WSDL, 41, 205-207, 209, 217
wsgen tool, 54, 211
wsimport tool, 54

X
xjc tool, 54
XML, 40, 209

Index

The Java EE 6 Tutorial, Volume I • December 2009588

	The Java EE 6 Tutorial, Volume I
	Preface
	Before You Read This Book
	Enterprise Server Documentation Set
	Related Documentation
	Symbol Conventions
	Typographic Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction
	Overview
	Java EE 6 Highlights
	Java EE Application Model
	Distributed Multitiered Applications
	Security
	Java EE Components
	Java EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeansTM Component Architecture
	Java EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	Java EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format

	Java EE Application Assembly and Deployment
	Packaging Applications
	Development Roles
	Java EE Product Provider
	Tool Provider
	Application Component Provider
	Enterprise Bean Developer
	Web Component Developer
	Application Client Developer

	Application Assembler
	Application Deployer and Administrator

	Java EE 6 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Faces Technology
	JavaServer PagesTM Technology
	JavaServer Pages Standard Tag Library
	Java Persistence API
	Java Transaction API
	Java API for RESTful Web Services (JAX-RS)
	Java Message Service API
	Java EE Connector Architecture
	JavaMailTM API
	Java Authorization Service Provider Contract for Containers (Java ACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Java API for XML Registries
	Simplified Systems Integration

	Java EE 6 APIs Included in the Java Platform, Standard Edition 6.0 (Java SE 6)
	Java Database Connectivity API
	Java Naming and Directory InterfaceTM
	JavaBeans Activation Framework
	Java API for XML Processing
	Java Architecture for XML Binding (JAXB)
	SOAP with Attachments API for Java
	Java API for XML Web Services (JAX-WS)
	Java Authentication and Authorization Service

	Sun GlassFish Enterprise Server v3
	Tools

	Using the Tutorial Examples
	Required Software
	JavaTM Platform, Standard Edition
	Java EE 6 Software Development Kit (SDK)
	SDK Installation Tips

	Apache Ant
	To Obtain Apache Ant

	Java EE 6 Tutorial Component
	To Obtain the Tutorial Component

	NetBeans IDE
	To Add Enterprise Server as a Server in NetBeans IDE

	Starting and Stopping the Enterprise Server
	Starting the Administration Console
	To Start the Administration Console in NetBeans IDE

	Starting and Stopping the Java DB Database Server
	Building the Examples
	Tutorial Example Directory Structure
	Getting the Latest Updates to the Tutorial
	To Update the Tutorial through the Update Center

	Debugging Java EE Applications
	Using the Server Log
	Using a Debugger

	The Web Tier
	Getting Started with Web Applications
	Web Applications
	Web Application Life Cycle
	Web Modules
	Packaging Web Modules
	Deploying a WAR File
	Setting the Context Root
	Deploying a Packaged Web Module
	Deploying with the Admin Console
	Deploying with asadmin
	Deploying with Ant
	Deploying with NetBeans IDE

	Testing Deployed Web Modules
	Listing Deployed Web Modules
	Updating Web Modules
	Dynamic Reloading

	Undeploying Web Modules

	Configuring Web Applications
	Mapping URLs to Web Components
	Setting the Component Alias

	Declaring Welcome Files
	Setting Initialization Parameters
	Mapping Errors to Error Screens
	Declaring Resource References
	Declaring a Reference to a Resource
	Declaring a Reference to a Web Service

	Further Information about Web Applications

	JavaServerTM Faces Technology
	What Is a JavaServer Faces Application?
	JavaServer Faces Technology Benefits
	Creating a Simple JavaServer Faces Application
	Developing Backing Beans
	Creating the Web Page
	Mapping the Faces Servlet Instance
	The Lifecycle of the helloWorld Application
	Running the Application in NetBeans IDE

	Further Information about JavaServer Faces Technology

	Introduction to Facelets
	Advantages of Facelets
	What's Facelets ?
	Web Pages
	Tag Library Support
	Unified Expression Language Support

	Developing a Simple Facelets Application
	Creating a Facelets Application
	Developing a Backing Bean
	Creating Facelets Views

	Configuring the Application
	Building, Packaging, Deploying and Running the Application
	To Create the Example Facelets Application with NetBeans IDE
	To Create the Application

	Templating
	Composite Components
	Resources

	Unified Expression Language
	Overview of EL
	Immediate and Deferred Evaluation Syntax
	Immediate Evaluation
	Deferred Evaluation

	Value and Method Expressions
	Value Expressions
	Referencing Objects Using Value Expressions
	Referring to Object Properties Using Value Expressions
	Where Value Expressions Can Be Used

	Method Expressions
	Parameterized Method Calls

	Defining a Tag Attribute Type
	Literal Expressions
	Operators
	Reserved Words
	Examples of EL Expressions

	Using JavaServerTM Faces Technology in Web Pages
	Setting Up a Page
	Adding Components to a Page Using HTML Tags
	Common Component Tag Attributes
	The id Attribute
	The immediate Attribute
	The rendered Attribute
	The style and styleClass Attributes
	The value and binding Attributes

	Adding HTML Head and Body Tags
	Adding a Form Component
	Using Text Components
	Rendering a Text Field With the inputText Tag
	Rendering a Password Field With the inputSecret Tag
	Rendering a Label With the outputLabel Tag
	Rendering a Hyperlink With the h:outputLink Tag
	Displaying a Formatted Message With the h:outputFormat Tag

	Using Command Components for Performing Actions and Navigation
	Rendering a Button With the h:commandButton Tag
	Rendering a Hyperlink With the h:commandLink Tag

	Adding Graphics and Images With the h:graphicImage Tag
	Laying Out Components With the Panel Component
	Displaying Components for Selecting One Value
	Displaying a Check Box Using the h:selectBooleanCheckbox Tag
	Displaying a Menu Using the h:selectOneMenu Tag

	Rendering Components for Selecting Multiple Values
	Using The SelectItem and SelectItems Components
	Using the f:selectItems Tag
	Using the f:selectItem Tag

	Using Data-Bound Table Components
	Displaying Error Messages With the h:message and h:messages Tags
	Creating Bookmarkable URLs with h:button and h:link Tags
	Using View Parameters

	Resource Relocation using h:output Tags

	Using Core Tags

	Using Converters, Listeners and Validators
	Using the Standard Converters
	Converting a Component’s Value
	Using DateTimeConverter
	Using NumberConverter

	Registering Listeners on Components
	Registering a Value-Change Listener on a Component
	Registering an Action Listener on a Component

	Using the Standard Validators
	Validating a Component’s Value
	Using the LongRangeValidator

	Referencing a Backing Bean Method
	Referencing a Method That Performs Navigation
	Referencing a Method That Handles an Action Event
	Referencing a Method That Performs Validation
	Referencing a Method That Handles a Value-Change Event

	Developing With JavaServerTM Faces Technology
	Backing Beans
	Creating a Backing Bean
	Using the EL to Reference Backing Beans

	Writing Bean Properties
	Writing Properties Bound to Component Values
	Input and Output Properties
	Data Properties
	SelectBoolean Properties
	SelectMany Properties
	SelectOne Properties
	SelectItem Properties
	SelectItems Properties
	Properties for SelectItems Composed of SelectItem Instances

	Writing Properties Bound to Component Instances
	Writing Properties Bound to Converters, Listeners, or Validators

	Writing Backing Bean Methods
	Writing a Method to Handle Navigation
	Writing a Method to Handle an Action Event
	Writing a Method to Perform Validation
	Writing a Method to Handle a Value-Change Event

	Bean Validation

	Java Servlet Technology
	What Is a Servlet?
	Servlet Life Cycle
	Handling Servlet Life-Cycle Events
	Defining the Listener Class
	Specifying Event Listener Classes

	Handling Servlet Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources

	Initializing a Servlet
	Writing Service Methods
	Getting Information from Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Objects with a Session
	Notifying Objects That Are Associated with a Session

	Session Management
	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	Further Information about Java Servlet Technology

	Web Services
	Introduction to Web Services
	What Are Web Services?
	Types of Web Services
	Deciding Which Type of Web Service to Use
	When Should I Use JAX-WS?
	When Should I Use JAX-RS?

	Building Web Services with JAX-WS
	Setting the Port
	Creating a Simple Web Service and Client with JAX-WS
	Requirements of a JAX-WS Endpoint
	Coding the Service Endpoint Implementation Class
	Building, Packaging, and Deploying the Service
	Building, Packaging, and Deploying the Service Using NetBeans IDE
	Building, Packaging, and Deploying the Service Using Ant
	Undeploying the Service
	The all Task

	Testing the Service without a Client
	A Simple JAX-WS Client
	Coding the Client
	Building and Running the Client
	Building and Running the Client in NetBeans IDE
	Building and Running the Client Using Ant

	Types Supported by JAX-WS
	Web Services Interoperability and JAX-WS
	Further Information about JAX-WS

	Building RESTful Web Services with JAX-RS and Jersey
	What are RESTful Web Services?
	Where Does Jersey Fit In?

	Creating a RESTful Root Resource Class
	Developing RESTful Web Services with JAX-RS and Jersey
	Overview of a Jersey-Annotated Application
	The @Path Annotation and URI Path Templates
	More on URI Path Template Variables

	Responding to HTTP Resources
	The Request Method Designator Annotations
	Using Entity Providers to Map HTTP Response and Request Entity Bodies

	Using @Consumes and @Produces to Customize Requests and Responses
	The @Produces Annotation
	The @Consumes Annotation

	Extracting Request Parameters
	Overview of JAX-RS and Jersey: Further Information

	Example Applications for JAX-RS and Jersey
	Creating a RESTful Web Service
	 Creating a RESTful Web Service Using NetBeans IDE
	Creating a RESTful Web Service From Examples
	Creating a RESTful Web Service From Maven Archetype

	Example: Creating a Simple Hello World Application Using JAX-RS and Jersey
	JAXRSHelloWorld Example: Discussion
	Testing the JAXRSHelloWorld Example
	Deploying and Running the JAXRSHelloWorld Example

	Example: Adding on to the Simple Hello World RESTful Web Service
	HelloWorld3 Example: Discussion
	Testing the HelloWorld3 Example
	Deploying and Running the HelloWorld3 Example

	JAX-RS in the First Cup Example
	Real World Examples

	Further Information

	Enterprise Beans
	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	Types of Session Beans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	When to Use Session Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session Beans?
	When to Use Message-Driven Beans

	Accessing Enterprise Beans
	Using Enterprise Beans in Clients
	Portable JNDI Syntax

	Deciding on Remote or Local Access
	Local Clients
	Accessing Local Enterprise Beans Using the No-Interface View
	Accessing Local Enterprise Beans That Implement Business Interfaces

	Remote Clients
	Accessing Remote Enterprise Beans

	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Packaging Enterprise Beans In EJB JAR Modules
	Packaging Enterprise Beans in WAR Modules

	Naming Conventions for Enterprise Beans
	The Life Cycles of Enterprise Beans
	The Life Cycle of a Stateful Session Bean
	The Lifecycle of a Stateless Session Bean
	The Lifecycle of a Singleton Session Bean
	The Lifecycle of a Message-Driven Bean

	Further Information about Enterprise Beans

	Getting Started with Enterprise Beans
	Creating the Enterprise Bean
	Coding the Enterprise Bean
	Coding the Enterprise Bean Class

	Creating the converter Web Client
	Coding the converter Web Client

	Compiling, Packaging, and Running the converter Example
	Compiling, Packaging, and Running the converter Example in NetBeans IDE
	Compiling, Packaging, and Running the converter Example Using Ant

	Modifying the Java EE Application
	Modifying a Class File

	Running the Enterprise Bean Examples
	The cart Example
	The Business Interface
	Session Bean Class
	Lifecycle Callback Methods
	Business Methods

	The Remove Method
	Helper Classes
	Building, Packaging, Deploying, and Running the cart Example
	Building, Packaging, and Deploying the cart Example Using NetBeans IDE
	Running the cart Application Client Using NetBeans IDE
	Building, Packaging, and Deploying the cart Example Using Ant
	Running the cart Application Client Using Ant
	The all Task

	Undeploying the cart Example

	A Singleton Session Bean Example: counter
	Creating a Singleton Session Bean
	Initializing Singleton Session Beans
	Managing Concurrent Access in a Singleton Session Bean
	Container-Managed Concurrency
	Bean-Managed Concurrency

	Handling Errors in a Singleton Session Bean

	The Architecture of the counter Example
	Building, Deploying, and Running the counter Example
	Building, Deploying, and Running the counter Example in NetBeans IDE
	Building, Deploying, and Running the counter Example Using Ant

	A Web Service Example: helloservice
	The Web Service Endpoint Implementation Class
	Stateless Session Bean Implementation Class
	Building, Packaging, Deploying, and Testing the helloservice Example
	Building, Packaging, and Deploying the helloservice Example Using NetBeans IDE
	Building, Packaging, and Deploying the helloservice Example Using Ant
	Testing the Service without a Client

	Using the Timer Service
	Creating Calendar-Based Timer Expressions
	Specifying Multiple Values in Calendar Expressions
	Using Wildcards in Calendar Expressions
	Specifying a List of Values
	Specifying a Range of Values
	Specifying Intervals

	Programmatic Timers
	The Timeout Method
	Creating Programmatic Timers

	Automatic Timers
	The @Schedule and @Schedules Annotations

	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The timersession Example
	Building, Packaging, Deploying, and Running the timersession Example
	Building, Packaging, Deploying, and Running the timersession Example Using NetBeans IDE
	Building, Packaging, and Deploying the timersession Example Using Ant
	Running the Web Client

	Handling Exceptions

	Contexts and Dependency Injection for the JavaTM EE Platform
	Introduction to Contexts and Dependency Injection for the JavaTM EE Platform
	Overview of Contexts and Dependency Injection for the Java EE Platform
	About Beans
	About Managed Beans
	Beans as Injectable Objects
	Using Qualifiers
	Injecting Beans
	Using Scopes
	Giving Beans EL Names
	Adding Setter and Getter Methods
	Using a Managed Bean in a Facelets Page
	Injecting Objects by Using Producer Methods
	Configuring a CDI Application
	Further Information

	Running the Basic Contexts and Dependency Injection Examples
	The simplegreeting Example
	The simplegreeting Source Files
	The Facelets Template and Page
	Configuration Files
	Building, Packaging, Deploying, and Running the simplegreeting Example
	Building and Deploying the simplegreeting Example Using NetBeans IDE
	Building, Packaging, and Deploying the simplegreetingExample Using Ant
	Running the simplegreeting Example

	The guessnumber Example
	The guessnumber Source Files
	The @MaxNumber and @Random Qualifier Interfaces
	The Generator Managed Bean
	The UserNumberBean Managed Bean

	The Facelets Page
	Building, Packaging, Deploying, and Running the guessnumber Example
	Building and Deploying the guessnumber Example Using NetBeans IDE
	Building, Packaging, and Deploying the guessnumber Example Using Ant
	Running the guessnumber Example

	Persistence
	Introduction to the Java Persistence API
	Entities
	Requirements for Entity Classes
	Persistent Fields and Properties in Entity Classes
	Persistent Fields
	Persistent Properties
	Using Collections in Entity Fields and Properties
	Using Map Collections in Entities

	Primary Keys in Entities
	Primary Key Classes

	Multiplicity in Entity Relationships
	Direction in Entity Relationships
	Bidirectional Relationships
	Unidirectional Relationships
	Queries and Relationship Direction
	Cascade Operations and Relationships
	Orphan Removal in Relationships

	Embeddable Classes in Entities
	Entity Inheritance
	Abstract Entities
	Mapped Superclasses
	Non-Entity Superclasses
	Entity Inheritance Mapping Strategies
	The Single Table per Class Hierarchy Strategy
	The Table per Concrete Class Strategy
	The Joined Subclass Strategy

	Managing Entities
	The Persistence Context
	The EntityManager Interface
	Container-Managed Entity Managers
	Application-Managed Entity Managers
	Finding Entities Using the EntityManager
	Managing an Entity Instance’s Life Cycle
	Persisting Entity Instances
	Removing Entity Instances
	Synchronizing Entity Data to the Database

	Persistence Units
	The persistence.xml File

	Querying Entities

	Running the Persistence Examples
	The order Application
	Entity Relationships in the order Application
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in the order Application
	Generated Primary Keys
	Compound Primary Keys

	Entity Mapped to More Than One Database Table
	Cascade Operations in the order Application
	BLOB and CLOB Database Types in the order Application
	Temporal Types in the order Application
	Managing the order Application’s Entities
	Creating Entities
	Finding Entities
	Setting Entity Relationships
	Using Queries
	Removing Entities

	Building and Running the order Application
	Building, Packaging, Deploying, and Running order In NetBeans IDE
	Building, Packaging, Deploying, and Running order Using Ant
	The all Task
	Undeploying order

	The roster Application
	Relationships in the roster Application
	The Many-To-Many Relationship in roster

	Entity Inheritance in the roster Application
	Criteria Queries in the roster Application
	Metamodel Classes in the roster Application
	Obtaining a CriteriaBuilder Instance in RequestBean
	Creating Criteria Queries in RequestBean's Business Methods

	Automatic Table Generation in the roster Application
	Building and Running the roster Application
	Building, Packaging, Deploying, and Running roster in NetBeans IDE
	Building, Packaging, Deploying, and Running roster Using Ant
	The all Task
	Undeploying order

	The Java Persistence Query Language
	Query Language Terminology
	Creating Queries Using the Java Persistence Query Language
	Named Parameters in Queries
	Positional Parameters in Queries

	Simplified Query Language Syntax
	Select Statements
	Update and Delete Statements

	Example Queries
	Simple Queries
	A Basic Select Query
	Eliminating Duplicate Values
	Using Named Parameters

	Queries That Navigate to Related Entities
	A Simple Query with Relationships
	Navigating to Single-Valued Relationship Fields
	Traversing Relationships with an Input Parameter
	Traversing Multiple Relationships
	Navigating According to Related Fields

	Queries with Other Conditional Expressions
	The LIKE Expression
	The IS NULL Expression
	The IS EMPTY Expression
	The BETWEEN Expression
	Comparison Operators

	Bulk Updates and Deletes
	Update Queries
	Delete Queries

	Full Query Language Syntax
	BNF Symbols
	BNF Grammar of the Java Persistence Query Language
	FROM Clause
	Identifiers
	Identification Variables
	Range Variable Declarations
	Collection Member Declarations
	Joins

	Path Expressions
	Examples of Path Expressions
	Expression Types
	Navigation

	WHERE Clause
	Literals
	String Literals
	Numeric Literals
	Boolean Literals
	Enum Literals

	Input Parameters
	Conditional Expressions
	Operators and Their Precedence
	BETWEEN Expressions
	IN Expressions
	LIKE Expressions
	NULL Comparison Expressions
	Empty Collection Comparison Expressions
	Collection Member Expressions
	Subqueries
	EXISTS Expressions
	ALL and ANY Expressions

	Functional Expressions
	Case Expressions
	NULL Values
	Equality Semantics

	SELECT Clause
	Return Types
	Aggregate Functions in the SELECT Clause

	The DISTINCT Keyword
	Constructor Expressions

	ORDER BY Clause
	The GROUP BY Clause
	The HAVING Clause

	Creating Queries Using the Criteria API
	Overview of the Criteria and Metamodel APIs
	Modeling Entity Classes with the Metamodel API
	Using Metamodel Classes

	Basic Type-Safe Queries Using the Criteria API and Metamodel API
	Creating a Criteria Query
	Query Roots
	Querying Relationships Using Joins
	Path Navigation in Criteria Queries
	Restricting Criteria Query Results
	The Expression Interface Methods
	Expression Methods in the CriteriaBuilder Interface

	Managing Criteria Query Results
	Ordering Results
	Grouping Results

	Executing Queries
	Single-Valued Query Results
	Collection-Valued Query Results

	Security
	Introduction to Security in the Java EE Platform
	Overview of Java EE Security
	A Simple Security Example
	Step 1: Initial Request
	Step 2: Initial Authentication
	Step 3: URL Authorization
	Step 4: Fulfilling the Original Request
	Step 5: Invoking Enterprise Bean Business Methods

	Security Functions
	Characteristics of Application Security

	Security Implementation Mechanisms
	Java SE Security Implementation Mechanisms
	Java EE Security Implementation Mechanisms
	Application-Layer Security
	Transport-Layer Security
	Message-Layer Security

	Securing Containers
	Using Deployment Descriptors for Declarative Security
	Using Annotations
	Using Programmatic Security

	Securing the Enterprise Server
	Working with Realms, Users, Groups, and Roles
	What Are Realms, Users, Groups, and Roles?
	What Is a Realm?
	What Is a User?
	What Is a Group?
	What Is a Role?
	Some Other Terminology

	Managing Users and Groups on the Enterprise Server
	Adding Users to the Enterprise Server
	Adding Users to the Certificate Realm

	Setting Up Security Roles
	Mapping Roles to Users and Groups

	Establishing a Secure Connection Using SSL
	Installing and Configuring SSL Support
	Specifying a Secure Connection in Your Application Deployment Descriptor
	Verifying SSL Support
	Tips on Running SSL

	Working with Digital Certificates
	Creating a Server Certificate
	Miscellaneous Commands for Certificates

	Further Information about Security

	Getting Started Securing Enterprise Applications
	Responsibility for Administering Security
	Securing Enterprise Beans
	Securing an Enterprise Bean Using Declarative Security and Annotations
	Specifying Authorized Users by Declaring Security Roles
	Mapping Security Roles to Enterprise Server Groups

	Specifying an Authentication Mechanism and Secure Connection
	Example: Securing an Enterprise Bean
	Annotating the Bean
	Building, Deploying, and Running the Secure Cart Example Using NetBeans IDE
	Building, Deploying, and Running the Secure Cart Example Using Ant

	Securing an Enterprise Bean Programmatically
	Accessing an Enterprise Bean Caller’s Security Context
	Example: Using the isCallerInRole and getCallerPrincipal Methods
	Modifying ConverterBean
	Building, Deploying, and Running the Secure Converter Example Using NetBeans IDE
	Building, Deploying, and Running the Secure Converter Example Using Ant
	Troubleshooting the Secure Converter Application

	Propagating a Security Identity (Run-As)
	Configuring a Component’s Propagated Security Identity
	Trust between Containers

	Deploying Secure Enterprise Beans
	Accepting Unauthenticated Users

	Securing Application Clients
	Using Login Modules
	Using Programmatic Login

	Securing Enterprise Information Systems (EIS) Applications
	Container-Managed Sign-On
	Component-Managed Sign-On
	Configuring Resource Adapter Security
	Mapping an Application Principal to EIS Principals

	Getting Started Securing Web Applications
	Overview of Web Application Security
	Using Deployment Descriptors to Secure Web Applications
	Introduction to Web Application Deployment Descriptors
	Specifying Security Constraints
	Specifying a Web Resource Collection
	Specifying an Authorization Constraint
	Specifying a Secure Connection
	Specifying Separate Security Constraints for Different Resources

	Specifying an Authentication Mechanism
	HTTP Basic Authentication
	Form-Based Authentication
	Using Login Forms

	HTTPS Client Authentication
	Mutual Authentication

	Digest Authentication

	Working with Security Roles
	Reviewing Security Concepts
	Declaring Security Roles
	Mapping Security Roles to Enterprise Server Groups

	Using Programmatic Security with Web Applications
	Authenticating Users Programmatically
	Checking Caller Identity Programmatically
	Example Code for Programmatic Security
	Declaring and Linking Role References

	Using Message Security with Web Applications
	Examples: Securing Web Applications
	Setting Up Your System for Running the Security Examples
	Example: Basic Authentication with a Servlet
	Specifying Security in the Deployment Descriptor
	Building, Packaging, and Deploying the Servlet Basic Authentication Example Using NetBeans IDE
	Building, Packaging, and Deploying the Servlet Basic Authentication Example Using Ant
	Running the Basic Authentication Servlet
	Troubleshooting the Basic Authentication Example

	Example: Basic Authentication with JAX-WS
	Adding Security Elements to the Deployment Descriptor
	Building and Deploying helloservice with Basic Authentication Using NetBeans IDE
	Building and Deploying helloservice with Basic Authentication Using Ant
	Building and Running the helloservice Client Application with Basic Authentication Using NetBeans IDE
	Building and Running the helloservice Client Application with Basic Authentication Using Ant

	Example: Form-Based Authentication with a Servlet
	Creating the Login Form and the Error Page
	Specifying Security in the Deployment Descriptor
	Building, Packaging, and Deploying the Form-Based Authentication Example Using NetBeans IDE
	Building, Packaging, and Deploying the Form-Based Authentication Example Using Ant
	Testing the Form-Based Authentication Web Client

	JavaTM EE Supporting Technologies
	Introduction to JavaTM EE Supporting Technologies
	Transactions
	Resources
	The Java EE Connector Architecture and Resource Adapters
	Java Message Service
	Java DataBase Connectivity (JDBCTM) Software

	Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Transaction Attributes
	Required Attribute
	RequiresNew Attribute
	Mandatory Attribute
	NotSupported Attribute
	Supports Attribute
	Never Attribute
	Summary of Transaction Attributes
	Setting Transaction Attributes

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean’s Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Bean-Managed Transactions
	JTA Transactions
	Returning without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Transaction Timeouts
	Updating Multiple Databases
	Transactions in Web Components

	Resource Connections
	Resources and JNDI Naming
	DataSource Objects and Connection Pools
	Resource Injection
	Field-Based Injection
	Method-Based Injection
	Class-Based Injection
	Declaring Multiple Resources

	Resource Adapters
	Resource Adapter Contracts
	Management Contracts
	Life cycle Management
	Work Management Contract

	Generic Work Context Contract
	Transaction Context
	Security Context
	Work Security Map
	Hints Context

	Outbound Contracts
	Connection Management Contract
	Transaction Management Contract
	Security Management Contract

	Inbound Contracts
	Messaging Contracts
	Transaction Inflow

	Metadata Annotations
	Replacing Deployment Descriptors With Metadata Annotations
	Example 1: @Connector Annotation
	Example 2: @ConnectionDefinition Annotation
	Example 3: @Activation Annotation

	Common Client Interface
	Further Information about Resources

	Index

